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• A comprehensive literature review of pertinent studies on Load Balancing in Software Defined Networks.
• Thematic taxonomy for classifying current load balancing techniques in SDN.
• Lesson learned from in-depth critical review based on proposed taxonomy.
• Key future direction is discussed based on the SDN requirement.
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ABSTRACT
Software-defined network (SDN) separates the network control plane from the data forwarding plane.
SDN has shown significant benefits in many ways compared to conventional non-SDN networks.
However, traffic distribution in SDN impacts efficiency and raises many other challenges. For in-
stance, uneven load distribution in the SDN significantly impacts the network performance. Hence,
several SDN load balancing (LB) techniques have been introduced to improve the efficiency of SDN.
In this article, we provide a thematic taxonomy of LB in SDN, considering several parameters from
the past technical studies such as the objectives of LB, data plane LB techniques, control plane LB
techniques, other aspects of data plane/control plane LB as well as the performance metrics for LB
techniques. Furthermore, useful insights on LB and a comparative analysis of various promising SDN
LB techniques are also included in the survey. Finally, existing challenges and future direction on SDN
LB techniques are highlighted.

1. Introduction
In the past decade, network requirements have rapidly

changed in response to the escalating size of network traf-
fic and quality requirements; thereby, putting more demand
on end-to-end goals. Conventional network architectures are
static in nature and thus, complex to address dynamic net-
work conditions. In order to allow networks to be adaptive
needs, an emerging new network model termed software-
defined networking (SDN) has been explored [44, 126, 155,
134]. In essence, SDN separates the network control plane
from that of the data forwarding plane [148]. As an ex-
ample, the data forwarding layer uses OpenFlow switches
that are programmable via the OpenFlow controller. These
switches use a southbound protocol application program in-
terface (API) (e.g., the OpenFlow protocol) for communica-
tion with the controller [161]. The SDN controller is respon-
sible for the data plane devices (router and switch), which
centrally defines the network policy topology and manages
multiple interfaces southbound protocols [61].

The evolvement of OpenFlow protocol [149] provides
solutions that are effective and efficient for monitoring net-
work traffic and to provide elastic topology. It permits soft-
ware that runs on multiple routers and facilitates their path
association with the packet via the network [199, 68]. Con-
ventional non-SDN networks are not capable of providing a
global view of network topology and resources. Thus, LB
mechanisms are not explicitly defined [53, 241, 144]. Con-
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sequently, due to the growing interest in SDN and its poten-
tials of replacing conventional networks in addition to the
industry concerns, LB is considered an important open is-
sue [141]. SDN can be used to ensure a simplified network
management system while realizing the invention and devel-
opment of computer networks. Since the network resources,
as well as requisite knowledge of application for optimiz-
ing the load, are known via the controller, it is suitable to
implement LB. As a result, SDN brings new possibilities to
improve the balance of technology in the conventional net-
work load. Today, the LB solution in SDN is effective, but
the flexibility in customization remains limited. Typically, in
a cloud environment, a service provider hosts various types
of services and applications via a multi-tenant service that
requires a specific LB scheme. Therefore, it isn’t easy to
customize the LB system as different load balancers may be
required for each of the services provided, which may be too
expensive to be widely used [193].

A centralized control model is used by the OpenFlow
protocol [191, 162]. This consists of controllers, switches,
and protocols [199, 191]. The controller selects all network
routes in a centralized control model, and packets that appear
first in the individual data stream is conveyed to the SDN
controller. The controller then carries out the computation of
the routing path for individual data stream such that the flow
table that is in-line to the switches is set in a way that is often
carried out continuously through observability of the global
network view. Usually, the first packet, which is related to
each data stream becomes the most needed for initialization
request. However, the capacity associated with the request
processing of a sole controller is inadequate. For example,
the NOX controller [217] can handle about 30,000 requests
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per second, while the Maestro controller [158] can handle
around 600,000 requests per second. Due to this constraint
in request handling, the control channel may become con-
gested or overloaded [16, 147, 167]. As with traditional net-
work, the problems of network congestion can be resolved
through key link redundancy technology in SDN, which also
provides network robustness and stability. Through the pro-
cess of ensuring efficient traffic distribution among numer-
ous paths in SDN, LB objectives can be attained. Achiev-
ing this goal has become a major concern for network re-
searchers and managers over the years. Hence, the need to
explore load balance research in SDNhas become important.

Although there exist several impressive surveys in SDN
LB such as [24, 187, 150, 157, 121, 19, 244, 133], this paper
differs in that it classifies and analyzes LB in SDN from a
different perspective. For instance, Kumari et al. [121], Li
et al. [133], Badirzadeh et al. [19], Zhang et al. [244], and
Mehra et al. [150] surveyed different aspects of LB espe-
cially relating to SDN in the data center. However, none of
these works considered aspects of LB in SDN networks. In
another study, Neghabi et al. [157] presented a review on LB
mechanisms as used in the SDNwith focus on two categories
of LB approaches their deterministic and non-deterministic
nature characterizes that. However, the drawback associated
with their approach is that the parameters used in their inves-
tigation are not sufficient to justify their LB scheme’s per-
formance. That has become a significant source of concern,
as this could cause load performance issues in terms of LB.
Hence, this paper sheds light on the challenges, research op-
portunities and limitations of SDN LB techniques. At the
same time, most of these surveys focused on LB schemes in
the software-defined data centers.

Systematic analysis of LB techniques and algorithms used
by various researchers was proposed in [24]. The selected
papers are classified into artificial intelligence and traditional
LB based approaches according to the method used to ad-
dress SDN LB challenges. Similarly, this work addresses
the problems that have been discussed, the approaches used
and the solutions that have been proffered. Based on dif-
ferent studies considered in this work, we discovered that
numerous techniques did not meet specific critical require-
ments that it is essential to increase the effectiveness of the
current SDNLBmethods. Furthermore, Semong et al. [187]
offer a summary of the available LB schemes in SDN. The
review focused on research issues, current approaches, in ad-
dition to future research directions for interested researchers.
A description of emulators/mathematical tools regularly uti-
lized in designing SDN algorithms for smart LB was pro-
vided. A description of the efficiency metrics used to test
the algorithms was also given by evaluating various meth-
ods to study pertinent literature on intelligent LB for SDN.
However, none of the existing surveys has given the proper
taxonomy for the categorization of different LB techniques
in SDN. Therefore, our paper performs a thorough analysis
with in-depth information compared to earlier works. The
taxonomy of this work covers various aspects of LB solu-
tions such as the objectives of LB, data plane LB techniques,

control plane LB techniques, other aspects of LB in SDN and
performance metrics used for LB techniques amongst other
aspects of SDN LB. A summary and a comparative analy-
sis of diverse and promising SDN LB techniques are also
included in the survey for the curious reader.

Additionally, this paper sheds light on the challenges, re-
search opportunities and limitations of SDN LB techniques.
Table 1 provides a list of survey works on SDN LB topics
and their respective targets. The table columns show the
survey papers and year, taxonomy, data plane types LB, con-
trol plane types LB, other aspects of data/control planes LB
(other aspects of D/CP LB), comparative study, issues and
challenges. The symbol ✓ indicates whether the subject is
covered in the respective survey.
1.1. Scope and contribution

Several load balancing techniques in SDN have been re-
cently introduced with a particular emphasis on two aspects
of SDN LB techniques; data plane and control plane LBs.
This article aims to provide an overview of LB in SDN through
classification and analyses of issues related to the research
area while further exposing approaches necessary for future
study. The contributions of this article are as follow:

1. This paper provides a comprehensive literature review
of pertinent studies on LB in SDN. The selection cri-
teria of these studies were based on citation count,
the year of publication, merit, and published in peer-
reviewed and high-quality journals and conferences
over the last decade; especially related studies on data
and control planes in LB.

2. This paper introduces a thematic taxonomy for clas-
sifying current SDN LB literature into a set of cate-
gories.

3. This paper analyzes current SDNLB techniques based
on the proposed thematic taxonomy.

4. Finally, this survey focuses on themost recent research
in SDNLB techniques, pointing out the key challenges
that require attention as future research opportunities.
These opportunities would help andmotivate researchers
for future work in SDN LB.

1.2. Paper organization
This survey elaborates and discusses the related issues

associated with each aspect of the topic. A brief discus-
sion on the need for LB in SDN and description of the SDN
architecture is presented in Section 2. Section 3 discusses
our taxonomy of LB in SDN, which are divided into objec-
tives of LB, data plane LB, control plane LB, other aspects
of data/control planes LB, and performance metrics for LB
techniques. Meanwhile, Section 4 presents a discussion and
a comparative analysis of LB techniques in SDN. Further-
more, a summary of our survey findings is presented in Sec-
tion 5. Section 6 summarizes the challenges and open areas
of further research on SDN LB techniques, followed by a
conclusion in Section 7.
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Table 1
Comparison of survey works on SDN load balancing

Survey Paper Year Taxonomy Types of
Data

Plane LB

Types of
Control
Plane LB

Other Aspects
of D/CP LB

Comparative
Analysis

Issues and
Challenges

Kumari et al. [121] 2017 × ✓ ✓ × × ×
Li et al. [133] 2017 ✓ ✓ ✓ × × ×
Badirzadeh et al. [19] 2018 × ✓ ✓ × × ×
Zhang et al. [244] 2018 ✓ ✓ × × × ✓

Neghabi et al. [157] 2018 ✓ × ✓ × ✓ ✓

Mehra et al. [150] 2019 × × ✓ × × ×
Semong et al. [187] 2020 × ✓ × × × ✓

Belgaum et al. [24] 2020 ✓ × ✓ × ✓ ✓

Our survey 2020 ✓ ✓ ✓ ✓ ✓ ✓

2. Overview of SDN Load Balancing
A brief overview of SDN architecture and the impor-

tance of the SDN LB is presented in this section.
2.1. SDN architecture

The SDN architecture is associated with three main com-
ponents: control planewhich consists of one ormultiple con-
trollers; data plane which is characterized by the presence of
network equipment (e.g., routers, switches, as well as mid-
dleboxes) that interact to form a data forwarding network;
and the SDN application layer which provides an avenue
for executing all network applications. The architecture of
SDN is depicted in Figure 1. One of the major characteris-
tics of SDN architecture is the ability to separate control and
data layers from other layers. Another key feature of SDN
is programmability which permits users to configure their
application specifically within the layer associated with the
application based on the north-bound interface that offers
programmable APIs and highly sophisticated policy appli-
cations and services. Besides, the OpenFlow protocol offers
a standard API that is delivered via the south-bound inter-
face [10, 33, 149]. The role of a network operating system
is played by the SDN controller, which views the compre-
hensive network topology as well as ensuring a secure line
of communication between OpenFlow switches [48]. It is
also responsible for the management, control and manipu-
lation of the flow table within the switch. The north-bound
and south-bound interfaces are the primary communication
interfaces of the SDN controller [123]. The SDN technol-
ogy uses some well-known protocols, such as OpenFlow, to
ensure smooth communication between the control and in-
frastructure layers [149].

The key features of SDN include:
1. Separation and abstraction of control and data planes.
2. Intelligence is logically centralized and thus has a global

view of the network and changing needs.
3. Possibility of creating various applications through the

application of the underlying network infrastructure.
4. Programmability of data plane to ensure simplicity and

versatility in networking.

devices
appli-

Moreover,

enables

be-
software-

fields.
actions

Figure 1: SDN architecture [203]

5. Use of accelerated innovation to speed up and promote
business innovation as well as allowing IT and net-
work operators to implement programs in real-time.
This to ensures that the network has been reprogrammed
to satisfy both business and customer demands.

The network architecture and its separation from individual
network resources can be based on the virtualization pro-
cess [104, 65, 29]. The main reason behind the performance
of SDN network is due to the SDN controller, which is re-
sponsible for controlling the infrastructure layer function,
and the switches that are converted into high-speed packet
processors and packet forwarding actuators. The commu-
nication between packet forwarder and controller is carried
out using protocols of the control signaling like OpenFlow,
which is the most commonly used [161].
2.2. Importance of SDN load balancing

The processing capability of the network should corre-
spondingly increase with increasing access and data traffic.
Solving this problem through replacement or upgrade of ex-
isting hardware with new ones is inherently costly, in addi-
tion to an unavoidable waste of resources. LB can allocate a
large amount of simultaneous access or data traffic to multi-
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ple computing devices to increase the processing capacity of
the server while reducing the time it takes to respond to user
requests. The technology is mainly used in the enterprise
key application servers, Web servers and FTP servers [35].
A load balancer is expensive (the cost could easily rise to
as high as $ 50k), thus highly specialized machines are usu-
ally based on several factors like the server’s current load,
the content relative to the requested location knows the route
they are forwarding the server or some naive policy such as
round-robin. Since the load balancer runs custom software
unlike commodity hardware, the policy is rigid in the option
given. In order to achieve a better strategy, special adminis-
trators are needed. Besides, policy implementer and switch
are coupled for reduced single failure point [219].

Networkmanagement can be simplified in SDNwhile re-
alizing innovation and evolution in computer networks. Be-
sides, the fact that the controller can view network resources
globally coupled with the knowledge requirements of ap-
plications for load optimization makes it suitable for SDN
LB. As a result, SDN brings new possibilities to improve
the balance of technology in the conventional network load.
Furthermore, LB technology has been crucial to the SDN
networks to improve its performance in multiple aware rout-
ing approaches [121]. It has also been employed to effec-
tively allocate the resources of the network for the overall im-
provement of the performance of the network and quality-of-
service (QoS) [133]. Therefore, the overall performance can
be enhanced through the use of LB technology [255, 184, 9].
A load balancer based on SDN enables the control of several
computers; thus, ensuring the possibility of a more agile net-
work. The ability to directly configure the network ensures
improved network management for more flexible and effec-
tive application services [110]. Although computing and
storage have seen advancement in virtualization and automa-
tion, networks are lagging behind. LB using SDN enables
the network to act like the virtualized computing and stor-
age models. LB in SDN helps in the exploration of the best
route and application for a faster request delivery [157].

3. Taxonomy of Load Balancing in SDN
In this section, we provide thematic taxonomy for LB

technologies in SDNs. Figure 2 classifies existing SDN LB
solutions in accordance with a set of standard parameters as
in the majority of pertinent literature. The parameters se-
lected for this thematic taxonomy were constructed from six
factors: objectives of LB, data plane LB techniques, con-
trol plane LB techniques, other aspects of data plane/control
plane LB (other aspects of D/CP LB) and performance met-
rics used for LB techniques. Each of these factors is com-
prehensively discussed in the following subsections.
3.1. Objectives of load balancing

The goals of SDN LB are to boost the QoSmetrics, max-
imize throughput, maximize response time, avoid conges-
tion, and optimize usage of resources. These SDN LB ob-
jectives are discussed as follow:

1. Improve end-to-end QoS metrics
The primary aim of the LBs is to ensure end-to-end
QoS for the SDN network. Therefore, improving the
efficiency and overall performance of the system. The
QoS aims to provide a better user experience by pre-
venting excessive device latency, optimizing perfor-
mance, and reducing response time [188, 107, 32].

