
1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

1

A Survey on Large-scale Software Defined
Networking (SDN) Testbeds: Approaches and

Challenges
Tao Huang∗†, F. Richard Yu‡, Chen Zhang∗†, Jiang Liu∗†, Jiao Zhang∗†, and Yunjie Liu∗†

∗State Key Laboratory of Networking and Switching Technology
Beijing University of Posts and Telecommunications, Beijing, P.R. China

†Beijing Advanced Innovation Center for Future Internet Technology, Beijing, P.R. China
‡Depart. of Systems and Computer Eng., Carleton University, Ottawa, ON, Canada

Abstract—Recently, several large-scale Software Defined Net-
working (SDN) testbeds have been designed and developed. These
SDN testbeds have spurred numerous network researchers to
run their prototypes and experiments, as well as to set up novel
architectures for the future Internet. Based on these efforts, SDN
testbeds are actively contributing to future network research,
bringing forth the attention of both academia and industry. In
addition, researchers envisage these large-scale SDN testbeds to
be the future Internet. In this paper, we present a comprehensive
survey and research challenges for large-scale SDN testbeds. We
first introduce the related work and background knowledge.
Then, an overview of SDN testbeds is presented. In addition,
five typical implementations of large-scale SDN testbeds around
the world are described in detail, including design objectives,
key technologies, deployment, and experiments. Moreover, an in-
depth comparison of SDN testbeds is given. Finally, challenges
and future works of SDN testbeds are discussed.

Index Terms—SDN, testbed, OpenFlow, GENI, OFELIA,
OpenLab, RISE, OF@TEIN

I. INTRODUCTION

OVER the past decade, with the tremendous advances in
the field of information and communications technol-

ogy (ICT), traditional Internet has faced severe challenges.
For example, the rapid development of wireless technology
has forced new research on mobility management [1], [2].
Massive large-scale data centers raise serious energy-saving
problems [3]. Time-sensitive businesses in the cloud require
preferable quality of service from the underlying network [4].
Furthermore, the shortage of Internet Protocol version 4 (IPv4)
addresses, urgent need for management automation, difficulties
of scalable routing, and many other problems similar to these
are puzzling network researchers.

Recently, Software Defined Networking (SDN) [5] has
attracted great interests from both academia and industry
to solve these issues. The basic idea of SDN is to break
vertical integration, to detach the control plane from the
forwarding plane, and to introduce the ability of programming
the network. The SDN controller, acting as the Networking
Operating System (NOS), separates remotely from the under-
lying devices, so that one can program the network anytime
and anywhere. The good features of SDN enable new business
to be deployed quickly, new academic networking methods
could be easily achieved. Currently, OpenFlow [6] is the
most promising technique to standardize the communication
between the controller and devices, and it frees the designing

of “network middle boxes” from restrictive layer frameworks.
The wide spread of OpenFlow is inspiring increasing number
of SDN researches.

To evaluate the performance of new network designs and
algorithms, simulators, emulation platforms and prototype
testbed are usually used by researchers. Compared with simu-
lators and emulation platforms, testbeds are more convincing
for network experiments, because testbeds can incorporate
real traffic and real network facilities. To serve SDN re-
search, several large-scale testbeds constructed by the SDN
method have been designed and developed. Using network
slicing technologies [7]–[9], SDN testbeds could transparently
provide different researchers with isolated network resources
over the same suite of physical facility. Combined with cloud
management tools, such as OpenStack [10], SDN researchers
could “rent” virtual servers as they need the resources only for
a short period of time. And depending on the testbed control
framework [11], [12], most of the devices and research projects
could be easily managed.

What is more appealing, researchers envisage these large-
scale SDN testbeds to be the future Internet. Actually, the past
10 years have seen many convincing attempts to enlarge the
SDN domain [13], [14], to construct robust SDN control plane
[15], [16], and to interconnect heterogeneous SDN devices
[17]–[19]. It is possible that the envision will come true
soon, after all, Advanced Research Projects Agency Network
(ARPANET) has evolved to be the current Internet in just less
than half a century.

Trials of large-scale SDN testbeds are actively advancing
in many countries [20]–[24], and most of them are based on
OpenFlow. The Global Environment for Network Innovation
(GENI) OpenFlow project in the USA [20], OFELIA [21] and
OpenLab [24] in Europe, RISE in Japan [22] and OF@TEIN
[25] in Korea are the most typical and general ones, that have
attracted numerous network researchers to run their prototypes
and experiments, or to set up their novel architectures. Based
on these efforts, SDN testbeds are actively contributing to fu-
ture network research, capturing the attention of both academia
and industry.

In this paper, some typical and general implementations
of large-scale SDN testbeds are introduced in detail. Partic-
ularly, we present the design objectives, key technologies,

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

2

Large Scale SDN Testbeds

B. Traditional Network
Experiment Methods

A. Brief Introduction
of SDN

A. Federation

B. Slicing

C. Compatibility

A. Development and Objectives

B. Key Technologies

C. Network Deployment

A. GENI OpenFlow

B. OFELIA

C. RISE

D. OF@TEIN

E. OpenLab

D. Experiments

A. Advantages over Traditional
Network Experiment Methods

B. Basic Designing
Overviews

C. A Peep of Key
Technologies

Figure 1. Roadmap of this paper.

network deployment and experiments of these large-scale SDN
testbeds. In addition, we discuss the research challenges of
large-scale SDN testbeds. To the best of our knowledge, this
is the first comprehensive survey on large-scale SDN testbeds.

The structure of the paper is given in Figure 1. In Section II
and III, related works and background knowledge are briefly
introduced. Section IV gives an overview of SDN testbeds.
Section V introduces the implementations of GENI OpenFlow,
OFELIA, RISE, OF@TEIN and OpenLab, from the basic
elements to the key technologies. There are other interesting
SDN testbeds, such as JOLNET in Italy [26] and CoCo in
GN3 [27], which are difficult to be described in details in
this paper due to the limited space. In Section VI, crosswise
comparisons are made among these testbeds. Subsequently in
Section VII, we discuss the challenges and future works on
SDN testbeds. Finally the paper concludes in Section VIII.
Table I lists the main abbreviations used in this paper.

II. RELATED WORK

There are several excellent survey papers about SDN (e.g.,
[28]–[41]). Kreutz et al. [28] have presented a comprehensive
view of SDN components with a layer perspective. Xia et
al. [29] have studied the SDN architecture from a layered
approach, and clarified each layer with related works. Hu et
al. [30] have surveyed some specific topics in SDN/OpenFlow

implementations, such as Quality of Service (QoS) and secu-
rity. Xie et al. [31] have researched on issues related to SDN
controllers, including architecture, performance, scalability,
placement, interface, and security. Bhaumik et al. [32] focus
on Software-Defined Optical Networks (SDONs), from gen-
eral concepts to its benefits over Generalized Multi-Protocol
Label Switching (GMPLS). Software-Defined Wireless Net-
works (SDWNs) have been studied in [37], [42]–[44]. SDN
hypervisors have been surveyed in [38], which categorizes
and sub-classifies SDN hypervisors, and does some valuable
comparisons and evaluations. Bari et al. [39] have presented
a deep review of network virtualization in data centers, and a
comprehensive comparison of existing approaches is made in
the paper. Rygielski et al. [40] have surveyed existing network
virtualization methods briefly, and specifically characterized
them according to QoS management and performance isola-
tion. Liang et al. [41], [45], [46] have surveyed virtualization
approaches in wireless network, and discussed future research
challenges and directions.

Although some excellent surveys have been done on dif-
ferent aspects of SDN, most of them do not focus on SDN
testbeds. To fill this gap, This paper presents a comprehensive
survey and research challenges of large-scale SDN testbeds.
We hope that it can help readers to have an overall understand-
ing of this field and for researchers to do subsequent studies.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

3

TABLE I
ABBREVIATIONS

AAA Authentication, Authorization, and Accounting
ARPANET Advanced Research Projects Agency Network

BGP Border Gateway Protocol
CPEX CaPital Expenditures
DDoS Distributed Denial of Sevices
DPID DataPath Identification

EoMPLS Ethernet over Multi-Protocol Label Switching
EXPRESS EXPerimenting and Research Evolutions of Software-

defined networking over federated testbedS
ForCES Forward and Control Element Separation

ICN Information-Centric Networking
IPv4 Internet Protocol version 4

GMPLS Generalized Multi-Protocol Label Switching
JGN Japan Gigabit Network

LDAP Lightweight Directory Access Protocol
MPLS Multi-Protocol Label Switching
NLR National Lambda Rail
NS Network Simulator

NVGRE Network Virtualization using Generic Routing Encapsu-
lation

OAM Operation Administration and Maintenance
OF-CONFIG OpenFlow Configuration Protocol

OFELIA OpenFlow in Europe Linking Infrastructure and Appli-
cations

OPEX OPerational Expenditures
OVS Open Virtual Switch

OVSDB Open-vSwitch-Database-Management-Protocol
OVX OpenVirteX
PCE Path Computation Element

PSP-SEC Secured Path State Protocol
PSTN Public Switched Telephone Network
RCP Routing Control Protocol
RIB Routing Information Base
SSH Secure SHell
UDP User Datagram Protocol

VLAN Virtual Local Area Network
WDM Wavelength Division Multiplexing

III. BACKGROUND KNOWLEDGE

In this section, the background knowledge on SDN and
some traditional network experiment methods are briefly in-
troduced.

A. Brief Introduction of SDN

SDN is becoming widespread in recent years. Actually, the
history of SDN has gone through a long period of evolution
[47]. To achieve network programmability, Active Network
(AN) [48], which could introduce some programmability into
network devices, was first raised in the late 1990s, however,
its control logic was still distributed in devices. The earliest
attempt to separate control logic from forwarding devices is
the Network Control Point (NCP) [49], subsequently, many
similar attempts were proposed, such as ForCES [50], RCP
[51], PCE [52] and 4D [51], [53], [54]. Compared to AN, these
projects were designed to program the control plane rather than
the data plane.

The embryo of SDN was first raised up in 2006 in the
Stanford’s Clean-State project. Ethane [55], an approach of
centralized and programmable control in enterprise network,

Network Application

Programming Language

Languages-Based Virtualization

Northbound Interface

Network Operating System

Network Hypervisor

Network Infrastructure

Southbound Interface

APP

Figure 2. Layered architecture of SDN. The Application plane consists
of different types of SDN Apps. The Northbound Interface provides APIs
used for management or development. The NOS facilitates network control
and management logic. The Network Hypervisor could be used to slice the
physical infrastructure to provide logical networks. The Southbound Interface
connects the control plane and the data plane. The data plane is composed of
SDN forwarding devices.

presented the early stage SDN method. As the name implies,
SDN is a new network architecture based on user-defined
software logic, and the design concept of SDN architecture
is to detach control logic from forwarding devices. Thus, the
centralized controller will have a global view of the network
resources, which is essential for network optimization, e.g.,
to improve bandwidth utilization and to ensure differential
network transmissions for different traffic. Moreover, SDN
is more flexible than the traditional network due to its pro-
grammability, allowing users to develop applications to control
their network. Thus, new services could be rapidly deployed
and the Operation Administration and Maintenance (OAM)
costs will be sharply reduced.

A layered SDN architecture is shown in Figure 2. Basically,
SDN comprises three layers, including the data plane layer, the
control plane layer and the application plane layer, and each
layer is composed of different sub-layers. The control plane
layer is the “brain” of SDN, and it could consist of several sub-
layers [28]: Northbound Interface, Network Operating System
(NOS), Network Hypervisor and Southbound Interface. The
Northbound Interface is usually a suite of application program-
ming interfaces (APIs) used for management or development.
The NOS facilitates network control and management logic.
The Network Hypervisor lies right below the NOS to enable
logical switches and links, and optionally it could be used to
slice the physical infrastructure to provide logical networks.
The Southbound Interface plays the most important part as
the “artery”, connecting the control and forwarding devices as
well as transacting information between them.

OpenFlow [6] is one of the most representative SDN
Southbound Interfaces, and Figure 3 depicts a toy OpenFlow
network [56]. An OpenFlow switch consists of at least three
parts: a flow table, a secure channel and the OpenFlow Pro-
tocol. The flow table includes some flow entries to determine
the processing methods of specific traffic. The secure channel
conveys OpenFlow messages and it could be implemented
in some secure transporting mechanisms. The OpenFlow
Protocol standardizes the OpenFlow messages on the secure
channel and the behaviors of OpenFlow switches. When an

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

4

Figure 3. OpenFlow controller distributes flow entries into switches’ flow
tables to direct traffic forwarding. For example, packets with destination
addresses to 1.0.0.2 and 1.0.0.3 are both allowed and forwarded at SW1, but
packets from 1.0.0.1 to 1.0.0.3 are denied at SW2 because of some security
policy, so 1.0.0.1 can only communicate with 1.0.0.2 as a result of the flow
entries.

OpenFlow switch receives a packet, the header will be parsed
and matched against flow entries. If matched, the packet will
be locally processed according to the entry actions. If the
match fails, the switch will submit an OpenFlow PacketIn
message, which conveys the headers of the packet (or the
whole packet, optionally), to the controller. And usually, the
controller will install some flow entries by sending OpenFlow
FlowMod messages to the switch, which will account for the
local processing of subsequent packets of the flow [56].

OpenFlow is flexible in datapath forwarding control, but it
lacks the ability to make configurations of switches, such as ID
assignment and tunnel establishment. Thus, OpenFlow Config-
uration Protocol (OF-CONFIG) [57] is designed as a supple-
ment to OpenFlow, which enables remote configurations of
virtual or physical OpenFlow switches. While Open-vSwitch-
Database-Management-Protocol (OVSDB) [58] is specially
designed to configure Open vSwitch (OVS) [59], which is the
most popular virtual OpenFlow switch. Combining OpenFlow
with either OF-CONFIG or OVSDB would be good enough
for the management and control of OpenFlow-based networks.

B. Brief Introduction of Traditional Network Experiment
Methods

Usually, simulators, emulation platforms and network
testbeds are used by researchers to evaluate the performance
of new network designs and algorithms. Simulators (e.g.,
NS2/NS3 [60]) establish the corresponding simulations based
on the network topology and characteristics, with forged traffic
[61]–[66]. Emulation platforms (e.g., Emulab [67]) use virtu-
alized server clusters to simulate distributed network based on
software, and real traffic could be introduced.

In addition to simulators and emulation platforms, network
testbeds could provide researchers with real traffic and real
network devices. There have been many large-scale network
testbeds. APE [68] aims to provide real assessing environment
for ad-hoc routing protocols. Planetlab [69] is an overlay
testbed for broad-coverage services. Motelab [70] is a wireless
sensor network testbed. UltraScienceNet [71] is set up to
develop networking technologies, which serves for the next-

TABLE II
ADVANTAGES AND DISADVANTAGES OF NON-SDN TEST PLATFORMS.

Advantages Disadvantages
Simulators Flexible, Low Cost Forged Traffic
Emulation
Platforms

Flexible, Low Cost , Real Traf-
fic

Low Performance

Traditional
Network
Testbeds

Real Traffic, High Perfor-
mance, Scalable

Inflexible, Insufficient
Automation

generation large-scale scientific applications. StarBED [72] is
a network testbed focusing on running actual program codes
for software and hardware implementations. LISP-LAB [73] is
a network testbed that focuses on LISP (Locator/ID Separation
Protocol) application and open-source LISP implementation.
GENI [20] is a distributed experiment environment for large
scale network experiments. GpENI [74] is a programmable
network testbed which provides researchers with the ability to
programme the whole networking stack.

These network testbeds usually depend on different types
of tunnels to connect experimental networks over the Internet.
Some of the traditional tunneling technologies could still be
useful in SDN-based testbeds. Virtual Local Area Network
(VLAN), known as 802.1q, uses a specified field to virtu-
alize Ethernet. Q-in-Q, known as 802.1ad, is a method of
VLAN stack to provide virtualization in carrier-grade Ethernet.
MultiProtocol Label Switching (MPLS) [75], uses a 2.5 shim
layer to forward traffic faster on Internet routers. Ethernet over
MPLS (EoMPLS) [76], uses a method that accommodates
Ethernet traffic over the MPLS network. Generic routing
encapsulation (GRE) [77], standardizes a generic encapsu-
lation form to route the traffic of a network over another
network. Virtual eXtensible Local Area Network (VxLAN)
[78], uses a User Datagram Protocol (UDP) encapsulation
for the Ethernet traffic. Network virtualization using GRE
(NVGRE) [79], describes the usage of the GRE header for
network virtualization.

Compared with simulators, network testbeds are more con-
vincing for network experiments, because real experiment
traffic is introduced. Compared with emulation platforms,
network testbeds involve hardware network devices and they
could run over the product network, providing high perfor-
mance and scalability. However, traditional network devices
in these testbeds are too closed to control, and usually need
many manual configurations, which reduce the experiment
flexibility and automation. Table II shows the advantages and
disadvantages of these three kinds of network experiment
methods.

IV. OVERVIEW OF SDN TESTBEDS

In this section, we give an overview of SDN testbeds from
three perspectives: advantages of SDN testbeds over traditional
network experiment methods, design issues of large-scale SDN
testbeds, and key technologies of large-scale SDN testbeds.

A. Advantages of SDN Testbeds over Traditional Network
Experiment Methods

As discussed in the last section, network testbeds are
more convincible for network experiments because of its high

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

5

performance and scalability, but they are usually lack of
automation and flexibility. Fortunately, SDN could provide a
promising method to change how the traditional network looks
like and works. Applying SDN methods, especially OpenFlow,
into network testbeds could perfectly solve the inflexible and
insufficient automation problems with the following advan-
tages:

1) Easier Setup: In non-SDN testbeds, testbed administra-
tors need to configure many network devices separately to
setup an experiment environment, which is time-consuming,
tedious and prone to error. However, SDN makes all of these
easier by exposing programming interfaces to administrators,
and SDN-based network testbeds could finish most of the setup
procedures automatically.

2) Optimal Control: Traditional network devices adopt the
way of distributed traffic-forwarding decisions, and devices
lack the knowledge of network global view, which may result
in sub-optimal forwarding logic. SDN decouples the control
logic and forwarding devices, making network operations and
management easier. The SDN controller has the global view
of the network, so SDN applications could install flows in real
time to make better use of network resources.

3) Enhanced Network Virtualization: Network virtualiza-
tion is important for testbeds. Compared with traditional
testbeds that are usually virtualized with many manual tunnel
configurations, SDN hypervisors can automatically ease the
complex and error-prone operations. Running advanced algo-
rithms in SDN hypervisors can also enhance the flexibility of
testbed network virtualization.

Up to date, trials of large-scale SDN testbeds have been
actively advancing in many countries [20]–[24], and encour-
aging improvements have been seen in these SDN testbed
implementations.

B. Design Issues of Large-scale SDN Testbeds

Designing large-scale SDN testbeds involves many theoret-
ical and practical aspects. Several issues need to be carefully
considered when designing large-scale SDN testbeds. In this
subsection, we discuss some design issues as follows.

1) Automation: Running experiments with real hosts and
network devices in a traditional way needs many manual
configurations, which could be very complex and may some-
how result in the slow pace of network innovation in the
past decades. Considering that SDN provides programmability
of network automation, some computer virtualization tech-
nologies [80], [81] could provide interfaces for VM schedul-
ing and provision. SDN testbeds should combine these two
technologies to provide fully automated network innovation
environment.

2) Flexibility: Amenability to change could sometimes be
very important for network research, e.g., when a research fo-
cuses on how a newly proposed loop-free algorithm performs,
it may require to be tested in different scales. SDN testbeds
should provide the flexibility to allow researchers to change
the number of network devices or tune the link bandwidth
between devices in their experiments.

3) Scalability: As is known, SDN has many advantages
over the traditional network with its centralized control. How-
ever, scalability could in turn be a problem, especially when
a large-scale SDN testbed could be a nationwide or even
continent wide occurrence. How to connect geographically
distributed or even heterogeneous network domains, with a
unified management and control, should be carefully consid-
ered.

4) Security: Security is an important issue in all IT in-
frastructures. As for SDN testbeds, it implies to guarantee
security when different network experiments are carried out
over the same infrastructure. This should mainly include the
management security with Authentication, Authorization, and
Accounting (AAA) mechanisms and traffic isolation with
slicing technologies.

Considering all these facts, SDN testbeds could be regarded
as “cloud especially for network researcher”, providing com-
pute and network resources (storage could also be integrated,
if needed) to serve network research tenants that are usually
referred to as “slices”.

C. Key Technologies of Large-scale SDN Testbeds

For a large-scale SDN testbed, three main technologies
should be carefully implemented, including management, net-
working, and slicing. Again, it should be pointed out that real
implementations of SDN testbeds require many technologies,
and this paper is not trying to cover all these technologies.
However, management, networking and slicing are the key
technologies needed to construct and run an SDN testbed, and
efficient implementations of the three technologies would help
to achieve the above basic designing views.

1) Management Technologies: It should be first pointed out
that management technologies in this paper are differentiated
from SDN management technologies (such as OF-CONFIG
and OVSDB) that only care for network, while management
technologies in SDN testbeds look at things from a different
perspective, caring for virtual machines (VMs), network, and
experiment running states. The whole implementation of these
management technologies is usually called “control frame-
work”.

The Web portal interacts with users, and users could submit
their resource applications, which describe the topology of
their experiments. Underlying resources such as VMs and net-
work devices should be scheduled and provided according to
the applications. VM control depends on server virtualization
technologies [80], [81] and network devices’ control depend
on slicing technologies (described latter), and management
technologies just call their APIs to execute the experiment
applications. Once the experiment has been activated, statis-
tics should be collected and analyzed. When the experiment
finishes, the relevant resource should be released.

In other words, the whole life-cycle of experiments should
be supported with management technologies. In addition,
AAA mechanisms for security and federated mechanisms for
inter-testbeds scalability should be supported.