2. Optimize resource utilization
This is one of the overarching goals of LB since the
proper use of resources is important for the efficiency
of the SDN LB model. Hence, there is a degree to
which network resources such as link, bandwidth, pro-
cessor, and memory usage are to be utilized. A suit-
able resource provision algorithms ensure the maxi-
mal usage of resources for the LB [93, 6, 179].

3. Reduce transmission latency
The latency of transmission refers to the time it takes
the host switch to transmit data. This depends on sev-
eral factors that include the switches performance, whether
the transmission queue is congested and the size of the
data packets. The transmission latency shows conges-
tion in the link, and in some other way, it also serves as
the switch load condition. Thus, the SDN controller
must collect the bytes that are transmitted within a
specific period as well as the transmission rate. This
parameter should be reduced [24, 157, 42].

4. Minimize response time
This is specified by the time interval between the time
a server request or job is received and the time it is
answered, or mission accomplished. Therefore, in a
distributed SDN network, it is time it takes a partic-
ular LB algorithm to react. This parameter should be
minimized [251, 99].

5. Avoiding bottlenecks
To avoid any congestion or bottlenecks in the SDN
network setting, LBmethods are required to spread the
load equally between different switches/controllers so
that no switch/controller gets overloaded (i.e., among
the bottlenecked switches of each link, the best is the
one with the lowest capacity). Proper LB can reduce
resource consumption through efficient use of the avail-
able resources. Additionally, it enforces failover, al-
lows scalability, prevent bottlenecks, and reduce re-
sponse time [99, 49, 197].

6. Maximize the throughput
High throughput is a desirable attribute needed for a
high-performance network that is only feasible if the
workload and resources are spread equally to the var-
ious nodes. This is the size of correctly transferred
data over a certain period of time from one location to
another [52, 176, 142].

3.2. Load balancing for data plane (LB for DP)
This technique is used to attain LB that is of small latency

network performance; especially within the data plane. It is
also used to solve the load imbalance in paths and severs, and
to avoid network bottlenecks in SDN. Data plane LB can be
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Figure 2: Thematic taxonomy of SDN load balancing techniques

classified as servers LB and links LB are discussed in what
follows.
3.2.1. Server load balancing

The current network traffic is extremely large and still
increasing. However, for service providers, it has become
a very serious problem as it results in network congestion
and server overload. Grand View Research [177], which
is a market research company, reported that traffic in the
data center is expected to reach 9,965 Exabyte by 2020 as
compared to 4,515 Exabyte in 2015, and market penetration
of SDN-based data center traffic is expected to increase ex-
ponentially from over 58% to over 75% by 2020. The in-
creased traffic emphasizes the need to balance the number
of LB services needed to increase the amount of traffic on
the SDN [177]. Another study by Microsoft research labs
compared the Internet traffic ratio between eight data centers
and services over a week. The study found that 44% of the
total traffic was a virtual IP address (VIP), representing LB

traffic or source network address translation (SNAT), 30% of
service traffic, and 26% Internet traffic [163].

Given that navigating through the load balancer is re-
quired for a bulk of the traffic, 70% of the VIP traffic is shown
by this study to be managed by a single data center. Hence,
the load balancer is often located behind a firewall, handling
all VIP traffic [168]. An LB strategy can be used to distribute
traffic to different servers to overcome network congestion.
On the other hand, the server LB techniques are divided into
two parts: static [128] and dynamic [189].
A. Static algorithms for server load balancing

Static LB algorithms are simple but costly. They are
suitable for homogeneous servers, but their inflexible na-
ture makes them unsuitable for dynamic changes [127]. The
static algorithm performs load distribution with little or no
consideration for the efficiency of the component nodes such
as RAM size, server processor as well as the bandwidth of
the links. Nevertheless, this algorithm has little overhead
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with easy implementation, with less overhead and suitable
for homogeneous servers. This algorithm is also not suffi-
ciently versatile to cater for complex changes to the attributes.
For example, more tasks are intermittently sent to the same
server without consideration for the current state or capabil-
ity of the server to handle such task size at the time.

The first LB application in SDN based on OpenFlow
switch was introduced in [219]. In this architecture, a static
IP address is used in each server alongside a web server em-
ulator running on a specific port. The NOX controller man-
ages the server list. As new request are made from the client,
the OpenFlow switch checks the flow table for matching en-
tries. An LBmodule written in the C++ languagewas devel-
oped on the NOX controller to provide LB services. How-
ever, this study only allows a single controller to manage
a switch. Two LB algorithms-static and dynamic schedul-
ing algorithms, designed on the SDN network architecture
were presented in [242]. Results of the experiments showed
that the dynamic algorithm efficiency is higher than that of
the static algorithm. In [111], the authors implemented and
compared a round-robin LB strategy with a random strategy
already implemented using an OpenFlow switch connected
to a POX controller.
B. Dynamic algorithms for server load balancing

Dynamic LB algorithm allocates the load according to
the current state of the network node [15]. The LB algorithm
carries out a routine check on the link capacity and server’s
load at run-time. Implementing server LB for dynamic al-
gorithms is simplified by the use of SDNs, which permits
programmability and flexibility of network appliances [175].

In order to balance the load in the server pool, a genetic
algorithm (GA)was implemented in [45], to redirect the flow
to achieve optimal LB effectively. This study assumes that
there are ℕ flows, each with a different load. There is a
varying amount of work for every server within the server
pool. For the coefficient of the server to be minimized, a
fitness function was proposed. There are two main compo-
nents related to the architecture: the OpenFlow switch and
the OpenFlow controller. Three modules are built on the
controller; a flow control module, a decision module, and a
monitoring module. The OpenFlow switch components in-
clude three modules, namely; OpenFlow handler, a stream
modification, and a packet mirroring modules. Four LB al-
gorithmswere compared namely: a load-based, round-robin,
random and genetic algorithm. Compared with other algo-
rithms, the genetic-based algorithm showed a significantly
better result. The entire experimental setup was in a sim-
ulated environment with a simple topology. However, the
architecture should be tested in a real environment with a
large network topology to assess its scalability and stability.

Another LB approach is the dynamic aware LB system
that uses a Floodlight controller. A server-based load bal-
ancer (SBLB) technique was proposed, and a comparative
analysis was carried out with two other techniques, random,
and round-robin, in [193]. The controller chooses the small-
est load associated with a server based on the weight on the

minimum connection of the selected node, with regards to
the number of active connections. The load on the server
is obtained by dividing, the number of active connections
by the weight of the servers. The experiments were carried
out in Mininet simulations [152]. In another work, Chen et
al. [40] proposed dynamic LB technology in virtualization
environment based on OpenFlow. This method was con-
nected to the controller and server cluster by the Open Flow
switch network, which connects to the Open Flow switch
network while providing a storage-area network (SAN). It
also scans most of the clusters that offer shared storage for
the server cluster. Compared to round-robin and random al-
gorithms, the SBLB algorithm enhanced the efficiency of
server CPU, memory utilization and response time. How-
ever, this method is deficient in that it cannot perform real-
time monitoring of the load in addition to using reactive flow
entry.

Du et al. [58] introduced an algorithm called dynamic
server LB; using the sFlow traffic monitoring tool [1] and
OpenFlow to distribute traffic among servers of the cluster
effectively. This method uses the wildcard rules to com-
bine the traffic of the server replicas and makes decisions
according to statistics of real-time traffic collected through
the sFlow. Moreover, the wildcard rules install proactively
on the switches to send requests to a wide verity of clients
ignoring the SDN controller; thereby decreasing the size of
the rules and the latency of the network. The authors de-
veloped the algorithm as a Floodlight controller application
module and evaluated its effectiveness with Mininet simula-
tion. Compared to random and round-robin algorithms, this
algorithm enhanced the throughput, reduced the latency and
balanced the server load. However, this paper has some lim-
itations, such as the small size of the network and its use of
software switch in a virtual environment.

Moreover, Zhong et al. [250] presented an effective dy-
namic SDN LB method to addresses the time of service re-
sponses as their most important factor for determining the
experience of the user within the model provided by the ser-
vice. This model involves the server clusters. This method
presented a server response time based (LBBSR) dynamic
LB scheme in the SDN architecture. The SDN controller
obtains each server’s response time and selects the one with
the least or most stable time of response. This scheme lever-
ages server resources, compared with that of the conven-
tional round-robin and random schemes, for an improved LB
performance. Besides, this approach is more cost-effective
than traditional solutions because of the reduced hardware
requirements and software customization method. Although
this scheme effectively overcomes many LB issues, it fails to
consider energy savings in server LB.

Wang et al. [223] introduced a dynamic SDN load bal-
ance scheme (SDN-LB) for cloud data centers and addressed
the issue of LB through the deployment of the SDN architec-
ture. The researchers utilized the Plug-n-Server [80] to im-
plement the LB over an unstructured networksmethod called
LOBUS in the SDN architecture. The three parts associ-
ated with the plug-in server include the objective underly-
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ing composite by servers and clients; decision platform and
the SDN controller OpenFlow network switch. There are
four modules associated with the controller: dynamic load
scheduling, traffic detection, flowmanagement, and load cal-
culation. The traffic detection module dynamically moni-
tors the traffic statistics; the load calculation module esti-
mates the load distribution of the cloud environment. Exper-
imental results have shown that the LOBUS achieved better
throughput than the oblivious and stateful LBmethods. This
is because of the single controller used in the benchmarked
algorithms, which results in system bottleneck as well as
low scalability and availability. Moreover, conventional or
benchmarked algorithms have not considered latency and
utilizationmetrics. Similarly, there is nomeasurement based
on the uniformity of the load distribution among servers.

Abdelltif et al. [5] proposed a cloud server LB service
(SBLB) which focused on the SDN to optimize resource ef-
ficiency and reduce user response time. The constituents
of the proposed technique are an application module that
runs over an SDN controller and pools of servers that uses
OpenFlow switches as a means of connecting the controller.
The Framework module comprises of a device management
module, a dynamic LB module, and a control module. The
controller handles all communications, controls host pools,
and keeps a host charging in real-time. Experimental find-
ings confirm the efficiency of the proposed scheme.

Furthermore, an LB algorithm was proposed in [206].
This algorithm considered network as a graph whose edges
and vertices are the network channels and switches, respec-
tively. This approach calls for the superiority of the band-
width of the channel over the server’s load to determine the
best path dynamically; this claim improves the QoS param-
eters in terms of network stability and efficiency. The pro-
posed algorithm functions in two stages: While stage 1 lo-
cates the server with the least load within the network, stage
2 decides the best route to get to this server by using the
bandwidth and weight of the platform. This algorithm uti-
lized a mathematical example to demonstrate this process.
However, a key limitation of this algorithm is that it does
not have QoS parameters such as cost optimization to quan-
tify network delay.
3.2.2. Link load balancing

Inmultiple paths SDNnetwork, modern approaches have
been reported in relevant literature to address high controller
LB in multiple path networks. Most of these techniques are
meant to optimize path load and choose a path that is least
loaded for the new incoming data requests, to overcome con-
gestion in the data plane. Moreover, the link LB technique is
categorized into three parts: meta-heuristic algorithms, ma-
chine learning algorithms, other algorithms.
A. Meta-heuristic algorithms for link load balancing

SDN offers a perfect architecture for network-wide opti-
mization using artificial intelligence (AI) to create an open,
scalable, programmable, and manageable network. Also,
network-widemanagement and optimization challenges usu-

ally require a vast space for solutions, a large number of vari-
ables, and several targets. Heuristic algorithms can solve
these problems in a reasonable time but are generally re-
stricted to particular circumstances of the problem [137].
Many algorithms have proposed using heuristic algorithms
coupled with the SDN network to improve LB performance.

Hopps et al. [87] proposed equal-cost multi-path algo-
rithm (ECMP). This algorithm distributes flows across the
most available paths based on flow hashing methods. How-
ever, the limitation associated with this technique is that of
two or more long streams in which conflicting hashes are
trying to share the same output port result in bottlenecks in
the network. Usually, the flows to paths of the static map-
ping are not normally specified either for present utilization
of the network or size of the flow, thereby leading to col-
lisions which mostly overwhelm the buffer associated with
the switches as well as a reduction in the overall utilization of
both the link and switch. To overcome the restriction of the
ECMP, detection of a huge amount of elephant flows (EF) is
possible by the edge switch or even the terminal host. This
allows the central controller to calculate the suitable path
while making sure that small flows (mice flow, MF) become
useful on the ECMP switch route forwarding. Nevertheless,
this solution can cause the switch or the host to experience a
very high bandwidth and processing overhead [12, 50, 244].

A fuzzy synthetic evaluation mechanism (FSEM) was
proposed in [131] to address path LB. The shortest path se-
lection procedure in FSEM used the Top-K algorithm. In
this method, the OpenFlow switch is used to allocate the
network traffic to the paths, whereas the central SDN con-
troller is chargedwith installing the flow-handling rules. The
FSEM permits dynamic path adjustment based on the global
network view. The researchers implemented their proposed
method using the POX controller platform. They carried
out comprehensive experimentation by using Mininet sim-
ulation to assess the effectiveness, efficiency, and reliability
of the implemented method. Experimental findings reveal
that the approach successfully adopted the transmitting paths
while avoiding abrupt breakdown, which is caused by path
failures. However, this LB algorithmmay not precisely show
the real-time load conditions of the various paths simultane-
ously since hop counts which may not include all paths are
used in the Top-K algorithm.

In a more viable approach, Dobrijevic et al. [56] pro-
posed an ant colony optimization (ACO) for quality-of-experience
(QoE) aware flow routing. The user session parameters are
delivered by the application of SDN to the controller in such
a way that it triggers the ACO algorithm on a weighted graph
which defines howweights between vertices of each network
devices are delayed and their loss rate. The correspond-
ing QoE model (i.e., audio, video or data) in relation to the
flow type and the estimated value is a factor upon which
the fitness function depends. For the shortest path routing
approach, the ACO achieved about 24.1% increase for the
maximum QoE value. However, this approach depends on
the weighted graph, using the weight between vertices as the
loss rate and delay for an individual network device. Hence,
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these parameters are not sufficient to obtain the shortest path.
Lin et al. [140] presented a control traffic LB in SDN

known as the polynomial-time approximation algorithm (PTAA).
The researchers formulated the problem as a framework for
nonlinear optimization aimed at finding the optimal number
of control traffic accelerating paths for an individual switch
and to minimize control traffic delay. Their findings showed
that the PTAA method resulted in a minimum of 80% delay
reduction in the term of communication efficiency. A link
LB algorithm using ACO in SDN was proposed in [221].
The experimental result showed this algorithm improved SDNs
link LB, network throughput, flow acceptance rate, and ef-
fectively reduced packet loss and flow delay in the network.
A genetic-ant colony optimization (G-ACO) SDN LB sys-
tem was introduced in [230]. The proposed G-ACO SDN
LB system combines the GA’s mutation, crossover and col-
lection operations with the ACO algorithm for an increased
track search speed. A comparison of the proposed scheme
with ACO and round-robin algorithms was also carried out,
and experimental results show the proposed scheme had bet-
ter packet transmission and time rates. Thus, the proposed
scheme finds the route and the LB was successful.