2) Networking Technologies: Data plane networking refers
to how SDN switches connect, both physical and logical.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

6

In a pure single SDN domain, switches could be directly
connected in copper or fiber. Sometimes, the data plane sits
over the traditional network, e.g., inter-domain connections,
and switches could be connected through either label-based
network, such as MPLS [75] or VLAN (802.1q), or tunnel-
based network, such as GRE [77].

Management/control plane networking refers to how man-
agement/control elements connect. The management element
could include software that implements management tech-
nologies, and the control element could include slicing tools
or experiment SDN controllers. Management/control plane
networking mainly cares about access, so L3 connectivity
could just be enough.

3) Slicing Technologies: To isolate experiment traffic, slic-
ing technology, which is an alias of network virtualization in
SDN testbed, must be implemented. SDN-based virtualization
is usually integrated in the general SDN control platform as an
application, such as [82], [83]. This method is widely accepted
in data center virtualization: the application manages all the
network forwarding logic to connect or isolate traffic, and
data center users never need to care about how the network
forwards packets. However, this could be totally different
in an SDN testbed, because users in the SDN testbed may
want to control their experiment network’s forwarding to carry
out some L2-L4 innovation, rather than only run their L7
applications on top of the network, and these users usually
need their own SDN controllers. So, slicing technologies in
the SDN testbed should coordinate different users’ controllers
to isolate users’ data plane traffic, and make users’ controllers
have the illusion that there are no other users’ networks and
controllers.

In order to achieve the above targets, slicing implemen-
tations in SDN testbeds [84]–[88] should exist beyond the
general SDN controller platform. They are usually based on
OpenFlow and sit between physical OpenFlow switches and
users’ OpenFlow controllers, acting as an OpenFlow proxy.
They modify most OpenFlow messages, to isolate data plane
traffic with some fields as user tag, and to “treat” users’
controllers as if they each own the whole testbed network.

Slicing tools in SDN testbeds could be regarded as network
hypervisors, and it is such a wide-ranging technology that we
could not put too many details in this paper. More details
on network hypervisors can be found in [38], which provides
numerous comprehensive and deep insights.

V. DIFFERENT LARGE-SCALE SDN TESTBEDS
IMPLEMENTATIONS

In this part, five typical large-scale SDN testbeds will be
introduced. Each of the five SDN testbeds will be deeply
introduced in terms of four aspects. “Design Objectives and
Development” gives an overview of the testbed, including
why it is constructed and how it evolves, in addition to
stating the service availability/openness. “Key Technologies”
introduces management, networking and slicing technologies.
“Network Deployment” displays the implementation of each
testbed. Finally, “Experiments” introduces some interesting
SDN experiments that have been carried out.

A. GENI OpenFlow

1) Design Objectives and Development: GENI (Global
Environment for Network Innovation) [89] is sponsored by the
U.S. National Science Foundation (NSF) and uses emerging
network technologies such as network virtualization, Open-
Flow and SDN, to enable network innovations and at-scale
experimental activities [90], [91]. GENI uses the spiral evo-
lution development model. In the first two stages, an end-
to-end working prototype was created, and it developed to-
wards continuous experimentation. In the third spiral stage,
GENI introduced the OpenFlow technology, and deployed
OpenFlow switches to the experiment environment of campus
network [92]. Currently GENI is in the sixth spiral stage.
Major objectives of this stage include the following [93]: (1)
Attracting more experimenters with better tools and services;
(2) Growing scale by deploying GENI racks and by GENI-
enabling campuses; and (3) Revising instrumentation and
measurement systems for GENI.

OpenFlow has become a supporting technology in GENI,
which enables GENI to provide users with real environment
to do network experiments at scale, as well as to achieve
GENI’s key concepts of slices and deep programmability. In
GENI, OpenFlow switches are providing deep programmabil-
ity, which gives network administrators the ability to centrally
define policy to manage security on the network [94]. GENI
OpenFlow is still available to the public, and users could
access via the GENI portal [95].

2) Key Technologies: The GENI key technologies mainly
include three parts: control framework, networking technolo-
gies, and slicing technologies. In the following we will intro-
duce the three parts in detail.

a) Management Technologies: In order to build a large
scale and coherent infrastructure, GENI is built using a
federated model, i.e., GENI embraces a range of resources
from different providers. Each resource provider manages
its own resources and provides the ability for experimenters
to use their resources. GENI’s Control Framework (GCF)
contains four parts: GENI Meta-Operations Center (GMOC),
Clearinghouse, Tools, and Aggregates [96].The relationships
among these parts are shown in Figure 4 [20].

• GENI Tools are mainly used for experimenters to manage
and control GENI resources. For example, resource reser-
vation tools are used to draw experimental topologies and
manage slices, measurement tools are used to measure
statistics, and monitoring tools provide insight into the
resource utilization, etc.

• GENI Aggregates provide resources to experimenters.
Different aggregates provide different types of resources,
such as compute resources, networking resources, etc.

• GMOC currently has two functions. The first function is
to notice, report and escalate the GENI infrastructure for
the health maintenance. The second function is to connect
the experiments and the GENI operators [11].

• GENI Clearinghouse federates experimenters, GENI Ag-
gregates and GMOC. The Clearinghouse provides the
required trust, authentication, accountability, and autho-
rization services for GENI [97].

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

7

GMOC

Clearinghouse

Research Tools Aggregate

Figure 4. GENI Control Framework (GCF).

These four parts communicate with each other in an or-
chestrated manner. The Clearinghouse APIs define interfaces
between tools/aggregate managers and the Clearinghouse [98].
The GENI Aggregate Manager APIs specify the interfaces
between tools and aggregate managers, allowing aggregates to
advertise resources and to allocate resources for slices in the
form of slivers (A slice is a collection of resources allocated
for an experiment, and each independent resource is called a
sliver). The GENI AM API is an interface of the SFA (Slice-
Based Federation Architecture), which is used to orchestrate
resources in different testbeds to serve as a slice [99]. SFA
has been implemented by PlanetLab [69], ProtoGENI [93],
ExoGENI [100], InstaGENI [101] and GENI OpenFlow [92].
FlowVisor OpenFlow Aggregate Manager (FOAM) [102] is
an aggregate manager for network resources, which reserves
OpenFlow slivers and implement several support functions for
aggregate administrators.

The lifecycle of a GENI experiment mainly includes three
stages [103]: Design/Setup, Execute, and Finish. The first
stage can be divided into three steps. In the initial step, users
should set up a GENI account and join a GENI Project. In
this step, GENI aggregates virtual machine services that have
local policies. These policies determine which coordinator
they trust and accept to approve users, projects, and slices
and to issue various credentials. In the second step, users
query the Clearinghouse for the list of aggregate managers.
The Clearinghouse performs registration, deletion, and reso-
lution of various principal objects, current slices, users, slice
authorities, aggregate managers, and components. In the last
step, users query the aggregate managers, which export well-
defined, remotely accessible interfaces, for available resources
to create slices and reserve resources. In the second stage,
users could login to nodes through GENI Tools to carry out
their experiments and monitor the experiments’ execution.
In the third stage, users should delete resources and tear
down their experiments. The entire lifecycle is guaranteed
by GMOC, which connects the experiments and the GENI
operators.

b) Networking Technologies: In this part, we mainly
introduce the networking technologies used in GENI Open-
Flow. GENI supports several networking options depending

Figure 5. A simplified GENI network connection. Each campus deploys its
own network and they are interconnected by the GENI backbone network.
These networks can be managed and controlled remotely.

on experiments’ needs, existing networks, and possibilities
for new connections. In Figure 5, we use the inter-campus
connection as an example to show a simplified typical network
connection topology [104].

As shown in Figure 5, GENI OpenFlow testbed is composed
of the Control and Management Plane, and the Data Plane.
The control and management plane mainly configure and
control the experiments executed in the data plane. Users can
access the slices through SSH connections over the Internet or
higher layer tunneling [105]. The control path is usually the
management traffic such as control and monitoring data.

The data plane contains users’ slices and executes ex-
periments. The GENI data plane can include both Layer 3
(L3) and Layer 2 (L2) network technologies. L2 options are
usually used to connect campus, regional and national research
networks. L3 options are usually the higher layer tunneling,
which connect the data plane and control plane, and also used
by experimenters to manage their slices.

L2 networking technologies which are used in GENI testbed
mainly include the following [104]:

• Single VLAN. This is the most straightforward way.
When using this method, all unique network need to
negotiate a common VLAN ID.

• VLAN Translation. VLAN translation is used to solve
the confliction problem when different networks use over-
lapping VLAN schemes. This approach allows different
networks to use different VLAN IDs to participate in
the same experiment. The experiment’s VLAN ID is
translated at the edge of each network.

• L2 Tunneling. GENI testbed often uses Q-in-Q to tunnel
[106] between an agreed upon VLAN ID through an in-
termediate network. Both Internet2 and National Lambda
Rail (NLR) GENI [107] core networks support Q-in-Q
tunneling, as do most regional research networks. MPLS
technology is also used in some networks.

• Fiber Connection. This method could provide higher L2
throughput and more flexibility, so GENI uses direct fiber
to connect campuses and Internet2 or NLR’s OpenFlow
core networks.
c) Slicing Technologies: GENI adopts the concept of

slice-ability from the PlanetLab testbed [69]. Slice-ability
is the ability to support virtualization for simultaneous ex-

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

8

RIB
RIB

RIB

Proprietary
Control Logic

Proprietary
Bus

RIB

Slicing Layer

Shared
Control
Logic 1

RIB

Shared
Control
Logic 2

Shared
Control
Logic N

Switch 1 Switch 2Switch

Figure 6. Traditional network device and SDN-based transparent slicing layer.

periments to share network resources. Traditional network
uses VLAN to implement the basic virtualization strategy.
However, in GENI, in order to provide a more flexible network
virtualization approach, GENI uses the OpenFlow-enabled [6]
network components, which comprise a transparent proxy
between OpenFlow controllers and switches (shown in Figure
6) to allow multiple controllers to manage the same OpenFlow
switches [20].

In the following paragraphs, we introduce three SDN slicing
tools used in GENI: FlowVisor, OVX, and Flowspace Firewall.

• FlowVisor
FlowVisor [7] is a software platform that supports slicing

where multiple experimenters get their own isolated slice of
the infrastructure and control it using their own NOS and a
set of control and management applications. FlowVisor, first
developed at Stanford University, has been widely used in
experimental Research and Education networks.

Figure 7 shows the architecture of FlowVisor’s implemen-
tation. XML-RPC enables FlowVisor to provide Web services
to users. Poll Loop is used to listen to the FlowVisor event
circularly. FVClassifier is used to maintain connection with the
physical OpenFlow switching equipment, handle I/O requests,
and record OpenFlow switch information, such as ports and
performance. Each FVClassifier corresponds to an OpenFlow
switching equipment. OFSwitchAccessor helps FVClassfier
access to physical switches and connects them with FlowVisor,
and then delivers OpenFlow messages from switches to the
correct slices. FVSlicer is used to maintain the connection with
the controllers, manage the OpenFlow sessions and process the
signals issued by the controllers. Flowspace database stores the
matching rules for different slices using OpenFlow 12 tuples
[56]. When a flow from one physical OpenFlow switching
equipment reaches the Flowspace database, the OpenFlow
message will be sent to FVSlicer according the slicing rules
and then to the corresponding controller.