In a similar work, Jamali et al. [99] introduced an SDN
LB scheme, using a genetic programming LB technique called
GPLB. This proposed approach formulates the problem of
finding a path as identifying the bottleneck switches as 1)
ones with the lowest capacity; 2) that has the shortest path,
and 3) with the smallest operations. To select the path with
the least load in real-time, GPLB calculates the total load
from all the paths using information gotten from the SDN
controller. Then, the least loaded path is identified and sent
to the controller in response to load information that the LB
algorithm receives. The simulative analysis of the GPLB
showed a considerable increase in efficiency metrics and a
reduction in latency and jitter. The GPLB outperforms simi-
lar approaches that have been reported in the literature to per-
form well in heavy traffic scenarios. The results also showed
that the model is better with little or no overhead. In an-
other research, Li et al. [130] proposed a combination of
genetic and ant-colony algorithms (GA-ACO) for dynamic
flow scheduling. Under this SDN architecture, the proposed
GA-ACO algorithm is used to gain a global view of the net-
work after which it determines and re-routes EFs on the con-
gestion bridge to the globally optimal path. The simulation
results showed that, compared to the ECMP and ACO-SDN
algorithms, GA-ACO does not only minimize the full usage
of links but also significantly increase the bandwidth. This
method has some limitation due to the overhead in the EF
detection method.
B. Machine learning algorithms for link load
balancing

Several studies have proposed the use of machine learn-
ing (ML) algorithms coupled with the SDN architecture for
improved routing performance [226]. Through SDN, net-
work operators can place some centralized logic on the con-
trol plane, which makes it easier to get a global view of the

network of ML algorithms.
Chen et al. [42] presented a solution to balance load dis-

tribution that considers real-time path load scenarios. This
approach leverages features like the utilization ratio of the
bandwidth, rate of the packet loss, transmission hops and la-
tency which are used to train a back propagation artificial
neural network (BPANN) to identify load path conditions.
The proposed work was implemented inMininet, and Flood-
light controller for determining network efficiency, and ex-
perimental results showed improved network performance
with a 19.3% achievement in terms of network latency. This
technique ignored the types of services that avoid discover-
ing the exact shortest path. An SDN based artificial neural
networks (ANN) LB approach was introduced in [164]. The
proposed method used six features that include packet over-
head, latency, hop count, packet loss, trust and bandwidth
ratio to improve transmission efficiency. Using this function
entails finding the load on every node. The least loaded di-
rection of the transmission is then picked in real-time as a
new incoming data flow.

A similar work by, Ruelas et al. [178] also presented a
knowledge defined networking (KDN) LB system based on
a class of the feed-forward neural networks called multilayer
perceptron (MLP). The KDN aims to operate and control
computer networks using artificial intelligence (AI). KDN
advances SDN with what it termed knowledge plane whose
features include advanced network analysis and telemetry.
The proposedmethod builds an artificial neural networkmodel
of traffic behavior using latency and traffic measurements
across several tasks for the prediction of network performance.
The ANN model is trained to select the route with the least
load. Experimental results point to a possible performance
gain in terms of efficiency while using KDN.

Moreover, Hou et al. [88] proposed a new LB algorithm
called amaximumprobability fitting (MPF) by using amulti-
nomial logit model (MNL).MPF selects probabilistic rerout-
ing for every flow, and unlikely to distribute the traffic to the
same link. Findings revealed that MPF achieved a 3.6% in-
crease in throughput and a 26.84% decrease in the rate of
packet loss compared to offline increase first fit (OFF).

Rupani et al. [179] introduced an LB approach by using
the global network view property in SDN. The study aimed
to determine the best route for data transmission and achieve
a significant reduction in network latency. To achieve this,
several relevant features were collected from each route. The
load balancer measures the throughput, the rate of packet
loss, latency, the number of hops and the usage of nodes.
Using these features, the overall load condition is predicted
for various shortest paths given by Dijkstra’s algorithm via
a trained neural network model. Dijkstra’s algorithm uses
the link’s transfer rate as a metric. In real-time, the ANN
is evaluated to make full use of the relation and node. As
the total node utilization along each path is also extracted
and fed to the neural network, the highest node utilization
is achieved with the least load. The load balancer sends the
path details to the SDN controller after selecting the route
with least load. Afterwards, the SDN controller moves the
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flow rules in the switches along the best direction provided
by the load balancer. If a link or node fails along the best
path, then the load balancer selects the second-best path in
real-time in order to complete the data transfer with minimal
delay. Thus, this system achieves optimum overall network
utilization in real-time. Additionally, this approach ignores
the types of services that avoid discovering the exact shortest
path.

In another research, Zhang et al. [243] introduced a criti-
cal flow rerouting reinforcement learning scheme (CFR-RL).
This scheme uses reinforcement learning to automatically
learn a critical flow selection strategy without any domain-
specific rule-based heuristic approach. Critical flows are se-
lected by CFR-RL for each traffic matrix and rerouted to
utilize the network link optimally. By solving the rerout-
ing optimization problem. The evaluation results showed
that CFR-RL achieves close to optimal efficiency by sim-
ply rerouting a small subset of the entire traffic. Also, CFR-
RL generalizes well to traffic matrices although it was not
included in the training set. Yu et al. [236] proposed a ML-
based SDN architecture using a deep reinforcement learning
method called DDPG to automate the SDN routing process.
This approach also suggested a routing optimization system
called DROM to realize the control and management of the
regional, real-time, and personalized network information
in continuous time. Experimental results have shown that
DROM is durable consistent and highly productive, DROM
is also capable of boosting network performance with reli-
able and superior routing services compared to existing rout-
ing solutions.

Moreover, both [210, 211] proposed an intelligent yet
scalable network control (SINET) architecture to optimize
routing. To increase robustness and scalability, SINET se-
lects multiple important routing nodes to be directly man-
aged by a deep reinforcement learning (DRL) agent, which
dynamically creates routing policies to maximize network
performance. The results of the simulation revealed that
SINET could reduce the average completion time for a net-
work with 82 nodes by at least 32% and display better robust-
ness against minor topology changes than other DRL-based
schemes.
C. Other algorithms for link load balancing

Load balancing method in data plane is used to improve
network performance and enhance its ability to meet QoS
needs. This approach compared three different controller
types, spanning tree protocol (STP) based controller, LB-
based controller, and hub-like controller, for a while eval-
uating the impact of LB on given network performance in-
dicators. The experimental findings showed a reduction in
network congestion while the network efficiency generally
increased [38].

Silva et al. [202] proposed a dynamic LB algorithm for
traffic on the data plane that minimizes the impact of heavy
data traffic on the networkwhilemitigating bottlenecks. This
algorithm dynamically alters the flow of ties as the network
use intensifies. The algorithm identifies the shortest paths

and calculates the cost of connection by selecting the best
link after detection and type of bottlenecks. This reduces
the loss of latency and packets in network congestion sce-
narios. Experiments were performed using the Mininet sim-
ulation and OpenDaylight Controller. By using emulation
testing, a major improvement was observed in jitter, packet
loss, and throughput. The proposed algorithm can function
in any form of SDN setting, such as balancing the flow of
traffic on the data plane.

On the other hand, a dynamic scheduling scheme called
AggreFlowwas proposed in [71]. AggreFlow schedules flow
in a coarse-grained operate-set fashion, employs lazy rerout-
ing to amortize the enormous number of simultaneous rerout-
ing operations over a relatively long time, and adaptively
redirects operate-sets to maintain load balancing on active
routes. Simulation results showed that AggreFlow achieves
high power efficiency and excellent, low overhead LB per-
formance. Zeng et al. [241] through the use of link band-
width algorithm (LBLB) presented an effective LB based on
a data center that uses the bottleneck and the average of the
remaining bandwidth links in the route to avoid heavy links.
This technique showed improvement in LB performance as
well as reduction of link congestion and packet loss. A tab-
ular presentation of the compared methods is illustrated in
Tables 2 and 3.

3.3. Load balancing for control plane (LB for CP)
LB technologies that are based on control plane provide

LBwithin distributed controllers to avoid bottlenecks associ-
ated with huge SDN network within a centralized controller.
Based on studies that have been conducted on multiple con-
trollers, it can be categorized into logically-centralized/physically-
distributed, distributed LB, which is divided into hierarchi-
cal, and horizontal, and virtualization controller LBs.
3.3.1. Logically-centralized/physically-distributed

controller load balancing (Log cent/phy dist LB)
This kind of LB is known as a logically-centralized LB

and physically-distributed controller, Figure 3 describes the
structure of the logically C/P distributed controller LB. The
controllers are centralized logically and physically in a dis-
tributed controller architecture. Each controller can only com-
municate or decide for the domain for which it is responsi-
ble. It differs from the logically centralized design where
every controller views the global network to make a deci-
sion [31, 212].

Although logically-centralized/physically-distributed LB
is founded on the principles of multiple controller designs,
it assumes there is a single logical controller. Logically-
centralized/physically-distributed architectureswere proposed
to address the use of replicated controllers and solve the SPOF
problem. The previous ideas are disadvantageous in that in-
active controllers will not be activated until the main con-
troller fails [159]. A similar system is presented by Hyper-
Flow [216] with a distributed control platform as an applica-
tion of the NOX controller [68]. It can be used to carry out
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Table 2
Selected comparison between various data plane load balancing solutions in SDN

Year
[Ref] Controller Types of Algorithm Simulation/ Real

Environment

Types of data plane LB
RemarksServer LB Link LB

Static
LB

Dynamic
LB

Meta.
LB

ML
LB

Other
LB

2010
[219]

NOX Load-based, random,
round-robin

Real environment ✓
• Provide LB services depending on the current lowest load on servers.

• This study allows only one controller to manage a switch.

• A single point of failure (SPOF).

2014
[131]

POX FSEM, Top-k paths Mininet ✓

• Proposed FSEM to select the shortest Top-k paths, using the top-k algorithm.

• The Top-k algorithm considers only the hop count that likely leads to a path great enough to be
removed.

2015
[56]

Open
Daylight

ACO Mininet ✓

• For QoE-aware flow routing, it provides ACO approach.

• The weight between the vertices depends on each network device delay and loss rate parameter, which
is inadequate.

2016
[42]

Floodlight BPANN Mininet ✓

• This research used BPANN algorithm.

• This method depends on some features such as bandwidth utilization ratio, packet loss rate,
transmission hops and transmission latency.

2015
[111]

POX Load-based, random,
round-robin

Mininet ✓

• Proposed an algorithm for load balancing based on SDN.

• Results shown that the round-robin algorithm is better than a random algorithm.

2013
[193]

Floodlight SBLB Mininet ✓

• Proposed dynamic LB.

• Neglected types of services.

2018
[164]

— ANN NS 2 ✓

• This study used BPANN algorithm.

• This method depends on some features such as hop count, bandwidth ratio, packet overhead, latency,
trust and packet loss.

2018
[178]

Open
Daylight

KDN based on
MLP

Mininet ✓

• This research used KDN based on MLP a class of feed-forward ANN algorithm.

• This approach can predict network efficiency given traffic parameters through the creation of a traffic
behavior model that utilizes latency and bandwidth measurements across different tracks.

2018
[5]

Floodlight SBLB Mininet ✓

• This study takes into consideration the type of service request to optimize server usage and minimize
user response time.

2019
[99]

Open
Daylight

GPLB Mininet ✓

• This study formulates the problem as a mathematical model in SDN by taking into account the limited
size of the switches while maximizing the network link usage. Calculating the amount of the use of links
in a route called route cost.

• This approach aims to explore the trade-off between the cost of the route and the cost of service.

2020
[206]

— LB based on channel
capacity

Mininet ✓

• This research focused on the use of the channel capacity over the server load to dynamically determine
the best route.

2018
[236]

— DDPG with DROM OMNeT++ ✓

• This research proposed an SDN DROM method for achieving uniform and customizable optimization of
the path.

2016
[71]

— AggreFlow schedule NS-3 ✓

• This research suggested scheduling of dynamic flows that achieved power efficiency in DCNs and
improved QoS.

2019
[202]

Open
DayLight

Dynamic LB Mininet ✓

• This technique identifies the shortest paths and calculates the cost of connecting by selecting the best
connection after finding and type of bottlenecks.

• This technique uses information from network equipment to locate bottlenecks in the data plane via the
controller and to redefine the packet route where there is significant traffic flow, taking into account the
best path at the time of transmission.

2019
[230]

Open
DayLight

G-ACO Mininet ✓

• The proposed G-ACO approach combines GA’s collection, crossover, and mutation process with the
ACO algorithm to improve the speed of path discovery and the ability to search for an optimal path.

2020
[210]

— SINET OMNet++ ✓

• This work proposed a DRL-based dynamic routing scheme to adjust real-time traffic routing policy
dynamically.

2020
[243]

— CFR-RL TensorFlow ✓

• This study introduced a CFR-RL scheme that performs critical flow selection accompanied by linear
programming rerouting.

state distribution that exists among distributed controllers by
applying a subscription system (called WheelFS) within the
distributed file system [207]. Nevertheless, a few thousand
events per second can only be handled by the HyperFlow,
whereas considering the normal range; this is a scalability
limitation. The sequence assignment algorithm called Se-
qAsn for handling regular flow variations between the flow
paths and the controllers was proposed by [76]. The pro-
posedmethod sought to explore the possibility of saving con-
troller resources using switch assignments. This approach
studied the flow requirements of controller resources on dis-
tinct paths in a distributed control plane and discovered the
possibility of resource-saving via switch assignments. Thus,
the problem of switch assignment is formulated as an integer

program to reduce controller resources requirement. Results
from the simulation showed that SeqAsn algorithm substan-
tially saves controller resources as opposed to current solu-
tions.

A technique called load variance-based synchronization
(LVS) only performs valid state synchronization between the
controllers, especially when a certain threshold of a server
or domain is exceeded. Consequently, LVS can proficiently
decrease the synchronization overhead that exists between
controllers and thus, eliminates the problem that often arises
in a forwarding loop. On the other hand, the distributed
OpenFlow controller focuses on reducing the synchroniza-
tion overhead between controllers in different domains with-
out implementing an LB solution [73]. In SDNbasedmission-
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Table 3
Selected comparison between various data plane load balancing solutions in SDN (Contin-
ued)

Year
[Ref] Controller Types of Algorithm Simulation/ Real

Environment

Types of data plane LB
RemarksServer LB Link LB

Static
LB

Dynamic
LB

Meta.
LB

ML
LB

Other
LB

2015 [40] Floodlight Round-robin, random,
SBLB

Mininet ✓
• This method cannot be used for real-time load monitoring.

• Used reactive flow entry.

2015 [58] Floodlight Dynamic server LB Mininet ✓

• This method used sFlow provided by flow statistics counter.

2017 [250] Floodlight LBBSR Mininet ✓

• This approach did not consider energy savings in server LB.

2016 [223] Floodlight Dynamic LB Mininet ✓

• Proposed a dynamic load balance algorithm in a cloud center based on SDN to also improve throughput.

• This approach did not consider the latency and utilization metrics.

2017 [221] Floodlight ACO Mininet ✓

• Provide an LB algorithm using ACO in SDN.

• Improving the SDNs link LB, network throughput and flow acceptance rate, and effectively reduce the
network flow delay and packet loss rate.

2019
[88]

ONOS MPF Mininet ✓

• This method used probability to select a rerouting path for each flow and is reduces the likelihood of
distributing traffic to the same link.

2019
[241]

— LBLB Mininet ✓

• This method proposed an LBLB mechanism that is used for both package-in and rescheduling phases.

2019
[38]

POX LB for data plane Mininet ✓

• This study provided a comparison in terms of jitter and delay among different controllers such as a
hub-like controller, an augmented controller with STP, and an LB controller.

2020
[179]

Floodlight BPANN Mininet ✓

• This research used BPANN algorithm.

• This method depends on some features such as packet loss rate, bandwidth utilization ratio,
transmission hops, transmission latency, and total node utilization.

2020
[130]

Floodlight GA-ACO Mininet ✓

• The GA-ACO algorithm makes use of ECMP to schedule all incoming data flow initially.

• If the link utilization ratio reaches a certain threshold, GA-ACO is called upon to determine the best
route to reroute EF on the congested connection.

critical networks LB scheme, Hai et al. [77] proposed a dis-
tributed controller. The scheme could ensure a balance in the
control plane to achieve a high resource usage, reliability as
well as resilience within the network, which are character-
ized by the load status and the coefficient of the dynamic
weight. Besides the use of the proposed technique prede-
fined load threshold, communication overhead was signifi-
cantly reduced when compared to the bench-marked algo-
rithms. The efficiency of the priority queuing module tech-
nique is also demonstrated especially for the network that
is grouped into two categories of traffic; the critical traffic
such as in-line traffic (VoIP or VoD) and non-critical traffic
like offline traffic (HTTP or FTP). In order to ensure better
QoS, the priority procedure ensures that the controllers pro-
cess the critical traffic before the non-critical ones based on
the necessary information in the packet header.

A smart cooperative LB and security framework for SDN
distributed controllers, called SCPLBSwas proposed in [253].
The proposed technique refers to a single domain network ar-
chitecture for distributed controllers with SDN. This method
employed the Floodlight controller to build the restlet-based
cooperative framework. SCPLBS includes a module each
for message authentication, data collection, LB, and a mod-
ule for recovery of failures. Experimental outcome and anal-
ysis showed that the platform realizes the LB and recov-
ers from the failures of the distributed controller based on
safe communication. However, this technique is disadvan-
tageous in changing the controller’s position over the Open-
Flow switch, which can result in a brief delay of the primary
business.

A new control panel model has been proposed in [180],

Control Plane

Data Plane
Network

node

Network

node

Network

node

Controller1 Controller3Controller2

Physical link

Virtual link

Figure 3: The logically-centralized/physically-distributed con-
troller load balancing

in which demands for control decisions are treated separately.
In accordance with the architecture of the control plane, the
load in the local area network (LAN) are predicted by L2
controllers predict for L3 controllers in the wide-area net-
work (WAN). This alertness-based load prediction approach
has been proposed to reduce the burden on the controller.
While this approach considerably reduces the flow’s time-
out value, additional overhead in delay often results from
the flow entry’s initial packets, which leads to a further error
of prediction. However, the proposed method reduces the
flow’s timeout value. Furthermore, attention has been paid
to reducing the response time between the controller and the
router. Extensive simulation has proven the feasibility of the
proposed scheme.
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Figure 4: Centralized decision and distributed decision [257]

3.3.2. Distributed controller load balancing
Distributed controller LB architectures entail the use of

one or more controllers in networks to address challenges
faced by a single controller network. The rationale for this is
to ensure that controllers that can permit the sharing of load
equally in the network are formed. Besides, one controller
can take over from another controller should a crash occur.
Most of these sophisticated procedures require limited tech-
nological implementations from distributed systems. It has
been reported in pertinent literature that distributed controller
architectures are not always based on themultiple controllers [238,
37]. This type of network a physically distributed and dif-
ferent based on the location of the controllers and the com-
munication type [31].

The main problem with distributed controller solutions
is related to retaining consistency within various distributed
controllers. In addition, various applications in the network [232]
tend to be given minimal consideration by the distributed
controllers due to the inconsistency that exist among the con-
trollers as seen from the global view of the network [18].
Moreover, multiple controller scenarios raise the need for
resource management such as the distribution of controller
state, consistency and sharing of data in addition to extended
propagation delaywhich affects the response time to network
events such as packet-in messages [4].

LB betweenmultiple controllers is another issue thatmust
be considered. LB among several controllers is of two types,
namely; centralized decision and distributed decision. Fig-
ure 4 illustrates a centralized decision [135, 54] where there
is a coordinator controller which plays the role of a super
controller that responsible for ensuring better maintenance
of a global controllers load info table. There are two essen-
tial processes which are involved; a collection of land infor-
mation of all controllers and ensuring that the LB command
is sent to the overloaded controller. The two processes can
prolong the time of the LB. Conversely, controllers with the
distributed decision [257, 258, 253] tend to exhibit similar
features in the SDN network when they are connected.

In contrast to centralized decisions, distributed decisions
have preferable performance that is suitable in terms of re-
sponsiveness, reliability, and scalability as a result of their
physical distribution and logical centralization. On the other
hand, distributed controller LB architectures are divided to
organize the controller’s LB as hierarchical and horizontal
LB.

A. Hierarchical controller load balancing
In the hierarchical controller, each controller is located

at different layers; Figure 5 shows the structure of the hierar-
chical controller. Kandoo in [82] allocated controller status
by replacing such a controller with that of a two-level hierar-
chy that has a root and numerous local controllers. However,
it has become impossible for the controllers within the tiers
to communicate with each other within the system and thus,
it limits the utilization of the second-tier services which is
required for a global view of the network.

In a multiple-controller SDN network, an LB mecha-
nism was presented in [147]. This technique introduced a
meta-controller (MC) that is based on a manager with sev-
eral controllers which can be used for control in the SDN
in a decentralized manner. The MC-based manager mecha-
nism was established to progress the performance of several
controllers and ensure successful loading of each controller.
Therefore, this technique introduced scheduling plane based
on local control that can be used to discover the best way
to distribute the local controllers that are available. The lo-
cal control plane based scheduling solution builds up its in-
formation base through the MC-based manager, which in-
clude the controller statuses, network traffic, and the CPU.
To provide an efficient solution in a distributed controller
environment, a hierarchical control structure should be ap-
plied. Eventually, the enhancement of logically centralized
control becomes possible due to the scalability and efficiency
of the single controller architecture as shown from the use
and study of SDN controller resources. This technique con-
structs an optimal processing performance network. Find-
ings have shown that MC based management technique re-
duced the control plane loading by increasing the bandwidth
utilization in SDN. However, this approach ignores the type
of service required to implement the application LB model
for optimal resource usage in SDN environments.

In multi-layer hierarchical SDN, Lin et al. [139] intro-
duced a reinforcement learning-based QoS-aware adaptive
routing (QAR) technique. It first introduced the distributed
hierarchical control plane thatminimizes signaling delay, which
serves as realistic SDN architecture. Their aim of introduc-
ing the QAR was to enable time-efficient and addictiveness
upon the proposed architecture situated on the QoS-aware
packet forwarding. The result revealed that in terms of QoS
provisioning, the QAR technique outperforms the conven-
tional learning approach with quick convergence. Likewise,
this scheme enables, in practical, large scale on-line, QoS-
aware routing on the network implementation of the SDN
and the defined software services. Laman is a framework
that provides scalability using a supervisor controller [156].
Thismethod aims to retain a centralized architecture approach
and enhance the SDN scalability. In the SDN network, the
control is distributed between the supervisor controller and
application-specific controllers. The supervisor controller is
a central controller that links all the other controllers. Laman
framework reduces the load from the central controller through
the distribution of the main incoming load to enhance scal-
ability. Evaluations results showed that Laman frameworks
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Figure 5: The hierarchical controller

provide higher performance than similar existing frameworks.
B. Horizontal controller load balancing

All controllers are positioned on the same layer in the
horizontal controller LB as illustrated in Figure 6. Thus, it
is also referred to as a flat controller. Although each con-
troller founds diverse domains, all the controllers are viewed
as root controllers which are familiar with the entire state of
the network [246].

Through east-west interfaces, there is communication be-
tween each controller and the management of the network
state is carried out by the controllers with equal state [25,
125]. In this approach, every single controller controls a
specific domain. There are two strategies for the implemen-
tation of distributed architecture; the local and global view
strategies. In the local view approach, logical nodes are an
abstraction of neighboring networks, whereas the global view
strategy is for the entire network. However, communication
between controllers happens through specialized channels to
share network information (e.g., information on reachabil-
ity) about their domains [108]. A link LB mechanism was
proposed in [192] for SDN based on flat controllers known
as the service-aware adaptive. This method was intended
to overcome the imbalance in the network load and scala-
bility challenges in the control plane. Results showed that
this method increased the average connection bandwidth uti-
lization rate to 79%, as well as jitter load and average link
latency. In addition, it guaranteed the requirements for the
QoS operation.

A similar work by, Canini et al. [34] proposed a software
transactional networking (STN) along with middleware in a
distributed controller to address policy inconsistency in di-
verse distributed controllers in the data plane. While it is
expected that ONIX application developers provide needed
logic to discover and overcome network conflicts resulting
from concurrent control, the proposed approach introduced
a composition of concurrent policy mechanisms such that
in general fashion it can be used by any application. The
possibility of adapting multiple controllers to increase the
scalability without the incorporation of the global network

view and storing information about the network topology in
SDN controllers deployed in the data center has been studied
in [213]. The researchers introduced two heuristic methods,
namely path-partition and partition-path, by using flow rout-
ing to examine the practicability of controllers.

A cluster-based approach for distributed controllers was
proposed tomaintain the inter-communications between con-
trollers yieldingmore scalability and flexibility in [234]. Their
developed architecture, being cluster-based, offers the net-
work elasticity regardless of addition or removal of controllers
because it can be featured as the network application provider.
A master controller is then selected from amongst the avail-
able controllers to be in charge of detailing both the switches
and controllers. This developed distributed setup of con-
trollers reduces the scalability of SDN networks. Moreover,
they are not always suitable to provide the planned scalabil-
ity due to an unbalanced load that is seen across the con-
trollers resulting from the number of switches being deter-
mined by network administrators. Consequently, this may
cause controller overload.

Onix is one of the distributed controllers applied for large-
scale network architectures that enable multiple SDN con-
trollers [119]. It is used to handle the collection and dissem-
ination of information of various kinds from the switch. This
also assigns suitable controls between several controllers.
Dixit et al. [55] introduced a method to distribute the load
among the controllers via controller pool evenly. It works
by elastically incorporating or nullifying the controllers via
the controller pool by the load and predefined threshold val-
ues. On the other hand, Phemius et al. [166] proposed a
framework called distributed SDN control plane (DISCO)
to share aggregated wide network information for controller
view consistency. It introduced two parts, namely the intra-
domain and inter-domain. The intra-domain is in charge of
the controller’s main domain. At the same time, the inter-
domain is responsible for flowmanagement through distributed
networks such asmulti-protocol label switching (MPLS) tun-
nels. Bari et al. [22] discussed the problems of integrating
distributed controllers inwider area network and developed a
mechanism that dynamically alters the necessary active con-
trollers with switch numbers to minimize flow setup times,
vertical and horizontal overheads.

A bidirectional matching strategy (BMS) was proposed
in [92]. The algorithm was designed to implement multi-
controller deployment. First, the matching lists of switches
and controllers are built by collecting hops, delays, and traf-
fic in the network, respectively. Then a mutual selection
strategy is designed by the sequence of the elements in a
matching list from which the best elements are selected by
the switch and controller to execute the correspondence in
turn before the distributed network is constructed. The sim-
ulation showed that BMS could achieve better implemen-
tation of multi-controllers compared to existing algorithms.
Moreover, a dynamic controller workload balancing scheme,
named MARVEL was proposed in [209] based on multi-
agent reinforcement learning for switch migration actions
generation. MARVEL operates in offline and online modes

Mosab Hamdan et al.: Preprint submitted to Elsevier Page 13 of 35



A Comprehensive Survey of Load Balancing Techniques in Software-Defined Network

SDN switch
Root controller SDN domain

Figure 6: The horizontal controller

for preparation and decision-making, respectively. Each agent
learns via a training process to move switches based on their
interaction with the network. MARVEL is used to make
decisions on migratory switches in online mode. Experi-
mental findings showed that MARVEL outperforms exist-
ing competitive schemes by improved processing of the con-
trol plane’s request by a minimum of 27.3% with minimal
time; about 25% lesser processing time than competing ap-
proaches.
3.3.3. Virtualization controller load balancing

Another type of control LB using slices technique is based
on SDN network virtualization. In this approach, the physi-
cal network infrastructure has a virtual layer is placed above
it. By controlling packet routing and load balance, a vir-
tualized network can be achieved by stimulating idle wires
to share their load [64, 39]. Network virtualization is pro-
vided in this layer through the construction of virtual net-
works which are made up of virtual resources like routers,
switches, and other nodes that are to be managed and con-
trolled. A transparent proxy which links multiple controllers
on one of the networks to a side of the switch is used to im-
plement control [109].