The core principle of FlowVisor is to map upward messages
to corresponding controllers and filter downward messages
to correctly forward the traffic. With FlowVisor, hardware
resources would be shared among slices. These resources
mainly include topology, bandwidth, device CPU, the forward-
ing tables. FlowVisor defines the slices using definition policy
language. With FlowVisor, each slice has the ability to control
a set of flows, called flowspace, and each slice has its own

s2

B
C

B
C

A

s1

A
B
C

FVSlicer

Flowspace

Config

FVClassifier
s1

FVClassifier
s2

OFSwitchAccessor

Poll
Loop

Controller A

XML-RPC

s1

s2

Controller B

Controller C

Figure 7. Architecture of FlowVisor. Each slice has the ability to control a
set of flows, called flowspace and each slice has its own controller to manage
the experiment network. Its main limitation is that flowspaces for different
slices cannot be overlapped.

controller to manage the experiment network [7].
However, FlowVisor has some defects. For example, flows-

paces for different slices cannot overlap, resulting in a frag-
mented address header space for each slice. Moreover, FlowVi-
sor can only provide users with restrictive topology that must
be a part of the physical one.

• OpenVirteX
OpenVirteX (OVX) [85] is developed by ON.Lab, which

could slice a single physical SDN infrastructure into multiple
vSDNs. With OVX, users can specify their experimental net-
work topology and deploy the network OS of their choice, with
the help of network embedder [9], as Figure 8 shows. First,
the embedder receives information of the virtual experimental
network from users, such as topology and addressing scheme.
Then the embedder generates a virtual-to-physical mapping,
and sends it to OVX. Next, OVX records the mapping in-
formation, and instantiates the virtual experimental network
over the physical infrastructure. OVX also allows runtime
reconfigurations when users want to change their experimental
network.

Compared with FlowVisor, OVX recognizes slice hosts ac-
cording to their access point (e.g., DPID + port ID) and assigns
each slice with a unique tenant ID, which is less flexible but
rather practical than the flowspace method. Furthermore, OVX
provides each user with a full addressing space, by rewriting
MAC addresses at the ingress switch to carry users’ identifiers,
and setting back to the original MAC addresses at the egress
switch. If a user’s controller makes another MAC rewrite
action, OVX would record it and accordingly set the new MAC
address at the egress edge. In addition, OVX allows tenants
or users to specify their own arbitrary topology, which is not
restrictive to the actual physical network.

• FlowSpace Firewall
FlowSpace Firewall (FSFW) [86] is developed by Indiana

University as a plugin of Floodlight [108] to provide network
virtualization function. Compared with other slicing tools,
FSFW concerns about the consistency between different users’

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

9

Physical Dataplane

Virtual Dataplane

Northbound
OpenFlow
Interface

NOS Message
Handing

NOS Message
Handing

Southbound
OpenFlow
Interface

NOS IO
Loop

Switch IO
Loop

MAP
Networker
Embedder

Virtual Network
Request

Figure 8. Architecture of OpenVirteX. OVX could provide each user with
overlapping addresses, by rewriting MAC addresses at the ingress switch to
carry users’ identifier, and setting back to the original MAC addresses at the
egress switch.

controllers: if a controller sends a rule that could result in data
plane contradictions, FSFW could just deny the rule and send
an error back to the controller. Because of this special role,
FSFW could just sit between physical OF switches and other
slicing tools.

FSFW has several primary classes: VLANSlicer, proxy,
FlowSpaceFirewall, ControllerConnector, FlowStatCache and
FlowStatCacher. The VLANSlicer class provides the capa-
bilities of VLAN/Port Slicing. The proxy class is the router
between switch and controller. The FlowSpaceFirewall class
is responsible for listening to all events from Floodlight and
sending them to the slices. The ControllerConnector class is
basically a timer that contains a HashMap (dictionary) of
Switch ID to a list of Proxies in order to continually try
and connect to controllers. The FlowStatCache and Flow-
StatCacher classes work together to store the most recent
FlowStats from the devices.

There is limited scope for FSFW: it only supports slicing
on VLAN/interface, which is not flexible enough, and VLAN-
based slicing means that users cannot use VLAN field for
OpenFlow operations because it is specially used to isolate
users’ traffic. However, this in turn allows for simpler and
faster slicing of requests.

3) Network Deployment: In this part, we introduce the
GENI network deployment from two aspects: campus net-
works and national backbone network. By merging multiple
campuses and backbone resources, researchers can run exper-
iments at a larger scale.

a) Campus Networks Deployment: The experimental
OpenFlow network was first deployed in campus and it has
proven to be a very appealing trial. Some of the universities
includes Princeton, Stanford, Clemson, Georgia Tech, etc.
Figure 9 shows the topology of the OpenFlow-based network
at Stanford. Different OpenFlow network has been deployed:
production, experimental and demonstration network [109],
with the VLAN-based slicing implemented by FlowVisor.

b) National Backbone Network Deployment: At a larger
scale, the core of GENI OpenFlow consists of some inter-
connected OpenFlow enabled switches on Internet2 [110] and
NLR [107] network. Figure 10 shows the details of backbone

vv

Closet

Lab

Closet

Basement

1 PL node
3 WiFi APs

1 PL node Bree zeway
(4 user)

25APs
(via tunnel)
2 WiFi Aps
1 PL node
G337:1 user
G342:2 user

G331:1 user
G351:1 user
G344:1 user
G337:1 user
1WiFi AP

G356:3 user
G352:3 user
G350:3 user

NEC-SW1 NEC-SW3

Stanford network
vlan374(wireless)

vlan74(wired)

vlan901(demo)

Out-of-band
Control channel

FlowVisor

SNAC1 SNAC2

Figure 9. The OpenFlow network deployed at Stanford [109].

integration [111]. The connection between the OpenFlow core
network and the NLR network is implemented with HP6600
switches deployed in Sunnyvale, Seattle, Denver, Chicago,
and Atlanta and as well as the NetFPGA switches deployed
in Sunnyvale, Houston, Chicago, and New York [112]. The
connection to the Internet2 network is through OpenFlow
enabled switches which are installed in Los Angeles, New
York, Washington DC, and Atlanta [113].

There are currently three standing backbone interconnected
VLANs (3715, 3716, and 3717) carried on the five switches in
the core network, which are located in the five cities shown on
the maps below. VLAN 3715 and 3716 are topologically a bro-
ken ring (to help prevent accidental loops). The third VLAN
3717 is a ring. The gap in each of the broken-ring VLANs
is between two different links, providing either a longer or
shorter path through the core between two switches. These
three VLANs are not interconnected in the core network, and
should not extend beyond the backbone providers into regions
or campuses.

4) Experiments: The experiments mainly include wireless
and multi layer SDN. Here we describe the two experiments
in detail.

a) Wireless: In recent years, Clemson University has
designed a system to provide GENI with the ability to enable
experimenters to use wireless resources. GENI could use the
system to provide IPv4 mobility across heterogeneous wireless
networks. The system framework could be used to enable
researchers to test network applications and different handover
algorithms, in addition to eliminating the triangle routing
problem.

Figure 11 shows the system’s general architecture, and how
it is integrated within GENI. The root OpenFlow switch acts as
the system’s ingress/egress from/to the out side network, and
other OpenFlow switches are responsible to detect migration
events and route client packets. The Floodlight controller
[108] is designed to manage client IP addresses globally
with the DHCP module, and to handle migration events with
the Mobility module. The client-level component works on

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

10

rtr.seat

sdn-

sw.seat

sdn-

sw.port

sdn-

sw.sunn

sdn-

sw.losa

rtr.losa

of.losa

sdn-

sw.salt

sdn-

sw.phone

sdn-

sw.denv

sdn-sw.epla

sdn-

sw.kans

sdn-

sw.tuls

sdn-

sw.dall

sdn-

sw.houh

rtr.hous

sdn-

sw.bato

sdn-

sw.jcsn sdn-

sw.jack

sdn-

sw.atla

of.atla

rtr.atla

sdn-

sw.colu4

sdn-

sw.chic

sdn-

sw.star

rtr.chic

rtr.clev

sdn-

sw.clev

sdn-

sw.pitt sdn-

sw.ashb

sdn-

sw.wash

rtr.wash

sdn-

sw.rale

sdn-

sw.char

sdn-

sw.alba

sdn-

sw.bost

sdn-

sw.newysdn-

sw.phil
rtr.newy

of.wash

of.newy

of.hous

sdn-

sw.minn

rtr.salt

of.atla,12-ATLA-HOUS-GIGE-6094

VLAN 3715,3717

of.atla,12-HOUS-LOSA-GIGE-6093

VLAN 3715,3716-3717

of.hous,12-ATLA-HOUS-

GIGE-6094 VLAN 3715,3717

of.wash,12-ATLA-WASH-GIGE-

6090 VLAN 3715,3716,3717

of.losa,12-LOSA-NEWY-GIGE-6092

VLAN 3715,3716,3717

of.wash,12-NEWY-WASH-

GIGE-6091 VLAN 3716,3717

of.hous,12-ATLA-HOUS-GIGE-6094

VLAN 3715,3717

of.losa,12-LOSA-NEWY-GIGE-

6092 VLAN 3715, 3716,3717

Internet2 GENI Mesoscale Node

and Backbone Link via Internet2 IP

Internet2 AL2S Node and Backbone Link

Internet2 IP Node and Backbone Link

AL2S,GENI,ION Interconnect

of.hours,12-HOUS-LOSA-GIGE-6093

VLAN 3715,3716,3717

of.newy,12-LOSA-NEWY-GIGE-6092

VLAN 3715,3717

rtr.kans

Figure 10. Backbone integration of GENI OpenFlow [111]. VLANs 3715, 3716, and 3717 are carried on the five switches in the core network, and these
VLANs should not extend beyond the backbone providers into regions or campuses.

mobile endpoint, and it chooses different physical interfaces
in different environment with a handover decision [17]. While
the interface choice is transparent to the applications through a
virtual network interface (VNI), which is installed on the client
as an adaptor of different physical interfaces. The client also
has its own Floodlight controller, which routes packets from
the virtual network interface to the chosen physical interface,
through a client built-in OVS [59].

b) Multi layer: In 2012, Infinera first demonstrated an
SDN Open Transport Switch (OTS) prototype in the Long Is-
land Metropolitan Area Network (LIMAN) testbed [116]. The
demonstration extends OpenFlow with the dynamic optical
transporting ability to enable application-driven optical trans-
port bandwidth services, such as the converged wavelength
technologies. Based on the OTS, Infinera, Brocade, and the
U.S. Department of Energy’s Energy Sciences Network (ES-
net) have successfully demonstrated a multi layer networking
using SDN technologies in October 2013 [116].

Figure 12 shows the architecture of the system. On-demand
Secure Circuits and Reservation System (OSCARS) [117]
is an open source implementation developed by ES-net to
provide circuit network control, and the SDN controller is the
standard Floodlight [108]. The data plane consists of some
Brocade MLXe routers and other OpenFlow enabled switches
in the packet layer, as well as some Infinera DTN-X platforms
in the optical layer. The DTN-X platforms are installed with
the OTS software module, so that OpenFlow control could be
provisioned over both packet and optical layers by OSCARS
combined with Floodlight.