An OpenFlow virtualization controller, called Flowvi-
sor (FV), which serves as a transparent proxy between the
switches of the OpenFlow and that of the several OpenFlow
controllers was proposed in [196]. With FV, multiple iso-
lated virtual logical networks (slices) can be created with
various addressing and flow forwardingmethods on one phys-
ical infrastructure such that diverse controllers in diverse slices
can share similar network resources (e.g., OpenFlow switches/ports).
Slices can be defined in layer 1-4 by any combination. The
layer model is the same as the definition in a network. When
sliced by switch ports, the policy is implemented in layer
1. When the Ethernet address or type is specified, slicing is
implemented in layer 2, while enforcement in layer 3 is car-
ried out by the src/dst IP address or type. Layer 4 makes use
of the src/dst, TCP/UDP port or ICMP code/type. Within
each slice, the FV has the responsibility of imposing isola-
tion policy to avoid the control of packet traffic of one slice
from other slices [172]. The FV intercepts OpenFlow mes-
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Figure 7: Flowvisor slices adaption from [194]

sages from guest controllers as illustrated in Figure 7. (1)
Use a slicing strategy for the recipient, (2) rewrites the mes-
sage transparently, (3) controls only one network slice. (4)
Only on compliance with their slice policy, will messages
from switches be forwarded to guests [116, 194].

FV and OpenVirteX (OVX) [13] are two examples of
proxy controllers that are used to create slices for virtual net-
works. LB architectures with multiple services that utilize
slicing techniques aim to use each of the multiple controllers
that are also connected to the FV controller for each net-
work service to provide LB strategies. A slicing mechanism
is utilised in this technique for the management of various
controllers at different parts of the network. The FV [196]
slicing mechanism is dependent on the field information of
the packet header, which determines where the packet is for-
warded. For instance, fresh requests for destination port 80
are forwarded to the HTTP LB controller whereas requests
for destination port 21 are forwarded to the FTP controller
LB. These requests first pass through the FV, which is in
charge of managing all network slices and all related ser-
vices. Flow entry is inserted by FV within the switch in line
with the information on the packet header and transmitted
by the incoming packet to the corresponding controller as
developed in [115].

One of the virtualized schemes is the network slicing
technology that helps network managers in the virtualization
process of network resources like the topology, bandwidth,
and traffic. Chen et al. [39] introduced the enterprise-visor
engine that warrants less resource while adjusting the limit
of the maximum resource according to current status. Com-
pared with the OpenFlow and FV frameworks, this method
enhanced the utilization of the network by 25.7% and 13.4%
respectively. Moreover, Jin et al. [105] proposed TALON,
a traffic LB system for the distribution of the throughput.
TALON assigns a flow capacity per tenant by calculating
multiple routes to satisfy the traffic requirement. The de-
sign and implementation of TALON used an open-source
hypervisor network. The evaluation results showed that the
standards are almost met for the throughput of each tenant.
Besides, the throughput increases by up to 2.29 times com-
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Table 4
Selected comparison between various control plane load balancing solutions in SDN

Year
[Ref] Controller Types of Algorithm Simulation/ Real

Environment

Types of Control Plane LB
RemarksLog. L

B
Distributed

Controller LB
Virt. L
B

Hier. L B Hori. L B
2014
[73]

POX LVS Mininet ✓
• This method focuses on reducing the synchronization overhead among controllers in different domains

without implementing an LB solution.

2016
[77]

Floodlight Dynamic and adaptive LB Mininet ✓

• This method has some limitation in the analysis of the types of traffic as it depends on only weight
coefficients which are not enough as it needs more statistical analysis of the types of traffic.

2017
[147]

NOX LB mechanism based on
MC

Real
environment,
Mininet

✓

• The types of services needed to achieve an application LB model for optimal usage of resources in the
SDN environment is neglected by this method.

• Investigation of energy consumption was not made.

2016 [39] Open
Daylight

Dynamic resource
management

Mininet ✓

• This method can adjust the maximum resource limit according to its current status and provide
minimum resource guarantees for enterprise visor engines.

2018
[192]

Floodlight Service-aware adaptive
link LB

Mininet ✓

• This approach examines the benefits of the SDN network to address LB, guarantee QoS and ensure
intentional multi-controller deployment and proposes a service-oriented LB system in the SDN.

2010
[216]

NOX HyperFlow Real environment ✓

• This method designed and implemented HyperFlow that enables OpenFlow deployment in
mission-critical networks. It comprises of enterprise network associated with the data center.

2020
[76]

— SeqAsn Real environment ✓

• This research proposed an allocation problem for the flow path-aware controller.

• This research offers a greedy assignment algorithm for adaptation to the regular fluctuation of the flow.

2018
[92]

Open
Daylight

BMS Java, Matlab ✓

• This research suggested the multi-controller deployment process and transformed the flow transmission
into a queuing model.

• This work considers delay and traffic are two major factors influencing the multiple controller
deployment.

2019
[156]

Ryu Laman Mininet ✓

• This method proposed an effective hierarchical scalable SDN framework.

• Minimizes central controller supervisor load by attaching Contributory SDN controllers with it.

• Enhances the use of the SDN central controller for CPU, flow setup and packet throughput.

2019
[105]

ONOS TALON Mininet based on
OVX

✓

• TALON has key functionality in the allocation of the throughput. It calculates the paths of packet
forwarding for the specific requirement of throughput.

• TALON architecture is designed to split multi-paths by adding flow rules to realize multi-paths
calculated in the physical network.

2019
[253]

Floodlight SCPLBS Mininet ✓

• SCPLBS and controllers use a communication method that is secure by the message authentication
code.

• The collaborative framework utilizes a data collection algorithm which adapts to variation in data to
obtain the status of controller and load controller information.

2016 [139] — QoS based on QAR Real environment ✓

• This approach was developed to provide on-line, QoS-aware routing in realistic large-scale SDNs and
software service-defined network implementation.

2014
[234]

Beacon Distributed OpenFlow
controller

Real environment ✓

• This approach offers a distributed system with OpenFlow controllers and a related collaboration
structure.

• This framework supports the dynamic controller removal and addition and removal of controllers into
the cluster without little or no interruption in the operation of the network.

2014
[55]

Floodlight Elastic distributed
controller architecture

Real
environment,
Mininet

✓

• This approach suggested ElastiCon, an architecture for elastic distributed controllers.

• Designed and implemented algorithms for switch migration.

2019
[180]

Floodlight Flow entry timeout
mechanism

Mininet ✓

• This work suggested a load prediction method that downgrades the QoS parameters for the initial flow
packets.

• This work focuses on a new architecture for control planes where the load for L3 controllers are
predicted by, the L2 controllers. predict the load for L3 controllers.

2020
[209]

— MARVEL TensorFlow ✓

• This work introduced a distributed control plane model as a multi-agent structure designed to approach
the SMP in a distributed fashion.

• This method developed a framework for DRL for each agent in the MARL model.

pared to a non-LB network. A comparison of the solutions
above is presented in Table 4.

3.4. Other aspects of data/control planes load
balancing (Other aspects of D/CP LB)

An overview of the other aspects of data/control planes
LB like SDN switch flow table LB, control plane LB during
controller failures, switch migration mechanisms, manage-
ment SDN controller load, resource allocation and manage-
ment in SDN, distributed controller placement, and security
issues in SDN LB is presented in the section.
3.4.1. SDN switch flow table load balancing

Being an emerging technology, SDN ensures flexibil-
ity in the control of network flow. Unlike the conventional

IP network, where routing tasks are performed using tra-
ditional routing schemes (like ECMP and OSPF) with un-
supervised forwarding devices (like routers and switches)
spread across the network, a centralized controller with the
capability of globally viewing the network is used in SDN for
routing flows and adjusted according to variation in-network
status [149, 12, 51, 7, 73]. Basic functions of the network
(such as forwarding in layer 2, routing in layer 3 and classifi-
cation of packets in layer-2-4 [229, 228]) are treated/assumed
to be flow entries in OpenFlow specifications [165]. How-
ever, due to the high power consumption and cost of chips,
there is limited flow table space in most majority of switches
that are compatible with OpenFlow; hence, as the number
of concurrent flows gets large in the network, the flow tables
inadequate [171, 239]. This inadequacy increases the like-
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lihood of overflow of the flow-table. To address this short-
coming, flow entries that are being used are often removed to
create space for new flows. Moreover, overflow of the flow-
table implies that the controller must intermittently update
the flow table; resulting in degradation of the TCP output
due to interruption of current flows [75].

JumpFlow, introduced in [74], uses data from the packet
header information field to carry out forwarding/routing tasks.
As such, reduces utilization of flow table in SDN while en-
suring correct and reactive placement of flow entries in switches.
Results of the simulation showed that JumpFlow reduces
the percentage of flow-rejection, prolongs the time of occur-
rence of first flow-rejection, and increases the ratio of agreed
multicast groups to baseline schemes. Furthermore, a novel
routing scheme in which optimization of network flow was
carried out for effective routing and optimal usage of the lim-
ited flow tables space in SDN switches [101]. The NP-hard
problem was solved using the K-similar greedy tree (KSGT)
algorithm. Experimental results showed that 60% of flow in-
puts were reduced using KSGT with about 25% increase in
effective forwarding and deployment flows within the same
flow table space compared to existing solutions.

Similar work by, Jia et al. [102] also formulated flow ta-
ble LB as an optimization problem to reduce and balance
entries in the flow table such that it holds extra flows with
minimal overheads. The KSGT algorithm performed best
in actual network setup on this NP-hard problem despite the
associated networkMPLS labels overhead and limited space
of the flow table in SDN switches. On the other hand, an on-
line routing scheme, called software-defined adaptive rout-
ing (STAR), that effectively uses restricted flow-table resources
for optimal network efficiency was proposed in [72]. In par-
ticular, STAR detects the use of each switch in real-time
flow-table, deletes expired flow inputs intelligently when re-
quired to accept new ones, and chooses the paths new flows
entries are forwarded according to network-wide flow-table
switch usage. Experimental results on the Spanish backbone
network showed superior performance of STAR over exist-
ing schemes. STAR achieved an 87% reduction in controller
workload in new flow routing, 49% reduction was achieved
in packet latency while the average flow rate was increased
by 123% despite scarce flow table resources.

Guo et al. [75] introduced a dynamic routing scheme
called DIFF. This scheme distinguishes according to the im-
pact they have on network resources and adapts routing paths
to reduce flow-table overload problems and inefficient allo-
cation of bandwidth. A set of paths are pre-generated by
DIFF for any pair of edge switches on the source-destination
link. To balance flow-table utilization’s, new flows paths are
intelligently selected from the pre-generated path-sets. EFs
are adaptively rerouted to reach optimum throughput using
the law of allocating max-min equal bandwidth. Experimen-
tal results showed the capability of DIFF in simultaneously
managing both link usage and flow-table. Additionally, it
decreases the packet latency and workload of the controller;
thereby increasing network throughput relative to baseline
schemes.

3.4.2. Control plane load balancing during controller
failures

Software or hardware failure resulting in a master con-
troller failure within a distributed multi-domain and multi-
controller SDNLB initiates the immediate allocation of, pre-
determined slave controllers to the switches that were con-
trolled by the failed master controller. Although this backup
approach improves the reliability as well as the scalability of
the SDN network, little or no research exists on how to plan
the slave controller assignment following a master controller
failure in the current work. In general, the present approach
of assigning slave controllers is rigid and assign the closest
controller to the switch as a slave as predetermined. A ma-
jor flaw in this assignment scheme is exposed when there is
a failure of the controller chain [91, 90].

In addition, a primary example is used in Figure 8 to il-
lustrate the phenomenon of controller chain failure. Figure
8a, indicates three controllers (C1–C3) and six switches (S1–
S6) on an SDN network. The network is divided into three
domains (domains 1–3). A controller is capable of control-
ling a maximum of three switches. As shown in Figure 8b,
should C1 fail, the switches in domain 1 gets disconnected
and assigned to C2, the nearest controller to C1. The po-
sition of C2 as a slave is also altered to master following
the assignment of C1 switches in accordance with predeter-
mined slave controller assignment protocol. However, due
to a limit in control capacity (S3, S4), and (S1, S2) cannot
be handled by C2 simultaneously. As illustrated in Figure
8c, the flow requests sent by these four switches (S1 to S4)
exhaust the capacity of C2, then C2 fails. Likewise, in Fig-
ure 8d, four switches (S1 to S4) can also be assigned to C3
in the event of failure of C2. Also, C3 eventually fails when
its capacity runs out. Finally, the network crashed follow-
ing the failure of all the network controllers, and the entire
network is crashed. This example illustrates how a failure of
one controller can result in the failure of another in a multi-
controller SDN network, and the worst case, crashing of the
entire network. This phenomenon is described as controller
chain failure in the literature [91].

In [91, 90], dynamic slave controller assignment (DSCA)
techniques were proposed for improved fault tolerance of
the control plane and prevention of network crash through
planned slave controller assignment to avoid controller chain
failures. By defined the phenomenon of controller chain fail-
ure. To avoid the phenomenon, assignment of a slave con-
troller was formulated as a mixed multi-objective optimiza-
tion problem that takes into account latency, LB, as well as
robustness and proves its full complexity in the NP. Sim-
ulation results showed that DSCA could effectively ensure
better fault-tolerance of the control plane performance com-
pared to other schemes. The occurrence and impact of con-
troller failure on the SDN network also greatly minimized.
Guo et al. [70] introduced the joint control of resiliencymain-
tenance and programmability of flows for software-defined
WANs (SD-WANs) framework (RetroFlow) to achieve ro-
bust network control and flow programmability of the event
of controller failures. RetroFlow maintains the normal oper-
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(d) SDN network with three failed controllers
Figure 8: The controller chain failure [91]

ations of active controllers and the programmability of flows
from offline switches by reducing the processing load of con-
trollers from offline switches with commercial hybrid SDN
switches that support switches operating in the legacy mode
without controllers.

He et al. [83] introduced a preventive priority setting
(PPS)model for handling LB against multiple controller fail-
ures in an SDN. This model has priority scales that is uti-
lized for assigning a master controller to a switch. In the
event of failure, the newmaster controllers are automatically
obtained for switches whose current master controllers fail
to recover control promptly according to the priority level.
Priority sets are calculated at the beginning of network ser-
vice to decrease the overall time consumption ratio in the
worst-case scenario of failure. The empirical results showed
that the new PPS model obtains the highest utilization rela-
tive to the existing work. Furthermore, the authors of [69]
introduced a programmability guardian technique to boost
the programmability of offline flow paths while preserving
low communication overhead. This technique configures the
remapping flow controller to recover offline flows with iden-
tical path programmability, maximizes the overall programma-
bility of the offline flows, andminimizes the overall overhead
contact to monitor recovered flows.

3.4.3. Switch migration mechanisms
Traffic load should be transferred to the other controllers

through the overload controller in charge of network flow to
enhance the control plane capability of increasing response
to switch requests. This concept is called a migration mech-
anism. This mechanism also enhances the availability of the
controller [43].

The requests for flow setup in diverse switches have to
be allocated to suitable controllers dynamically. Although
the OpenFlow protocol does not explicitly specify the switch
migration protocol, theOpenFlow protocol clearly states that
the controller has three roles: equal, slave, andmaster. There
is a full control by the master/equal controller down to the
switch, while the slave controller has only read permission
to the switch [161]. When the switch connects to more than
one controller, the switch is characterized with only a single
master and numerous slave controllers. Whenever there is a
need for the switch to migrate, it assigns the master role to a
slave while it, the old master, becomes a slave.

Several previous works on switch migration [55, 237,
135, 54, 14, 182, 63] have proposed techniques to resolve the
problem of LB from different perspectives which includes:
1) selection of a migrated switch. 2) Selection of target con-
troller. 3) Migration of switch. The problem of load oscil-
lation may occur if the target controller and migrated switch
are not correctly selected. One of the solutions to this prob-
lem between controllers is the switch selection technique
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proposed in [237]. This technique cannot make use of the
best of controller resources because it only considers the
overloaded and target controller. Similarly, Liang et al. [135]
proposed an approach to address the problem of load oscil-
lation but it could not enhance network LB because their
focus was to improve the round-trip time and eliminate the
switch and controller loads respectively. To provide better
improvement in the network in term of balancing, Dixit et
al. [55] proposed ElastiCon; a method which adopts a strat-
egy called switch migration. ElastiCon performs a balance
of the load of the controllers periodically in a pool. While
this method provides better performance, it creates a prob-
lem of high network overhead by ignoring traffic dynami-
cally. In terms of time efficiency, the proposed techniques
in [55, 63, 237, 182, 135, 54] select a switch to migrate most
especially in LB; a process that does not allow the over-
loaded controller to become normal on time.

Zhou et al. [257] suggested an adaptive yet dynamic load
balance algorithm (DALB) that is characterized by a dis-
tributed decision which operates as a module in the SDN
controller. Themodule comprises of loadmeasurement, load
collection, and decision-maker. Every individual controller
can ensure the measurement and collection of its load and
that of other controllers to decide when there is a need for
migration. Whenever the controller exceeds a certain thresh-
old, load decision will be made by the controller and ensure
a balance on the load by selecting switches that are sufficient
enough to guarantee this performance. In another work, Hu
et al. [89] developed a strategy called an efficiency aware
switch migration (EASM) for LB in multiple controllers.
This method migrates switches according to the rate of LB
and cost of migration to enhance the efficiency and balance
in controller load. Findings showed that this method en-
hances the controller response time, throughput, LB rate and
migration cost.

Zhou et al. [256] proposed an LB scheme that exhibits
switch grouping. The researchers also developed a method
that solves the issue of load oscillation between several con-
trollers and has the possibility of making sure that the net-
work balancing is improved using switch selection algorithm
and a formula for target selection. This technique helps to
ensure that the improvement gain remains stable even when
the conditions of the traffic are dynamically higher. Simi-
larly, to facilitate the improvement in time efficiency as well
as design, it is possible to move a group of switches us-
ing a selection algorithm that is tightly controlled for switch
grouping in a balancing process. The experimental results
showed that their method addresses the load oscillation prob-
lem and ensure that network balancing can progress in a
more time-efficient manner. Kyung et al. [124] introduced
a load distribution algorithm that works according to per-
flows under multiple controllers. In particular, when a con-
trollers capacity exceeds a threshold, incomingmessages can
be transferred by the controller to other controllers to avoid
their blockage. Analytical findings show that the likelihood
of been blocked in this scheme is low while ensuring higher
power utilization of controllers in comparison traditional scheme.
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Figure 9: Migration switch mechanism adoption from [124]

Xu et al. [227] presented a balanced controller (BalCon)
and BalConPlus, a two SDN switch migration approach for
achieving LB between low-cost SDN controllers. BalCon is
appropriate for scenarios where the network is not obliged
to process switch requests serially. In [181], an effective
switch migration-based LB (ESMLB) method was imple-
mented for effective allocation of switches to underused con-
trollers. In this method, a multicriteria decision-making pro-
cess, i.e., the technique for order preference by similarity to
an ideal solution (TOPSIS), was used among several alter-
natives for target controller selection. The sequence of the
flow migration switch mechanism is illustrated in Figure 9.
As the switch tends to receive flow through the mobile node
(MN) that does not probably match either of the existing en-
tries, the switch decides and forward the packet-in a message
via the controller1. Messages will be processed whenever
the controller one is not overloaded, and this will eventu-
ally reply with a packet_Out/Flow_Mod (add) message to
the switch. As the threshold is attained, the controller 1 tend
tomigratemost of thesemessages to another controller (such
as controller 2) which appeared not to be overloaded to han-
dle the messages.
3.4.4. Management SDN controller load

The SDNcontroller architecture comprises of one ormore
controllers that are useful for managing SDN load (i.e., scal-
ability, reliability, availability) using distributed SDN con-
trollers. The concept is founded on the premise that as mul-
tiple controllers are formed, they can share load within the
network. Similarly, a controller can perform the work of an-
other controller, especially when there is a crash. Most im-
portantly, these procedures can be more complex such that
the need to adopt a few methods from distributed SDN con-
trollers systems may be required [4].

The scalability issue of LB in SDN can be viewed from
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two perspectives: i) the number of server pools controlled
by a single controller, and ii) scalability of the control plane
in SDN is usually estimated using the pair of the output (i.e.,
the number of flow requests handled per second) and the la-
tency of the flow setup metrics (i.e., the delay in respond-
ing flow requests) [254, 108, 21], a single controller that is
physically controlled cannot meet the performance needs (in
relation to those metrics) of big networks relative to small or
medium-sized networks (see section 3.3). Some of the chal-
lenges related to scalability can be addressed by increasing
the roles data plane to ease the loading of controllers (see
section 3.2). The key downside of this approach is that it
applies some modifications to OpenFlow switch architec-
ture. A more effective method is to ensure that the con-
trol plane modelled to reduce scalability challenges. Only
one single SDN controller plays the role of handling incom-
ing requests from SDN switches in a physically centralized
control model. This may later hinder scalability and system
general performance as the network gets bigger [173]. Thus,
multiple controllers are used in a physically distributed con-
trol model for the creation of a network view that is logically
coherent. This approach has been reported to manage con-
troller bottleneck well as it greatly reduces control plane la-
tencies while a manageable size of the control plane in the
network [2].

The lack of reliability has been an extreme issue in SDN.
However, decoupling data-to-control planewould have ama-
jor effect on the reliability of the SDN control plane. The
failure of the central controller would break the network en-
tirely in a centralized SDN-based network. On the other
hand, using multiple controllers in logically centralized but
physically distributed controller architecture reduces a SPOF
problem [21]. Similarly, handling network updates with dif-
ferent methods can result in the redundancy of controllers.
In the active replication approach, client commands or re-
quests are processed by multiple controllers in a coordinated
and deterministic manner. This approach is also often de-
scribed as a simultaneous update of the replicated network
state or state machine replication. The approach’s critical
challenge is to enforce a strict order of events to ensure ef-
ficient continuity between controller replicas. The replica-
tion method has the benefit of offering high durability at
marginal downtime, which makes it an acceptable alterna-
tive in delay-intolerant situations. On the other hand, one
controller (the primary) handles passive replication requests,
referred to as primary/backup replication, updates the repli-
cated status, and regularly alerts the other controller replicas
(backups) to changes in status. While the passive replication
scheme provides simplicity and lower overhead, it can cre-
ate state inconsistencies (controller and switch) and generate
additional delay if the primary controller fails [204].

Most of the previous works on SDN [4, 30, 54, 103, 118,
216, 154, 143] have proposed distributed controller architec-
ture to achieve reliability and scalability. Distributed con-
troller architecture allows the network to scale-out without
introducing bottlenecks or a SPOF. It also provides redun-
dancy and fault tolerance for the SDN network. Distributed

controller architecture can enhance scalability, fault toler-
ance, minimize latency, and availability in various SDN net-
works deployment scenarios [4]. The architecture of the dis-
tributed SDN controller involves havingmultiple controllers [238].
Distributed controllers can make available the deployments
in SDN. Nevertheless, a peculiar problemwith this approach
remains the continuous inconsistency between distributed
controllers. Due to inconsistencies between the controllers,
network applications are handled incorrectly by the distributed
controller because of the network state in the global view [18,
232, 143].

Additionally, the distributed controller generates issues
associated with controller resource management which in-
cludes the distribution of controller states, sharing of data,
consistent and extended propagation delays between multi-
ple controllers. Also, it limits the time of convergence and
affects controller response to various networks. An elasti-
cally distributed SDN controller scheme was implemented
in [54]. This scheme shrinks and enlarges the controller’s
pool based on network load. The proposed scheme was un-
able to provide clear information on the key challenge of re-
silient architecture. The researchers in [258] also proposed
an the active synchronization algorithm based on a multi-
domainmulti-controller periodic synchronization (PS) in SDN
to handle the loading inconsistency among the controllers.
The PS is based on temporal stiffness triggering [129]. The
proposed algorithm depends on events to get triggered rather
than time. Therefore, controller synchronization is respon-
sive to changes in the load of the controller. It also eliminates
the overhead connection between time and synchronization,
thereby solving the inconsistency issue within the physically
distributed device. Besides, the method avoids forwarding
loops and enhances packet arrival rates. The experimental
results showed that active synchronization algorithm pro-
vides a very lower packet loss rate, enhanced the perfor-
mance of network load balance, and reduced synchroniza-
tion overhead. When assessing the performance of SDN dis-
tributed controller architecture within data center networks,
the major concerns remain the location and number of re-
quired controllers for given network topology. Liu et al. [143]
proposed adaptive adjustment andmapping controllers (AAM-
con) to solve the following problems: very slow response
time between switch and controller, difficulty in adapting the
control plane to real network traffic load variations and con-
troller selection.
3.4.5. Resource allocation and management

With the emergence of novel services and applications,
the evolution of communication technologies has become a
crucial task for the developing approaches to manage the
resources of the networks with minimum human interven-
tion. To establish management and control in an efficient
and adaptive way, there is a need to look at both static and
dynamic scenarios where distributed controller LB approach
is needed [218].

Centralized solutions achieved through the manager tend
to have a global view in term of current situations necessary
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Figure 10: Forwarding resource allocation and management in
SDN

to compute new configurations based on dynamic traffic be-
havior which is performed by the resource management ap-
proaches. Usually, centralized solutions have limitations in
practice, especially when considering scalability and perfor-
mance issues [62, 214, 240]. Therefore, SDN offers standard
control interfaces and dynamic global views to solve these
limitations. Forwarding of resource allocation and manage-
ment in SDN is illustrated in Figure 10; the data plane con-
tains connected OpenFlow switches (OFS) while the control
plane includes the OpenFlow controller (OFC). The central-
ized OFC computes the shortest path for each service based
on the services weight and global network view (such as the
value or priorities of service). As the service weight become
equal, the OFC then assigns bandwidth using the max-min
procedure.

In term of the allocating the resources of the network,
SDN architectures can be grouped into three layers; infras-
tructure plane which contains network elements, a control
plane with a logically centralized controller, and an appli-
cation plane which includes network control programs [20].
The deployment and operation of the control and applica-
tion planes can be independently outside the network de-
vices. The control applications use flow tables to manip-
ulate network packet forwarding. The flow table hardware
implementation is a limited capacity device, while the ap-
plications share the flow table space. Thus, the flow table
is a unique network resource for showing control capabil-
ity. The data plane switch performs matching of the packet
header with the flow table in the network resource schedul-
ing mechanism. If there is a mismatch, the packet will be
sent to the controller where the control application will pro-
duce forwarding rules based on the packet and store them in
the data plane flow table. Besides, service disruption can oc-
cur when trying to insert new flow entries into the full flow
table [214].

Sherwood et al. [195] adopted the OpenFlow approach
to allow the same hardware data plane to be disseminated
across many logical networks. This method neglects the
switch and link resources management. Several resources

allocation management methods have been proposed in the
existing literature [216, 118, 119] to address some of the
shortcomings of a single centralized controller model. A
technique that uses information about the applications that
run under the global data center to schedule and optimize the
network bandwidth utilization with a centralized SDN-based
traffic engineering system was introduced by [96]. The ap-
plications are characterized according to the level of prior-
ity classes. Whenever an overloaded situation happens, the
packets with low priority are rejected. The authors of [96]
also introducedQoE-guided fair scheduling based on an SDN-
based framework with a focus on networks that have limited
resources. Similarly, Thi et al. [215] developed a framework
based on a QoS rate of allocation in OpenFlow switch net-
works for multi-class services. OpenFlow was also used to
reduce the time of computation and control admission for
allocation rate. Given that the design is decentralized, the
schemes can run on numerous parallel controllers; thereby
ensuring improved scalability of the network. The controllers
can manage more active, and dynamics flow.
3.4.6. Distributed controller placement

Distributed controller architectures employmultiple con-
trollers to solve the problems known with single SDN con-
troller placement, e.g., availability [78, 146, 132, 100]. Mul-
tiple controllers ensure decreased latency, improved scala-
bility as well as tolerance to a fault. Nevertheless, the lookup
of the overhead communication among switches and numer-
ous controllers is increased when using this architecture. A
potential drawback of this approach is to ensure that the en-
tire distributed network is maintained at a consistently. The
network application tends to act inappropriately, particularly
when the view of the global network state is incoherent [18].

Guan et al. [67] introduced a reliability-aware controller
placement scheme that places a specified number of con-
trollers in a particular physical network. The rate of valid
control paths is used as a replacement metric to address the
reliability issue. This technique incurred additional latency
while handling the trade-off between latency and reliabil-
ity. Latency propagation from the network switch and the
controllers affect the controller’s response time [136]. Hu
et al. [95] proposed a centralized controller placement tech-
nique. The technique determines the number of SDN con-
trollers needed and their placement in the network. In ad-
dition to the fact that this solution is heavily dependent on
topology, it also becomes non-scalable as the network grows.
Similar work by [86] addressed the placement of the con-
troller to increase the control networks reliability. This ap-
proach optimized the trade-offs between latency and relia-
bility. However, this method does not address the problem
of dynamic load sharing among controllers when the net-
work traffic changes. Alternatively, it focuses on the delay
in propagation. To improve the SDN network, the controller
positioning needs to be considered to reduce the average time
of the flow setup with under different traffic conditions [85].