In order to provide bandwidth on demand (BOD) across the

Client

Core
Handover
Network

Edge Network

APP FL

GENI Backbone Network

OVS/VNI

OVS Root

OVS OVS

OVS OVS

Floodlight DHCP/Mobility
Controller

OVS OVS

GENI Campus Network

Figure 11. Wireless integration in GENI OpenFlow. Root OpenFlow switch
plays as the system’s ingress/egress. Other OpenFlow switches are used to
route client packets and detect migration events. Mobility management has
been studied extensively in recent years [2], [114], [115]. The Floodlight
controller manages client IP addresses globally and handles migration events.
The mobile client switches different physical interfaces with some handover
algorithms.

packet and optical layers, OSCARS-TE has been developed as
a multi layer traffic engineering application within Floodlight.
It collects information via the optical version of standard
OpenFlow (OTS) [118], and accordingly OSCARS-TE could
be triggered to re-route some important flows from congested
packet paths to optical light paths dynamically, which could
be very useful in data center WAN interconnection scenario.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

11

Advanced Reservation System(OSCARS)
OTS Config
Manager

Multi-Layer

Traffic Optimization
Engine

SDN Controller

Multi-Layer
Control Plane

LO/L1
Topology

Infinera DTN-X

OpenFlow

Packet Network

Optical Transport
Network

Figure 12. Multi Layer demonstration in GENI OpenFlow. OpenFlow control
could be provisioned over both packet and optical layers by OSCARS
combined with Floodlight. A TE application is developed for BOD to reroute
traffic.

B. OFELIA

1) Design Objectives and Development: OFELIA was
launched by European Seventh Framework Programme (FP7)
in the autumn of 2010, and its main objective is to set up
a multi layer, multi domain and geographically distributed
Future Internet testbed facility [21], which could accommodate
different types of traffic, both for daily use and for new
network experiments [21] based on OpenFlow. In order to
make these goals, the designing of OFELIA conforms to the
following principles [119]:

a) Flexibility and Modularity: Pre-defined functions
should be limited and development of modules should be
extensible.

b) Fidelity use and Easy Use: Production traffic should
be accommodated and OAM should be simplified.

c) Resource isolation and Security: Virtualization should
be implemented to isolate different traffic and AAA is needed.

d) Island autonomy and Federation: Management of
different islands should be administratively separated, and
federation among islands should be supported.

The first duration of OFELIA was scheduled into three
phases. In the first phase, OFELIA succeeded in setting up the
underlying facilities, including some OpenFlow switches and
VM instances. In the second phase, OFELIA implemented the
interconnection among different islands, and extended SDN
experiments in the wireless and optical domain. And then in
the third phase, the OFELIA control framework was evolved,
providing connections to external facilities of the Internet and
other testbeds. OFELIA access is no longer given, and it is
given only in the frame of EU-limited open calls.

2) Key Technologies: In this section, we present the key
technologies used in OFELIA, including the management
technologies, the networking technologies, the slicing tech-

Figure 13. OFELIA Control Framework (OCF).

nologies, and finally the Hardware Abstraction Layer (HAL)
method developed during the project.

a) Management Technologies: To enable operators’ man-
agement of the underlying facilities and users’ access to
their experiments, OFELIA develops the OFELIA Control
Framework (OCF) [12] as the orchestrator. OCF mainly aims
to arbitrate the resources allocation, automate testbed man-
agement, and simplify the lifecycle of experiments. Figure 13
shows the OCF architecture design, which conforms to the
Slice-based Federation Architecture (SFA) for federation with
other testbeds. Three layers are defined in the architecture:
Portal, Clearinghouse and Resource Management. Interfaces
and interactions among these layers are also clearly defined.

• Portal and Clearinghouse
The Portal of OCF is developed to deal with users’ op-

erations of their slices and ease management for adminis-
trators. Clearinghouse is responsible for synchronizing users’
accounts and privileges among islands, and it provides unified
authentication with the Lightweight Directory Access Protocol
(LDAP) server. Clearinghouse design is mainly based on Ex-
pedient [12], an open source centralized control framework. As
a Django-based Web application, Expedient follows a modular
approach, so Clearinghouse’s function could be extended by
developing and driving new plug-ins in AMsoil, a pluggable
light-weight framework for creating and managing testbed
resources [120]. These plugins use the native interfaces, follow
the same APIs and conform to the same AAA frameworks.

• Resource Management
The basic modules of Resource Management are Virtual-

ization Aggregate Manager and OpenFlow Aggregate Man-
ager. Virtualization Aggregate Manager, AM for short, binds
Resource’s Management interfaces to Clearinghouse and re-
sponsible for aggregating virtual machines for slices. Open-
Flow Aggregate Manager, an OpenFlow tool based on Opt-in
Manager [121], is responsible for the management of network
slicing rules and configurations.

Apart from these two basic modules, there are some other
useful plugins. VT Planner [8], a module that implements an
efficient path computing algorithm and maps virtual links to
real switches or links to support arbitrary network slicing,
is integrated in AMsoil. BOWL [122] is a module primarily
based on OpenWRT [123], and with BOWL plugged in, OCF

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

12

could support SDN controlled access for wireless Internet
staff.

The original design method of OCF is derived from the use-
cases and experiences in GENI. The lifecycle of an OFELIA
experiment mainly includes three stages: Configure, Execute,
and Finish. The first stage can be divided into three steps.
In the initial step, users should configure their experiments
through the Web-based user interface, which is supported
by the Portal of OCF. In the second step, users request
Clearinghouse for their privileges. Clearinghouse ensures the
synchronization of user accounts and privileges among islands,
and it provides unified authentication. In the last step, users
query Resource Manager for available resources to create
slices and reserve resources. In this step, Virtualization Ag-
gregate Manager binds the resource management interfaces to
Clearinghouse aggregates virtual machines for slices. Open-
Flow Aggregate Manager manages network slicing rules and
configurations. In the second stage, users could login to the
facility to do their experiments. In the third stage, users should
delete and release resources. The control framework supports
monitoring mechanisms for both the control framework com-
ponents and the slice resources in the entire lifecycle.

b) Networking Technologies: In addition to the network
for experiment, OFELIA also has two out-of-band networks
for control and management. All the OFELIA islands (sub-
testbeds in OFELIA) are currently interconnected to the OFE-
LIA hub in a star topology. The OFELIA Hub is located
in Belgium and acts as the transfer station to relay both
experimental and control traffic between different islands [21].

• Experimental Network
The experimental network spans all the OFELIA islands.

The network connects as a pan-European single L2 seg-
ment, enabled with OpenFlow v1.0 [56], allowing experiments
across different islands or countries. The experimental network
has the central hub connecting all the remaining of the net-
works in iMinds, Belgium. More than 25 OpenFlow-enabled
switches from different vendors are running, as presented in
the left panel of Figure 14. Servers in the experimental network
are in general connected to more than one switch, creating a
more stable environment for experiments. Interestingly, loops
could be intelligently avoided in the experimental network.
When experimenters use switches to make loops by choosing
a loop inducing flowspace via the control framework, OCF will
warn the user that the requested flowspace is making loops,
either locally in the island or across different islands.

Experimental network interconnection is implemented by
1 Gbit/s L2 dedicated circuits via the GEANT backbone
network [124], and L2 tunnels bridged using OVS [59] over
the public Internet as a redundancy. Circuits and tunnels are
deployed in mesh topology for redundancy in both control and
experimental networks [21].

• Control and Management Network
The control network in OFELIA (right in Figure 14) is

an out-of-band network interconnecting different OFELIA
islands. The network is IPv4 OSPF routed with a private
address scheme, assigning each island with a subnet. Each
island has its gateway to perform routing advertisement and

Island 1

Island 2 Island 3

Island N

Island Hub

Deplayed connection

Optional connection (redundant)
Deplayed connection

Island 1

Island 2 Island 3

Island N

Island Hub

Figure 14. A sketch of experimental and control network in OFELIA [21].

process other routing information between the control network
subnets. Moreover, all the islands connect to the OFELIA
hub and some of them make a redundancy for a more stable
control network. These connections are implemented via either
a dedicated GEANT circuit or a L3 VPN tunnel over the
Internet. Each island provides some automation services, such
as LDAP and DNS through the control network. OFELIA also
provides users with remote access to the control network and
the server instances that are connected to the experimental
network via VPN point (OpenVPN) [21].

The management network is used to monitor and administer
projects and slices over the underlying infrastructure. In fact,
the management network is optional, some islands just make
these managements over the control network.

c) Slicing Technologies: FlowVisor could be used to slice
the physical network in OFELIA. However, there are many
limitations in FlowVisor, so some researchers under OFELIA
project propose VeRTIGO to solve some of the limitations.
In addition, slicing method in the optical domain is also in
progress.

• VeRTIGO
As mentioned in another study [21], one of FlowVisor’s

limitations is that it can just establish virtual logical topologies
with restrictions to the real physical topology. To overcome
this shortcoming, a new slicing tool has been developed within
OFELIA named VeRTIGO (ViRtual TopologIes Generaliza-
tion in OpenFlow networks) [87]. Figure 15 presents the
architecture of VeRTIGO, and the interaction among different
components in VeRTIGO during the communication between
OpenFlow controller and switches. The Web UI receives
users’ slice requests, and the VT Planner [125] implements
an efficient path computing algorithm to embed these requests
into the physical resources, which is fundamentally required
by other modules. The Storage is a database to record VT
configurations and flow statistics. After the slice is scheduled,
OpenFlow channels would be virtualized by the following
four modules: The Classifier classifies Switch-to-Controller
OpenFlow messages according to traffic’s header fields. The
Node Virtualizer instantiates an abstract switch node for user
if needed, providing VeRTIGO with the ability to virtualize
several physical switches into a single logical switch. The Port
Mapper replaces the port number in OpenFlow messages with
the corresponding number as the virtual topology configura-
tion schedules. And the Internal Controller is responsible for
distributing flow entries over virtual links.

VeRTIGO has been integrated into OCF, and experimenters
are able to setup topologies with any pattern to run their

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

13

Figure 15. Architecture of VeRTIGO.

desired experiment. They can either create virtual nodes or
links on available network elements manually, or sketch their
desiring topology through the OCF Portal, and then they may
just leave VeRTIGO to select the best way to accommodate
their experimental network over the available resources.

• Optical FlowVisor
With OpenFlow circuit extensions already in place [88],

research on slicing optical OpenFlow-enabled devices has been
carried out. OFELIA follows these researches by extending
FlowVisor. The Optical FlowVisor has visibility in both packet
and optical domains, and some other optical fields are specified
so that the experimenters could slice in the circuit domain
based on either ports or wavelengths [126].

d) Hardware Layer Abstraction: As SDN becomes com-
monly widely accepted, new networking devices are separating
their control and forwarding elements. Enabling OpenFlow on
non-OpenFlow devices motivates the assumptions for Hard-
ware Abstraction Layer (HAL) [19]. HAL is generated from
the Alien project, which is a slice running on OFELIA infras-
tructure mainly aiming to integrate non-OpenFlow hardware
platforms into the OFELIA OpenFlow-based infrastructure
and to control and manage heterogeneous networking devices
uniformly. HAL works to hide different technologies and
vendor specific features from OpenFlow controllers, and its
framework is shown in Figure 16. There are two separated
layers in HAL: the Hardware Interface Layer (HIL) and the
Hardware Presentation Layer (HPL).