Zhao et al. [249] proposed a scalable placement archi-
tecture using linear integer programming and a heuristic al-
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gorithm to minimize the latency of connections. In addition,
the technique established optimum controller positioning for
wide area network topology with a focus on controller-to-
controller as well as controller-to-switch delays. A min-cut,
network partitioning and controller placement algorithmwas
introduced in [23]. This aim of this algorithm is to mini-
mize the interruption between switch and controller links in
the outgoing links without the use of backup. In the case
where multiple controllers are required, this method cannot
be applied. On the other hand, the authors in [97] proposed
a conceptual system for the placement of controllers while
considering both the nature of the control plane and the in-
teraction between the data and control planes. This frame-
work is formulated as a multi-objective optimization prob-
lem whose aim is to optimize two objective functions for the
least possible flow setup time and the latency of inter con-
trollers. Additionally, this solution proposed a time function
model for flow setup that involves all of the metrics that the
placement affected.
3.4.7. Security issues in SDN load balancing

Security and LB concept are critical issues that arise in
the SDN enterprise market. The deployment and manage-
ment of security solutions are difficult in a largemulti-vendor
environment [27, 185, 200]. From a security point of view,
SDNmonitors multiple levels of packets across the network.
The deployment of security devices, e.g., firewalls, is very
difficult in SDN networks because of SDN can use a center
firewall to route all traffic. Using a single point for traffic
flow is vulnerable, but it is easy to capture and analyze IDS
and IPS in real-time [114, 245, 57].

There are many security threats in an SDN network such
as trust establishment between the switch and the controller,
securing and protecting the SDN controller, DoS/DDoS, long
waiting queues, forensics and remediation, and the devel-
opment of a robust policy framework [44, 231, 113, 46].
Most of the previous works [252, 117, 253, 183] have pro-
posed a distributed controllers for SDN networks. However,
all these studies neither considered security issues nor se-
curity encryption mechanisms. In [186], a hierarchical net-
work (COLBAS) controller LB technique was designed in
which the controllers release the load periodically and co-
ordinate each other to attain LB. This approach focused on
how to incorporate LB for distributed controllers with no
consideration for security in the distributed controller archi-
tecture [170].

A malicious controller is capable of infiltrating the net-
work, get the network topology, unlawfully retrieve and alter
network data, which may paralyze the network [47]. Three
architectures designed to be compatiblewith all existing frame-
works such as OpenStack and OpenDaylight were proposed
in [46]. These architectures greatly improve the framework
of the controller without interrupting operations of the net-
work. Likewise, some important issues that have to do with
LB and safety are addressed in the SDN framework. How-
ever, this framework is yet to be deployed on the SDN archi-
tecture. In another work, distributed controllers using a con-

sistent and fault-tolerant data store that preserves the appro-
priate network and application state was proposed by [201].
Unfortunately, this approach does not consider SDN safety
requirements. It only aims to design, implement, and test a
stable and consistent model for the DepSpace-based control
plane while ensuring stable implementation of tuple space
used to organize distributed processes. Experimental find-
ings demonstrated the practical feasibility of the design pro-
posed.
3.5. Performance metrics for load balancing

techniques
In this subsection, we discuss the LB metrics for SDN

networks. As earlier hinted, several LB techniques have been
proposed in pertinent LB literature (e.g., [250, 42, 131, 132,
241, 4, 41, 164, 224, 130, 99, 5, 73, 55, 221]). The met-
rics used in the implementation of these LB algorithms are
summarized as follows:
3.5.1. Packet loss rate (Pr(Loss))The packet loss rate is a common phenomenon that fre-
quently occurs in data transmission devices. When the switches
in the network get busy processing incoming packets, they
are likely to drop some of the incoming packets. The switches
become busy as a result of packet loss rate as well as the load
condition of the path. The SDN controller will be able to en-
sure the accumulated number of transmitted packet Txpacketare collected in OpenFlow switches ports, and also the cu-
mulative number of the packet that is as received Rxpacketat respective OpenFlow switch ports. Therefore, the packet
loss rate can then be calculated using Equation (1):

Pr(Loss) =
Txpacket − Rxpacket

Txpacket
(1)

3.5.2. Throughput
This metric computes the sum of tasks completed in one

unit time after performing LB. It determines the rate at which
the computational work is done using an LB technique. The
LB algorithm aims to achieve greater efficiency.
3.5.3. Average response time

One of the main metrics of LB techniques is the aver-
age response time. It is defined as the amount of time it
takes for the user to retrieve the results of a request. Differ-
ent variables that influence the response time include band-
width, number of users accessing the network at the same
time, number of requests and average processing time. A
high number of requests per second must be processed to
receive quicker responses.
3.5.4. Average end-to-end delay

The end-to-end delay of a flow is the time it takes for all
packets to arrive at the destination divided by theNP packets
transmitted. It is calculated using the formula: (2).

TE2E =
Ti End − Ti Start

NP
(2)
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For the network, average end-to-end delay is the sum of
all end-to-end delays divided by the total number of flows
NF .

Avg (TE2E) =
∑N

i=1 TE2Ei

NF
(3)

3.5.5. Resource utilization ratio (RU ratio)
It is calculated as the resource’s efficient use in process-

ing the request, and the goal is to optimize the most criti-
cal resource in processing the request. The resources can
be bandwidth utilization ratio, link, memory utilization, and
processor. Furthermore, the resource utilization ratio repre-
sents a percentage of the overall connection capacity.
3.5.6. Overhead

Any combination of additional time, bandwidth, or any
other required factors for the accomplishment of a given task
is referred to as overhead. If packets are received by a node
above its capacity ExPacket, overhead is generated at the
node. Otherwise, if received packets are within range, no
overhead is generated. Overhead at a node can be measured
by using Equations (4, 5):

Expacket = Rxpacket − Txpacket (4)

OvPacket =
Expacket

Packet tℎresℎold
(5)

3.5.7. Transmission hop count (HopCount)
The transmission hop count is considered as one of the

significant factors for routing approach. The probability of
congestion may be increased with a large number of trans-
mission hop. In contrast, packet loss probability can be de-
creased as well as transmission delay in similar network con-
dition if the packet transmitted along the path is made with
fewer hops. As a result of the protection of the SDN con-
troller’s global network topology in the database, there is
provision for several hops between a pair of switches; us-
ing source and destination switches as the query factor for
searching the database.
3.5.8. Servers root mean squared error (RMSE)

It is a metric for measuring efficiency in LB techniques.
A smaller RMSE has better efficiency. RMSE will be 0 if all
servers are equally loaded.
3.5.9. Flow completion time

It is the primary metric used for determining flow trans-
port efficiency in the case of large flow in data center net-
works. It can be defined as the duration it takes to complete
a file transfer in a flow. The QoS specifications require a
large array of network resources to complete the flow time.
The FCT can include as amongst others the execution and
migration times (i.e., time taken to move a switch is essen-
tial for the efficient operation of a control plane LB protocol).

LB techniques aim to reduce the flow completion time to the
minimum possible.
3.5.10. Types of traffic (EF, MF)

This involves differentiating the type of incoming traffic
flow as to whether long-lived large flow (i.e., EF) or the short
flow (i.e., MF). Based on previous measurements in the data
center networks [138, 26, 106, 66], it has been found that
80% of the flows (i.e., MFs) are below 10 KB and lasted
for a few milliseconds. In contrast, the top 10% of the large
flows (i.e., EFs) account for the majority of the traffic. Any
traffic that exceeds a specific threshold per unit time ( e.g.,
1 MBps) is classified as EFs [145]. Given the high level of
EFs in network traffic, their efficient control and rerouting
can result in increased throughput of SDN network [79, 12].
On the other hand, the competition for betweenMFs and EFs
for limited network resources indicates that MFs do not have
enough bandwidth [222].

4. Discussion
A brief overview and comparative analysis of the vari-

ous metrics used in the literature are explored from different
perspectives of the various state-of-the-art LB techniques in
this section. Firstly, it is necessary to address the problems
associated with LB technology in order to improve their per-
formance in SDN networks. Secondly, it is necessary to ex-
amine and categorize the identified problems and solutions.
In this paper, we studied the LB techniques for improving the
SDN networks r to facilitate and ease research innovation for
SDN researchers. With a focus on recent articles from both
reputable journals and conferences, we have reviewed dif-
ferent issues to identify the most common performance en-
hancement approaches in different domains with a focus on
LB, data plane LB techniques, control plane LB techniques,
other aspects of data/control planes LB, performance mea-
sures for LB techniques, and lessons learned from LB tech-
niques.

LB techniques in data plane are divide into server LB
and link LB. The comparison of these techniques is pre-
sented in Tables 2, and 3, which shows a comparison of
several SDN data plane LB solutions with different algo-
rithms. The experimental environments focused on mea-
surement metrics. Compared to traditional networks, SDN
server LB techniques improve the efficiency of the LB server
and can be useful in overcoming challenges associated with
its implementation. LB offers many advantages, including
website scalability, availability, manageability, and security.
When a server or program fails, LB may also redirect the
traffic to alternative servers. Server LB techniques, accord-
ing to studies on static algorithms [111, 242, 219, 81] allow
only the controller to distribute the load to the servers with-
out considering the server’s efficiency. While dynamic LB
algorithms [206, 193, 58, 223, 40, 45], which considers the
actual load and the output at each node when managing task
distribution, adjust the load of the nodes in a timely manner
through the dynamic mechanism to ensure that the system
runs smoothly over a long period of time. However, these
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approaches have several limitations that include the need to
adapt burst traffics, as the need to adjust controllers load dy-
namically, and disregard for the types of services amongst
others.

Algorithms based on SBLB [5] dynamically apply LB to
different types of services in cloud-based SDN. These algo-
rithms aim to optimize resource efficiency and reduce user
response time. However, several limitations persist; such as
in deploying adaptive LB based on traffic classification and
in building application-aware LB.On the other hand, link LB
techniques in data plane are based on heuristic algorithms
such as (ECMP [12], FSEM [131], ACO [56, 221], GA [99],
GA-ACO (i.e., G-ACO) [230, 130]), and based on machine
learning like (ANN [42, 164, 178, 179], DRL [210, 243, 211,
236]). They all perform comparatively better for large SDN
networks (i.e., WAN), but with high processing and network
overheads. Algorithms for dynamic LB in data plane traf-
fic used for rerouting [140, 88, 241, 38, 202, 71] work well
for a comparatively limited SDN network, i.e., with a mini-
mal number of target OpenFlow switches on the data plane.
These algorithms lose their efficiency when the network ex-
ceeds a certain threshold or too large. Hence, the scalability
of these methods cannot be ascertained.

Table 4 shows a comparison of several SDN control plane
LB solutions with different controllers and algorithms. Al-
though the focus was accorded to evaluation metrics in the
experimental setup, the types of control plane LB were also
considered. Most of these studies used different OpenFlow
protocol versions. Logically-centralized and physically-distributed
controller LB techniques, according to [76, 180, 253, 77, 73,
216], was proposed to overcome the idea of using replicated
controllers to solve SPOF problems. Amongst the draw-
backs of this approach is not triggering the disabled con-
trollers before the main controller fails. Distributed con-
troller LB techniques have garnered more research attention
in recent years as they have emerged as a possible solution to
the problems associated with centralized SDN architectures
(performance bottlenecks, poor scalability etc.,) [257, 258,
253]. Furthermore, one of the most distributed controllers
LB technique is a hierarchical LB control techniques pre-
sented in [139, 147, 156] presumes vertical division of the
network control plane into several layers) according to the
needed services. Hierarchical controller-agents/sub-controllers
LB mechanism aims to solve the synchronization problem,
to reduce time consumption while boosting performance in
the distributed controllers.

Moreover, the horizontal controller LB techniques also
kind of distributed controller used in [209, 92, 55, 234, 192]
introduced the horizontal division of the network into multi-
ple sections, each controlled by a single controller whose re-
sponsibility is to manage the SDN sub-set switches. Among
the numerous benefits of arranging controllers in a flat for-
mat are reduction control latency and improved resiliency. In
a situation where the primary controller fails, a preselected
backup controller begins accessing the present state of the
system via shared consistent data that was stored as preven-
tion against the cold-start (empty state) problem peculiar to

Figure 11: Percentage of SDN load balancing metrics ad-
dressed in the surveyed techniques

the traditional passive replication approach. This ensures
a smooth transfer of control to the new primary controller.
On the other hand, virtualization controller LB techniques
according to previous studies [39, 105], add a virtual layer
over the infrastructure of the physical network. This layer
provides virtualization of the network by building multiple
virtual networks. These virtual networks consist of virtual
resources like routers, switches and other nodes that need to
be managed and controlled in turn. The control is imple-
mented via a transparent proxy that acts as a link between
one side of the switch and several controllers at the other
end.

Ensuring interoperability, reliability, scalability and con-
sistency SDN control plane are among the top challenges
that impede the design of a powerful, stable and high per-
formance distributed SDN controller platforms. Reliability
and scalability are major issues confronting fully centralized
and distributed SDN control designsmainly because they are
strongly affected by the number and positioning of multi-
ple controllers as well as the configuration of the distributed
control plane within the SDN network. Achieving the speci-
fications for efficiency and availability typically come at the
expense of maintaining a clear, unified network view needed
for SDN application design and proper behavior. Consis-
tency should also be considered among trade-offs involved
in the design process of an SDN controller platform.