• HIL
Components in HIL work together as common device

control and management protocols, such as OpenFlow or other
southbound SDN protocols (e.g., SNMP), and they are hidden
from the hardware platform complexity. HIL components sit
between the controllers and forwarding elements as proxy,
consisting of the following two sub-components: the Virtual-
ization is responsible for providing virtualization capabilities
to the HAL compatible devices; The OpenFlow Endpoint ends
the path of OpenFlow, maintaining the connection with upper
controller and sending messages with OpenFlow-like tables
downward to HPL.

Figure 16. Architecture of HAL.

• HPL
HPL components are dissimilar in different kinds of de-

vices. Generally, the northbound API of HPL receives ex-
tended OpenFlow-like forwarding tables from HIL to control
forwarding. The Device Information Model represents the
state of OpenFlow switches which is independent of the
underlying platform hardware. The Device Driver performs
data processing with help of real hardware. It is platform
dependent, translating all the OpenFlow tables into platform
specific languages, and orchestrating to simulate behaviors of
an OpenFlow switch.

3) Network Deployment: OFELIA started from September,
2010. Initially, it was set up with five academic testbeds each
at iMinds, University. of Bristol, ETHZ, i2CAT and TUB.
And now OFELIA consists of 10 islands. Figure 17 shows the
specialties and capacities of these islands, and Table III shows
some of the equipment deployed in several islands. The first
duration lasted for 3 years. After that, OFELIA became a real
experimental networking substrate, which is programmable,
scalable and protocol agnostic, allowing quick deployment
for new networking methods [127]. OFELIA is now open
and operational as a best-effort service provider [21]. Based
on OpenFlow, OFELIA allows for experimentations on multi
layer and multi domain networks, providing an environment
to create innovations for the future Internet.

4) Experiments: Many remarkable experiments have been
carried out over OFELIA. In this section, we introduce an opti-
cal integration method and an Information-Centric Networking
(ICN) supporting method in SDN network.

a) Optical Integration: Optical devices are important
with their high bandwidth in transport network, and there have
been several OpenFlow trials on optical integration. Compared
with packet domain OpenFlow switches, the cross-connection
table in optical switches cannot support flows lookup, because
there is no buffering space in these switches and the optical
ports have no visibility into the packets. Figure 18 shows one
of the proposed OpenFlow-GMPLS collaborated architecture
[18], in which OpenFlow controller is well integrated with

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

14

Figure 17. Specialties and capabilities of each islands in OFELIA [128].

TABLE III
EQUIPMENT DEPLOYMENT IN OFELIA [127].

island OF-capable Ethernet
Switches

Servers NetFPGA cards, opti-
cal, wireless

i2cat 5×NEC
IP8800/S3640-
24T2XW,3×HP
E3500-48G-PoE+yI

5×SuperMicro
SYS-6010T-T

IBBT 1NEC IP8800/S364
0-48T2XVV-
LWw/XFP

Virtual Wall(100
server Emulab in-
stance)

WiLab facility,10
NetFPGA cards

UBristol 4×NEC, 3×Extreme
Networks,3×AVDA
FSP 3000 ROADMs,
Calient optical switch

5×Dell
PowerEdge
servers

Ultra HD video
streaming, 10TB
storage, 2×Virtex-4
FPGA boards

ETHZ 3×OpenFlow
switches NEC
IP8800/S360-
24T2XW with
two optical 10G Base
interface

3 servers w/36
GByte RAM

TUB 5×NEC
IP8800/S3640-
48TWLW

3 servers 2×NetFPGA, BOWL
testbed

Create-Net 3×NEC, 2×HP
ProCurve 3500

5 servers 4×NetFPGA cards

the traditional optical forwarding intelligence. The GMPLS
control plane is responsible for setting up lightpaths between
optical switches, and the interconnections between optical
domains and the packet domain would be set up by the edge
OpenFlow switch, which is extended with tunable WDM inter-
faces. Initially, the first packet enters the ingress edge switch in
the packet domain when the switch has no knowledge of how
to deal with the packet. Then the switch submits the packet
to the optical-extended controller. The controller identifies the
egress edge switch of the lightpath according to the destination
field, and accordingly requests the GMPLS control plane, via
the OpenFlow GateWay (OFGW) module, to set up a lightpath.
Once the lightpath was set up, the controller will immediately
update the flow table of the two edge switches to cooperate
packet and optical domains for end-to-end communication.

In addition to this method, there is another pure OpenFlow
solution. A new OpenFlow message CFLOW-MOD [88] is
specially proposed for the controller to update optical flow
tables, rather than combining with the control and management
of GMPLS. The flow setup also depends on an extended

GMPLS Controller

Extended OpenFlow Controller

Edge
Switch

Edge
Switch

Core
Switch

①

③

④

②

④

Figure 18. OpenFlow-GMPLS integration in OFELIA. GMPLS is responsible
for path calculation and set up in the optical domain. The extended OpenFlow
Controller could control forwarding in the packet domain, and it interacts with
GMPLS with a gateway module to set up an end-to-end path.

OpenFlow agent on each optical-capable nodes in the net-
work, and the abstraction for these nodes is implemented
using the Simple Network Management Protocol (SNMP).
The agent translates the CFLOW-MOD messages from the
extended-controller, and accordingly sets up or destroys cross-
connections via SNMP [21]. Both the methods encourage deep
work on Software Defined Optical Network (SDON).

b) ICN Support: The basic idea of ICN [129] is to
re-design the network to support content based networking
primitives, to identify the content with proper name and to
route accordingly between ICN nodes [130]. In OFELIA,
there are two ICN supporting methods: the “short term” one
uses existing OpenFlow standard to realize functionality in
a compromise way. And correspondingly, the “long term”
solution depends on special ICN capable switches with an
extended OpenFlow interface.

The “short term” solution [131] supports ICN over standard
OpenFlow v1.0, so that the equipment deployed in OFELIA
could be reserved and content-based routing could be imple-
mented. The content tags, which are referred hereafter as ICN-
ID, are calculated uniquely for each content traffic, and these
ICN-IDs would be stored in the UDP source and destination
fields considering the 12-tuples. In general, the border nodes
are responsible for pushing and popping such tags, and the
core ICN nodes route the content traffic accordingly. This
experiment has been deployed and run in the Barcelona island,
and it is concisely shown in the left part of Figure 19.

For the “long term” solution [132], the ICN routing intelli-
gence is decoupled from the forwarding and caching functions.
The proposal architecture of this solution is depicted in the
right of Figure 19. The data plane consists of ICN forwarding
nodes, servers and hosts, and the Name Routing System (NRS)
nodes play together as the control plane. A set of extensive
OpenFlow controllers are implemented for the NRS intelli-
gence, and interact with the data plane using an extensive
OpenFlow interface. The extension of OpenFlow for “long
term” ICN solutions can be implemented in two methods. The
first method is to have an IPv4 Option field specified for ICN
functions, if it is supported in OpenFlow. The second method

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

15

Video
Server

JSON

Cache
Server

OpenFlow OpenFlow

OpenFlow

Name Routing System

Extended OpenFlow Protocol

Video
Server

Figure 19. OpenFlow-based ICN solutions in OFELIA. The left part shows the
“short term” method that uses standard OpenFlow fields, such as UDP port,
to carry content information. The right part shows the “long term” method
that builds a stronger ICN control plane with ICN-extended OpenFlow.

wishes to extend the OpenFlow interfaces with special ICN
fields to support more content-related conceptions, such as key
management and caching.

C. RISE

1) Design Objectives and Development: Since 2009, Na-
tional Institute of Information and Communications Technol-
ogy (NICT) has been developing the Research Infrastructure
for large-Scale network Experiments (RISE) [22] on top of
JGN-X [133]. RISE is OpenFlow-based SDN testbed, and
its objective is to provide a multi-tenancy and large-scale
environment for network researchers to test SDN experiments.
RISE is still open to the public, and authorized users could
draw his/her requirements for experiments [134] to get the
RISE resources. Up to now, RISE has gone through three
versions [135].

a) RISE 1.0: The first version started from 2009. Three
significant features are as follows. 1) Single user occupied
the whole OpenFlow network. 2) Q-in-Q [136] was used to
deliver user packets between OpenFlow switches. 3) Didn’t
not provide virtual machines.

b) RISE 2.0: This version was provided to the public
from November 2011. Three major improvements were made
in comparison with RISE 1.0. 1) Multiple users were allowed
to share the physical infrastructure. 2) Pseudo wire technology
was used between sites interconnection instead of Q-in-Q. 3)
VMs could be provided to users.

c) RISE 3.0: In RISE 2.0, there were the following
two problems: 1) Poor capacity in terms of the number
of concurrent users and 2) Inflexible topology of underlay
networks. To solve those issues, NICT designed layered Open-
Flow networks in RISE in 2014, including User Slice Layer,
Topology Virtualization Layer and Physical Path Layer, as
shown in Figure 20, which is referred as RISE 3.0.

2) Key Technologies: Specialized wide-area communica-
tion lines between the OpenFlow Switches (OFSs) require vast
expense, so RISE is constructed as an overlay network on top
of JGN-X. In Figure 20, the Physical Path Layer is composed
of JGN-X existing switches distributed nationwide, and the
networking technology in RISE just involves about how to
share the dedicated lines among other JGN-X services [135].
The Topology Virtualization Layer focuses on how to slice
RISE’s network to serve different users. RISE Orchestrator

RISE
User Slice
Layer

RISE
Topolopy
Virtualization
Layer

Physical
Path
Layer
(JGN-X)

RISE Orchestrator

Logical Paths

Physical Paths

Figure 20. Architecture of RISE 3.0 [137].

is responsible for managing RISE’s underlying resources and
experiments.

a) Management Technologies: RISE wishes to provide
customizable SDN experiment at user’s request, and automate
operation is required to build these experiments. RISE Or-
chestrator [138] is developed in RISE 3.0, and it helps RISE
administrators to manage the network and users’ experiments.

In RISE, the Frontend communicates with users through
Web browser, using RESTful API to receive experiment con-
figurations and show the running status of experiments. The
Project Manager manages all the underlying resources and
upper experiments, and it directs the relevant manager modules
to offer virtual servers and virtual switches. RISE Orchestrator
knows all the topology information of the physical network
by sending and receiving probes as well as the users’ pre-
configured experiment network, and this information is needed
to manage flow entries in the physical OpenFlow switches.
RISE Orchestrator is friendly for users to customize their
experiments and the configuration time of a slice is much
reduced to less than 10 minutes [137].