Table 5 illustrates how various works offer a comparative
study of different SDNLB algorithms based on specific eval-
uation criteria. After analyzing the various LB techniques, it
can be mentioned that different techniques have considered
specific criteria for evaluation. Some of the researchers de-
veloped a single metric, while others found several metrics
more appropriate. Figure 11 graphically depicts the percent-
age of the SDN LB metrics considered in the reviewed arti-
cles. The most used metric is RU ratio, i.e., 52%, followed
by a delay, i.e., 48%. Other metrics like throughput, packet
loss, flow completion, response time, and overhead represent
36%, 31%, 21%, 16%, and 12%, respectively. Then, followed
by RMSE and hop count that respectively, formed 7% of the
articles. While the least used metric is a type of traffic is ap-
proximately 5%. Figure 12 shows the year-wise pattern of
SDN LB metrics according to the algorithms examined.
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Table 5
Comparative analysis of load balancing techniques in SDN

Reference Category Types of Algorithm Packet
Loss Throughput Response

Time Delay RU Ratio Overhead Hop
Count RMSE Flow

Completion
Types of
Traffic

[219] Data plane LB
Load-based, random,
round-robin ✓ ✓

[131] FSEM, Top-k paths ✓

[56] ACO ✓

[42] BPANN ✓ ✓ ✓ ✓

[193] Random, round robin, SBLB ✓ ✓

[164] ANN ✓ ✓ ✓ ✓ ✓

[178] KDN based on
MLP ✓ ✓

[5] SBLB ✓ ✓

[99] GPLB ✓ ✓

[206] LB based on channel capacity ✓ ✓ ✓ ✓

[40] Round-robin, random, SBLB ✓ ✓

[58] Round-robin, random, SBLB ✓ ✓ ✓

[250] Random, round-robin,
LBBSR ✓ ✓

[223] Dynamic LB ✓ ✓

[221] ACO ✓ ✓ ✓ ✓

[88] MPF ✓ ✓

[241] LBLB ✓ ✓

[38] SDN LB ✓ ✓ ✓

[202] Dynamic LB ✓ ✓

[236] DDPG with DROM ✓ ✓

[243] CFR-RL ✓

[71] AggreFlow ✓ ✓

[210] SINET ✓

[230] G-ACO ✓ ✓ ✓

[220] ACO ✓ ✓ ✓

[179] BPANN ✓ ✓ ✓ ✓

[130] GA-ACO ✓ ✓

[73] Control plane LB LVS ✓ ✓ ✓

[77] Dynamic and adaptive LB ✓ ✓ ✓

[147] LB mechanism based on MC ✓ ✓ ✓

[39] Dynamic resource
management ✓ ✓ ✓

[192] Service-aware adaptive link
LB ✓ ✓ ✓

[76] SeqAsn ✓ ✓

[156] Laman ✓ ✓ ✓

[105] TALON ✓

[253] SCPLBS ✓ ✓

[139] QoS based on QAR ✓ ✓ ✓

[234] Distributed OpenFlow
controller ✓

[55] Elastic distributed controller
architecture ✓ ✓ ✓

[180] Flow entry timeout ✓ ✓

[92] BMS ✓

[209] MARVEL ✓

5. Lessons Learned from the Load Balancing
Techniques for SDN
In this section, the main lessons learned from this survey

are highlighted as follows:
• Congestion awareness in SDN load balancing tech-

nique across the switches: Data plane forwarding al-
gorithms are easily deployable because they only use
local congestion information from theOpenFlow switches
in addition to not being equipped to modify the ex-
isting hardware switches and protocols. On the other
hand, local information-based approaches perform smoothly
when the topology of the network is symmetric, and
the length of the flow deviation is small. However,
network topologies are typically asymmetric, and the
flow distribution is often heavy-tailed. Thus, local
information-based schemes may even have worse per-
formance than static plans like ECMP [12]. Fortu-
nately, modern approaches, like ACO [56, 221], have
shown that local algorithms with OpenFlow switches
do have the potential of achieving optimal efficiency
and outperforming global congestion-aware approaches.

• Congestion awareness in SDN load balancing tech-
nique across the controllers: The congestion- aware
controller system uses a centralized controller to col-

lect real-time link usage and traffic information or adopts
a distributed network for transmitting congestion in-
formation between the OpenFlow switch and the host.
In LB methods, global congestion information is con-
sidered necessary because traffic, as well as topology,
are typically asymmetric, hence, susceptible to degra-
dation in performance due to the use of only local
information. However, the cost of gathering global
congestion information in an SDN network is high.
Centralized methods use controllers to collect data,
but they typically operate in full control loops during
which congestion might have subsided. Distributed
technologies use tracking or piggy-backing to relay in-
formation globally. This is capable of relaying con-
gestion information in a timely fashion but at the cost
of increased overhead.

• Centralized load balancing in SDN networks: De-
cision onwhether to choose a centralized or distributed
architecture is the first thing to consider. Generally,
unified architectures are designed formodern programmable
networks, such as SDN. A globally centralized con-
troller is deployed in these architectures to collect traf-
fic matrices and connection information on usage in
real-time aswell as to change traffic or reschedule track
assignments. The benefits of using a controller in-
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clude a fast understanding of traffic dynamics and a re-
liable analysis of congestion that has arisen within the
network. Furthermore, the globally centralized con-
troller can help to manage the scheme identification
load of asymmetric topologies triggered by communi-
cation failures and re-planning decisions on time. The
centralized design’s drawback is that the controller be-
comes an extensive bottleneck network which limits
performance.

• Distributed load balancing in SDN networks: Con-
sidering the limitations of centralized controllers, dis-
tributed solutions offer improved performance by lever-
aging distributed switches or hosts for decision mak-
ing. Distributed Algorithms often apply their mecha-
nisms to switches or end hosts using distributed pro-
tocols to collect and process global congestion and
link failure information. Decentralized solutions can
handle traffic faster and easier to deploy on a large
network. However, when it comes to detailed infor-
mation about traffic patterns and global link utiliza-
tion, distributed algorithmsmay not optimally balance
the load due to difficulty in handling link failures in
a timely manner. Hence, distributed algorithms use
congestion or ACK to transmit congestion informa-
tion between switches or hosts; thus incurring addi-
tional overhead as well as limitation in the scalability
of the algorithm.

• Network-based load balancing in SDN: In-network
strategies are implemented at end-hosts instead of the
transport layer of the network structure. As the trans-
mission protocol on the end host is already complex
enough, the LB scheme implemented in the network
structure avoids further complexity to the end host.
However, In-networkmethods have to learn flow num-

bers and count packets if they need traffic information
of applications; thus incurring additional costs.

• Host-based load balancing in SDN: A host-based
approach has the advantage of getting traffic informa-
tion directly from running applications on the server.
Whatever the network architecture, host-based servers
can be distributed across several networks. This is fea-
sible, even in broader topologies. The weakness of the
host-based approach is that they can make the end-
host transport stack too complicated, thus raising the
end-host overhead. Besides, some SDN applications
bypass the kernel network making this infeasible for
using host-based approaches.

6. Challenges and Future Research Issues
Several problems exist in the research process associated

with the LB mechanisms. These problems can be solved by
extra development and optimization of SDN research. We
proffer several open future research directions on SDN LB
mechanisms in this section:

1. Load balancing technique to handle high controller
load in data plane: Some techniques have been pro-
posed in the literature to handle high controller load.
Genetic-based LB algorithm [45] optimal scheme was
also put forward as a solution to avoid the high bottle-
neck in a single controller while saving network cost.
Similarly, another approach called FSEM [131] used
Top-K algorithm to choose the shortest path. As a re-
sult, accurate real-time based on the load condition of
each path cannot be demonstrated based on this tech-
nique as it only considers hop count, which may ex-
clude some optimal paths. ACO was proposed in [56]
as an estimation model to utilize QoE and ensure the
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user QoE ismaximized for the services associatedwith
multimedia. This technique only considers theweighted
graph, which is not sufficient to obtain the shortest
path. To predict how integrated load that has to do
with different paths decides to choose a path with the
least load path, BPANN was introduced by [42]. This
path represents the data-flow transmission path. Cer-
tain characteristics exhibited by the BPANN are as-
sociated with these objectives that comprise of uti-
lization ratio of the bandwidth, transmission latency,
packet loss rate and transmission hops. Themain draw-
back of this algorithm is that it neglects the various
types of services which impede finding of the exact
shortest path. Therefore, there is the need to address
the established limitations of applying LB dynami-
cally on application.

2. Dynamic load balancing technique formultiple con-
trollers: The deployment of multiples controllers de-
mands the consideration of traffic engineers; especially
in a large-scale SDN network as this is an important
subject in network performance optimization. Thus,
a dynamic LB in the SDN is needed to adapt burst
traffics as well as to adjust controller load without ne-
glecting effective traffic balancing dynamically.

3. Hierarchical controller load balancing: Centralized
SDN control using a single has been proven to be in-
sufficient in exchanging large amounts of data and re-
sult in SPOF when the controller fails. Therefore, the
entire network may collapse because all forwarding
decisions depend on a single controller [234, 11, 156].
Unlike the centralized decision controller, the super
controller is responsible formaintaining the global con-
troller load information table but with an extended LB
time [54]. LB decisions implemented in DALB are
highly time-consuming when performing distributed
LB [257]. The previous synchronization of multiple
controllers is formed based on PS [129], which ig-
nores potential inconsistencies in global networks and
further generates large amounts of packet loss and poor
load balance. Several research on the distributed con-
troller has focused on the synchronization overhead
of the controllers in different domains without imple-
menting an LB solution [73]. The advantage of the
synchronization overhead in the PS lies in the reduced
synchronization time; although network performance
degrades over time.

4. Network virtualizationwithinmultiple controllers:
Network virtualization of essential infrastructures is
an abstraction that can adjust the workloads as well
as the flexibility of the resources to meet various re-
quirements of services [235, 39, 208]. The integra-
tion of the SDN with network functions virtualization
(NFV) could eventually trigger most innovative de-
signs that are capable of exploiting the full benefits
of both paradigms [59, 3]. The recent increase in re-
search is now geared towards the concept of virtual-
ization of infrastructure. This method which requires

that the virtualization process be implemented on nu-
merous SDN controllers, has become a significant re-
search topic that requires detailed investigation.

5. Controller placement techniques: The placement of
controllers directly impacts network performance [86].
Sub-optimal controller placements affect flow rule setup
latency and thus, result in control plane overhead, de-
lay in controller-switch communication, the resilience
of the fault tolerance as well as controller-controller
communication delay. Although some studies have at-
tempted to address some of these problems in the lit-
erature [36, 86, 60, 160, 103, 225, 94, 146, 98, 100],
this is an on-going research area with several issues
that demand further readdressing by researchers.

6. Flow rule setup latency: In trying to ensure device
plan scalability, this can result in other problems such
as delay in the new flow rule setup [84]. As earlier
stated, there are two modes of setting up a new flow
rule, namely; proactive and reactive modes. In the
flow rules, the proactive mode is usually insufficient
in enforcing any latency from the controller’s perspec-
tive of the flow rules. The response time of the con-
troller becomes crucial in a reactive mode. However,
it may become impossible for controllers with flow
rules setups to meet the necessities of few applications
like the fast failover as well as the latency-sensitive
flows of reactive routing. Consequently, such control
planes may lack the requisite scalability for ensuring
that the needs of the network are satisfied. Neverthe-
less, by imposing a large number of switches and con-
trollers such as CPU and memory, the delay can be
reduced as well by decentralizing a few control func-
tions within the switches. To reduce latency in the
data plane LB, it is possible to use link migration ap-
proaches for even distribution of load among Open-
Flow switches. This will maintain the required QoS
in SDN networks with latency in data plane flow rule
setup.

7. Networkmanagement challenges for software-defined
based internet of things (SD-IoT): It is predicted that,
in a decade or so, through the power of IoT technology,
billions of devices will be in use worldwide [28, 205].
Thus, massive data is expected to be generated by de-
vices that need timely and efficient processing. Ac-
cordingly, network management is an essential ele-
ment in handling such a massive range of devices and
the vast knowledge they produce. Therefore, suitable
technologies are necessary to distribute and monitor
network traffic flows for LB and network delay mini-
mization. The SDN-based technology will meet these
requirements since it has a centralized global view of
the network. Thus, IoT network control like LB, fine-
grained traffic routing, and increased bandwidth effi-
ciency can be extended to the SDN-based technolo-
gies [29, 153].

8. Data plane fault tolerance and low-latency load bal-
ancing for SD-WAN: Programmability in SDN pro-
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vides opportunities to design custom, quick and ef-
fective adaptive routing schemes for low end-to-end
latency, as well as failure recovery mechanisms that
can be accomplished with low overhead communica-
tion and low interaction of controllers [247, 174, 151].
However, in the presence of connection failure or con-
gestion, which are scenarios typical in SD-WANs, it
remains unclear how to pick better paths in real-time.

9. Energy-efficient networking based load balancing
technique: Turning the network components on and
off based on traffic characteristics and using connec-
tions in traffic-aware solutions decreases energy con-
sumption. But deciding the collection of network com-
ponents to dynamically turn on or offwithout affecting
QoS and network output is an NP-hard problem [248,
122, 17, 71]. The trade-off between energy savings
and network efficiency should be seen as a practical
solution in this field. Through SDN-based LB, amethod
to reduce energy consumed by network flow schedul-
ing is introduced at the data center network. How-
ever, lower flow-sizes get higher priority compared
with higher flow-sizes. Higher flow-sizes will also not
be supported during their deadline if there are much
lower flow-size. Minimizing energy consumption in
networks (e.g., SDN based data centers, SD-IoT, SD-
WAN) is a critical factor in supporting green tech-
nology. Therefore appropriate strategies for energy-
efficient LB-based networks need to be proposed.

10. Security challenges: Availability is a security prob-
lem which is closely linked to protection and scalabil-
ity. Most of the SDNs security threats are designed for
compromising the control plane availability. There-
fore, it is recommended to use multiple controllers.
However, simply addingmultiple controllers can cause
cascade failures in the controller, as demonstrated in [233].
Therefore, security and scalability in SDN must be
correlated with the implementation of a secure archi-
tecture that ensures the high availability of the con-
trol plane [8, 112]. Several security experts assert that
SDN is native to vulnerability because it eliminates
hardware obstacles such as firewalls that are secured [120,
44]. Protecting the controller and building trust be-
tween controllers is a key issue. Likewise, DDoS and
long-awaited queues are SDN challenges [190, 169].
Providing LB with improved protection is essential to
transitioning to SDN. Additionally, it is understood
that an OpenFlow controller’s functionality and oper-
ating set are most likely limited. Therefore, the lack of
scalability in SDN will allow targeted attacks to cause
control plane saturation by flooding communication
between the controller and the switch [198, 8]. More-
over, security and scalability in SDN need to be linked
to build stable SDN architectures that ensure a highly
accessible control plane. LB and link synchroniza-
tion strategies may be used for the data plane to share
loads between OpenFlow switches in equal measure.
This will not only help sustain the necessary QoS but

also mitigate flooding severity and saturation attacks
on data planes.

7. Conclusion
In SDN networks, many load balancing techniques can

be used to improve network performance. This is because
the global view of the resources increases as a result of the
SDN controller, and the implementation of the application
requirements knowledge to distribute the traffic load.

In this article, we present a comprehensive survey of load
balancing techniques in SDN. Firstly, we discussed the SDN
architecture associated with the load balance. This is fol-
lowed by a brief discussion on LB objectives such as to min-
imize response time, optimize resource use, avoiding bot-
tlenecks, and maximize the throughput. The LB techniques
were further classified by dividing the LB into data plane
LB and control plane LB. Then, the data plane LB is further
divided into the server LB, and link LB. Moreover, the con-
trol plane LB that includes logically-centralized/physically-
distributed LB distributed LB, which is divided into (hier-
archical, horizontal), and virtualization controller LB is dis-
cussed at length. Additionally, we provide a brief discus-
sion on the other existing aspects of data/control planes LB
such as switch flow table LB, LB during controller failures,
the migration switch mechanism, managing SDN controller
load, resource allocation andmanagement in SDN, distributed
controller placement as well as security issues. Some met-
rics that are related to the performance of LB in SDN like
packet loss rate, throughput, average end-to-end delay, av-
erage response time, root mean squared error, resource uti-
lization ratio, overhead, transmission hop count, flow com-
pletion time, and types of traffic have also been presented in
fine details. Furthermore, a comparative analysis of the sur-
veyed techniques and the lessons learned from LB in SDN
are summarized. Finally, we expose the open issues and fu-
ture directions for further research that could improve the
wide acceptance of the emerging application of load balance
in SDN.
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