The lifecycle of a RISE experiment mainly includes three
stages: Setup, Execute and Finish. In the first stage, users
setup their experiments through the Frontend. Next, the Project
Manager directs the VM Manager and OFS Manager to
offer VMs and experimental network to users. In the second
stage, users could login to nodes through the Frontend to do
their experiments. In the third stage, users delete and release
resources after their experiments finish.

b) Networking Technologies: JGN-X is a VLAN-based
network testbed, and RISE initially utilized Q-in-Q to run
overlay of JGN-X. However, there were some problems while
using Q-in-Q. It has been believed that EoMPLS technologies
[139] are the most suitable for the accommodation of Open-
Flow Networks in JGN-X since RISE 2.0.

• Q-in-Q
In Q-in-Q tunneling [106], the inner tag is called the

Customer VLAN (C-VLAN) which is used locally and trans-
parent to service provider network, the outer tag is called the

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

16

Selective VLAN (S-VLAN) which uniquely identifies each
customer on the service provider network. RISE 1.0 used Q-
in-Q tunnels, when a packet with a C-VLAN enters the JGN-X
network, an S-VLAN will be added at the ingress device to
traverse the JGN-X network, and removed at the egress device.

When Q-in-Q is utilized, RISE user’s MAC addresses have
to be exposed to the JGN-X switches for forwarding. Thus,
these switches may suffer a shortage of MAC address table
entries when the user’s network connects a huge number of
devices. And Q-in-Q multicast traffic from users is also illegal
for the JGN-X Ethernet switches [135].

• EoMPLS
MPLS [140] is a high-performance telecommunication net-

working mechanism, which could encapsulate packets of var-
ious network protocols. To configure Ethernet tunnels with
MPLS, EoMPLS [139] could be utilized, which maintains the
mappings between Ethernet VLAN tag and MPLS label for
tunneling on the boundary of the service provider network.

Since RISE 2.0, Pseudo Wire (PW) technology that employs
EoMPLS has been utilized to replace Q-in-Q, and JGN-X
switches will not be involved with the shortage of MAC
address table entries because the forwarding will totally de-
pend on MPLS labels rather than MAC addresses. Besides,
an MPLS label is much longer than VLAN tag, which can be
more scalable in RISE’s networking.

c) Slicing Technologies: In RISE 1.0, once a user re-
quests to experiment on RISE, he or she will occupy the
whole OpenFlow resources until the experiment is completed.
In other words, RISE 1.0 is time-based “sliced”, and it does
not conform to the initial design objective of multi-tenancy.
In RISE 2.0, Virtual Switch Instance (VSI) is implemented to
offer at the most 16 different slices at the same time. User
VMs are required to send packets with specified VLAN tags
to isolate from other slice traffic, so the VLAN field must be
hidden from user’s OpenFlow controller. Although RISE 2.0
could somehow slice the network, it is far from real multi-
tenancy – 16 slices are not scalable and this slicing method is
not very flexible because the topology of each slice is tightly
bound to that of JGN-X [137].

In RISE 3.0, the Topology Virtualization Layer is inserted
between the RISE network and JGN-X network for more
flexible slicing methods. It implements the “logical path”
[135] to stitch physical paths in JGN-X network by MAC
address rewriting, as shown in Figure 21, decoupling the user
OpenFlow network topology from the JGN-X topology. Based
on this method, slicing scalability is improved two to three
times up to ¿50 slices. However, there are still some demerits
using MAC address rewriting. For example, address rewriting
will bring some inconvenience for trouble shooting, and more
overhead will be introduced with packets rewriting.

3) Network Deployment: Up to now, RISE has been de-
ployed at 10 sites with partially connected mesh topology in
Japan, and three sites overseas (Los Angeles, Bangkok and
Singapore), and they are the so-called EVNs, as shown in
Figure 22 [137]. Upon the EVNs are the OFNs and OFSs.
All of the OFNs are logical (virtual) networks, which are
built over the EVNs. The site in Tokyo has connections with
the sites in Los Angeles, Bangkok and Singapore. Users can

User OFS Ua

RISE OFS Ra

JGN-X Switch JGN-X Switch

User OFS Uc

RISE OFS Rc

JGN-X Switch

Path CorePath Ingress Path Egress

VM
VM

VLAN:U
SRC:s

DST:d

VLAN:Lab
SRC:s

DST:d

VLAN:U
SRC:s

DST:d

VLAN:Lbc
SRC:s

DST:d

RISE OFS RbRewrite MAC
address, and
replace VLAN
ID with Lab.

Routing with
VLAN Lab.

Ingress,
routing with
VLAN Lab.

Not the egress, rewrite
VLAN ID to next
neighbor link ID Lbc.

Routing with
VLAN Lbc.

Restore MAC
address to original
one. And replace
VLAN ID to U

Egress,
routing with
VLAN Lbc.

Figure 21. Logical Path implemented in RISE 3.0 [141]. Rewritten MAC ad-
dresses to contain information of the logical path, OFs forwarding depends on
new MAC address. Rewritten VLAN tags contain physical path information,
JGN-X switches depend on new VLAN to route packets.

Naha

Fukuoka
Okayama Kanazawa

Osaka

Nagoya

Tokyo(NTT)

Sendi

Sapporo

Los Angeles

Singapore

Bangkok
Tokyo(KDDI)

Figure 22. Network deployment of RISE [137].

still ask for various slice topologies by utilizing the Topology
Virtualization Layer to slice the RISE network, although the
physical deployment is not a full mesh topology.

4) Experiments: A variety of experiments have been im-
plemented on RISE. Here, we introduce the video streaming
experiments of the Sapporo Snow Festival [142]–[144] and the
optical scenarios [145].

a) Video Streaming Experiments in Sapporo Snow Fes-
tival: The following introduces video streaming experiments
during Sapporo Snow Festival of several years.

• Experiment in 2010 Sapporo Snow Festival
In the 2010 Sapporo Snow Festival, a high-quality and

timely video streaming application was demonstrated over
RISE 2.0, which was designed to confirm the performance
and reliability of OpenFlow in large-scale network. In this
experiment, NICT utilized a NEC-based OpenFlow controller,
which could demonstrate the logical topology as well as
network flows.

Results of the experiment indicated that the video trans-
mission satisfied unicast streaming. However, in multicast
streaming, packet loss was measured. Thus, other experiments
explored the reasons of loss. Moreover, video streaming and
transmission visualized in OpenFlow network showed more
details such as real-time dynamic motion.

Operator configuration of both normal L2 switches and
OpenFlow functions increased the operation cost of an
OpenFlow-based network. The mismatch between traditional
L2 switches and OpenFlow switches led to problems on the
network. Thus, NICT considered that OpenFlow could not
decrease the manipulation expenses when established on an
R&D network.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

17

• Experiment in 2013 Sapporo Snow Festival

NICT implemented a broadcast experiment to transmit the
festival video stream on several SDN networks in 2013. The
experiment transmitted HD video streaming among various
nodes both in Japan and foreign countries, evaluating different
operational functions in large-scale network. In this time,
the quality of video was improved to 4K HD resolution. In
consideration of developed operation in the future, measure-
ment and analysis of network status was also included in
the experiment. Cooperating with Philippine and Singapore,
NICT experimented VOD and 4K live streaming. Video stream
transmitting experiments on partial-region WiFi and broadcast
for smart phones with different operating systems were also
conducted. Besides, transferring video streaming in an ultra-
speed of 100Gbps was tested among festival scenes and JGN-
X.

In this experiment, NICT successfully transmitted the broad-
cast video with high resolution, which satisfied the increasing
requirement of tenants and networks. The experiment results
made for basic network service techniques to flexibly choose
proper network.

• Experiment in 2014 Sapporo Snow Festival

In 2014 Sapporo Snow Festival, a breakthrough was made to
successfully transmit 8K video streaming without compression
as well as 4K multicast video streaming. This is the worlds
first successful experiment of transmitting such high-resolution
streaming in long range. The 8K uncompressed video stream-
ing was transmitted with 4K multicast video streaming in a
parallel and hybrid way, which indicated that the techniques
satisfied requirement of service interim to next generation.

NICT also plans to promote JGN-X to accommodate Big
Data experiments, which was thought extremely hard before.
Besides, JGN-X is hoped to contribute to the evaluation of
SDN techniques and capability to operate technologies of 100
Gbps bandwidth. It is a persistent goal for NICT to keep
working for the New Generation Network, satisfying various
approaching requirements.

b) Optical Scenario: An optical and circuit integrated
(OPCI) network has been designed and developed over RISE,
to implement a high speed network infrastructure which could
be used in the Metropolitan or Wide Area Network [146],
[147]. A mechanism was implemented for OPCI multi-ring
[148] network to cooperate with OpenFlow Networks (OFNs).
In OPCI network, two kinds of switching are supported in one
fiber network, including optical packet switching (OPS) and
optical circuit switching (OCS). Therefore, lightpaths can be
used to transfer flows in demand of high QoS, while large
capacity OPS links can be used to transfer other flows.

Figure 23 shows the experiment setup. Two OFNs are
assumed to access the multi-ring OPCI network. Each of
the OFN is composed of an OpenFlow Switch (OFS) and
a host. OFS 1 and 2 utilize RISE equipment. Meanwhile,
host 2 utilizes JGN-X equipment. Each host accesses the OFS
with two path interfaces and a packet interface. The dashed
lines in Figure 23 mean schematic connections, which may
include complicated topological connectivity. The OpenFlow
Controller (OFC) directly controls the OFNs, and indirectly

Path1

Path2

Packet

Path1

Path2

Packet

OFC

EH 1 EH 2
(JGN-X)

OFS 1
(RISE)

OFS 2
(RISE)

Layer-2
Switch

Layer-2
Switch

OpenFlow

OFN
OFN

OPCI Network
Controllers

Multi-ring OPCI
Network

OpenFlow

Figure 23. Experiment on the optical scenario in RISE. OpenFlow Controller
(OFC) cooperates with Optical Packet and Circuit Integrated (OPCI) to
provide an end-to-end path with high-bandwidth.

controls the OPCI network via the OPCI Network Controller
[149].

The results indicate that the experiment succeeds to send
and receive ICMP packets by two different optical switching
methods (OCS and OPS) in different environment (OPCI
multi-ring network and RISE). Thus, cooperation between
OPCI network and OpenFlow network has been realized
successfully.

D. OF@TEIN

1) Design Objectives and Development: OF@TEIN [25],
one of the e-TEIN projects sponsored by Korean Government
via NIA (National Information Society Agency), was launched
in July 2012. It aims to gradually establish and manipulate an
OpenFlow-enabled SDN testbed over TEIN4 (Trans-Eurasia
Information Network 4). OF@TEIN is implemented by a
union of Korean universities and international collaboration
sites, led by GIST (Gwangju Institute of Science & Technol-
ogy), Korea.

OF@TEIN’s design focuses on three tasks: Designing
SmartX Racks and making validations, sites deployment and
interconnection, Developing some useful SDN tools. So far,
OF@TEIN has achieved these goals. However, OF@TEIN
is not open for the public, actually it can be accessed from
National Research and Education Network (NREN).

2) Key Technologies:
a) Management Technologies: Based on OFELIA Con-

trol Framework (OCF), OF@TEIN developed OF@TEIN Por-
tal. It offers Experiment UI to create slice and monitors exper-
iments’ status. With the Portal Interfaces, SmartX Rack and
network resources could be aggregated to serve experiments,
flowspace resources could be remembered to slice the network.
Specially, OF@TEIN builds the SmartX Automation Center to
manage the infrastructure.

The lifecycle of an OF@TEIN experiment mainly includes
three stages: Setup, Execute, and Finish. In the first stage,
users setup their experiments through the Portal, which offers
Experiment UI to create slice and monitors the experiments’
status. With the Portal Interfaces, SmartX Rack and network
resources could be aggregated to serve experiments, and
flowspace resources could be remembered to slice the network.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

18

OpenFlow Switch Islands Edge Capsulator

Cloud Server Tunnel

OpenFlow Channel OVSDB Channel

Cloud Management Channel

FlowVisor

Admin
Controller

User
Controller 1

User
Controller 2

Figure 24. Architecture of OF@TEIN.

In the second stage, users could login to the facility to do their
experiments. In the third stage, users finish their experiments
and then release resources.

b) Networking Technologies: The networking infrastruc-
ture of OF@TEIN is shown in Figure 24. Sites intercon-
nections are implemented by the NVGRE tunneling of the
OpenFlow-aware encapsulators [150].

To facilitate the international collaboration with TEIN
NRENs (National Research and Education Networks), several
types of SmartX Racks [23] have been designed and deployed
in every site of OF@TEIN. These racks contain either Open
vSwitch (Type A Racks) or OpenFlow data plane (Type B
Racks) to connect VM servers. And WAN across data plane-
interconnections among these sites is implemented by the
Capsulator Nodes in SmartX Racks. Considering that multiple
interconnections will be required for each site, NVGRE [151]
is chosen to be the tunnel among OF@TEIN sites, which is
supported in either Open vSwitch or Narinet in SmartX Racks
[23].

The control and management network in OF@TEIN is
designed out-of-band as overlay network. In addition to
OpenFlow channel, OF@TEIN administrators could manage
the tunnels remotely by OVSDB Management Protocol [58]
channel, which makes the networking among different sites
more automatic.

c) Slicing Technologies: As Figure 24 shows, OF@TEIN
uses FlowVisor to share the infrastructure among multiple
users with VLAN-Based slicing scheme. The flowspace for
each slice just contains DPIDs and Port-ID ranges, and all
packets in a slice are pushed through the same VLAN ID at
the ingress switch, and finally popped at the egress switch.
The intermediate switches submit the VLAN tagged packets
to FlowVisor, which recognizes the VLAN field and relay the
packets to correct controllers accordingly.

3) Network Deployment: OF@TEIN connects 12 sites dis-
tributed in 7 countries (Korea, Indonesia, Malaysia, Thailand,
Vietnam, Philippines, and Pakistan) with TEIN4 international
network connection. In Figure 25 [152], the red dots represent
cities where SmartX is installed while the blue dots represent
NRENs. The solid lines and the dashed lines represent primary
paths and secondary paths respectively.

Inherent
AS18007

Vinaren
AS24175

PREGINET
AS9821

Mryen
AS24514

THAIREN
AS24475

Jeju-U@Jeju

GIST@Gwarngju

Postec@Poh
ang

KU@Seoul
NIA@Seoul

KOREN

Philippines

ASTI@Manila
Vietnam

HUT@Hanoi

Indonesia

ITB@Bandung

MYREN@MY PERN@PK

Malaysia

UM@Kuala Lump

Thailand

CU@Bangkok

10G

10G

10G

KOREA

TEIN-HK
AS24489

TEIN-SG
AS24490

TEIN-JP
AS24287

APAN-JP
AS24287

Figure 25. Network deployment of OF@TEIN [25].

2
sec
>

Admin Admin SDN
controller

OF-aware
capsulators

Admin Admin SDN
controller

OF-aware
capsulators

OVSDB
OpenFlow

8.2
sec
<

90

80

70

60

50

40

30

20

10

0

1 2 3 4 5 6 7 8

T
im

e
(s

e
c)

Number of Site

2
4

14

8 9

18

28

16

38

23

31

47

60

68

54

Configure
one-by-one

Reconnect static
OVSDB

83

Figure 26. OVSDB configuration experiment in OF@TEIN. The left part
shows how the experiment system works, and the right part shows a quicker
inter-connection (lower line) comparing with step-by-step configuration (upper
line).

4) Experiments: Experiment has been operated over
OF@TEIN to verify the operational efficiency of the configu-
ration automation tools. Lifecycle experiment is also interest-
ing to learn. The details are as follows.

a) OVSDB Configuration Experiment: As [153] intro-
duces, a configuration tool for NVGRE tunneling was designed
and implemented to automate the OF@TEIN multi-point L2
connections among OpenFlow islands. The configuration uti-
lizes OVSDB [58], which is specially designed to manage
OpenVSwitch (OVS), to automate the tunnel establishment.
In the left of Figure 26, the time diagram of OVSDB
configurations are shown, which indicates a huge reduce of
configuration procedures. Besides, the state of configurations
can be quickly recovered just by reconnecting to the OVSDB
server. In the right of Figure 26, consuming time is compared
between step-by-step configuration and OVSDB automation.
The result shows that quicker interconnection of the multi-
point international OpenFlow islands can be achieved by lever-
aging the proposed configuration automation tool, comparing
with step-by-step configuration.

b) Automated Bandwidth Measurement Experiment: This
experiment exemplifies efforts in prototyping lifecycle man-
agement by measuring the real-time inter-site bandwidth. A
single script controls the whole experiment, which begins with
the validity examination of flowspaces and ends with Iperf
bandwidth tests across each VM pairs.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

19

There are two approaches that are valid to verify the
allocation of resources and the execution of experiments. One
approach is the SDN experimenter UI in the simultaneous
utilization experiment, which displays the resource allocation,
traffic status and experiment results. Another approach is the
script which contains the text details of the experiments and
resources. With many convenient tools similar to what this
experiment demonstrates, administrators of OF@TEIN could
easily manage both the physical infrastructure and the users’
experiments.

E. OpenLab

1) Design Objectives and Development: OpenLab [24] is
an FP7 network research project, aiming to bring together
some existing testbeds to be an open, scalable, and sustainable
network infrastructure, as well as providing advances to the
early network prototypes or systems for the future Internet
research. OpenLab was launched from September 2011, and
the project has deployed the hardware and software in its
branch testbeds with a diverse set of new applications and
network protocols. SDN methods such as OpenFlow have been
introduced into the testbed, and now it is SDN-capable in both
wireless and optical domains. OpenLab is still available to the
public through the OneLab Portal [154], although some nodes
are down now.

2) Key Technologies:
a) Management Technologies: There are a number of

available testbeds in OpenLab, and most of them use their own
control framework. In OpenLab, SFA acts as the orchestrator
for resource federation, and meanwhile lots of efforts have
been done to develop other frameworks for federation, such as
Teagle and OMF. For example, Teagle [155] was redesigned
to be the FITeagle framework [156] with focus on the in-
teroperability between SFA AM v3 and ProtoGENI Registry
v1.0. FITeagle decouples its core modules, making the core
functionalities to be protocol agnostic and unify the portal and
interfaces for testbed owners’ federation.

The lifecycle of a OpenLab experiment includes three
stages: Setup, Execute, and Finish. In the first stage, users
setup their experiments through the Experiment UI. The Ag-
gregate Managers provides available resources to create slices
and reserve resources. In the second stage, users login to the
nodes to do their experiments. In the third stage, users finish
their experiments and release resources.

b) Networking and Slicing Technologies: The NITOS
and PLE (PlanetLab Europe) testbeds in OpenLab project are
primarily extended with OpenFlow. We introduce how these
two testbeds are networked and sliced.

• NITOS
NITOS [157] is located in the University of Thessaly, it

mainly supports wireless domain researches. The experimental
network of NITOS, which is extended to be an OpenFlow
testbed, works as the converging network for the wireless
access nodes. The control network of NITOS controls the
accurate execution of SDN experiments, and also takes charge
of monitoring the underlying devices. The management net-
work of NITOS is responsible for controlling the status of

NITOS
server

Internet

Chassis Manager Network

Experimental Network

Control Network
Chassis Manager

Cards

OF Switch

OF Switch

OF Switch

Figure 27. OpenFlow Network in NITOS [157].

sliver-ovs

tap tap
Internet

vNIC vNIC

sliver-ovs

vNIC vNIC

10.0.0.1 10.0.0.2

UDP Tunnel

Figure 28. Tunnel implemented by sliver-ovs.

the accessing nodes through HTTP requests to the Chassis
Manager Card, which is integrated in each node.

NITOS provides remote access to its OpenFlow switches,
and users can easily create their experiments, which are gener-
ally sliced via FlowVisor. The whole user flow is orchestrated
by the NITOS scheduler, which configures the FlowVisor at
the beginning of a new reservation slot.

• PlanetLab Europe
PlanetLab Europe (PLE) [158] is part of the PlanetLab

testbed [69], and its OpenFlow capabilities are supported by
sliver-ovs [159], a modified Open vSwtich. Sliver-ovs can
instantiate one or more virtual OpenFlow switches, which
is referred to as slivers, on each node. Slivers in the same
PLE slice communicate with each other through the “virtual
cables” implemented by UDP tunnels over the Internet. Figure
28 shows the tunnel for the 10.0.0.0/24 slice, users are able
to create their overlay OpenFlow experimental network using
these tunnels. Initially, slivers have no access to the 10.0.0.0/24
slice. If an application running on 10.0.0.1 tries to send traffic
to 10.0.0.2, it will receive an error of “Access Denied” until the
tunnel for this subnet is established by standard PLE policies.

Sliver-ovs also performs the slice isolation. The “virtual
cable” endpoint can only accept traffic from identified peers,
so the overlay network of 10.0.0.0/24 could never be L2
accessible by other slices, which guarantees the basic security
of this slicing mechanism.

3) Experiments:
a) EXPRESS: The EXPRESS project in OpenLab [160]

is a resilient SDN system, which is designed to extend SDN

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

20

PlanetLab
Backbone

NITOS
Wilab

Controller
Main

Controller
Deputy

Tunnel Dead

PlanetLab
Backbone

NITOS
Wilab

Controller
Main

Controller
Deputy

Tunnel Activated

Figure 29. Intelligent controller selection demonstration in OpenLab. The
left part shows a local controller connection before different testbeds are
interconnected. Once interconnected, controller selection would be based on
controllers’ priority.

domains with capability of working in an intermittently con-
nected network circumstance. Figure 29 shows the EXPRESS
network deployment: NITOS and w-iLabs.t run two separate
Wireless Mesh Network, and they are interconnected through
the backbone link emulated with the “virtual cable” across
PlanetLab Europe .

The EXPRESS architecture proposes OLSR, an IP-based
routing protocol, to route traffic. In addition to OpenFlow, this
OLSR-based control plane that also supports special controller
to controller messages to scale the SDN domain. Nodes that
implement the OLSR protocol are named as the Wireless Mesh
Router (WMR). WMR is connected to different controllers,
and it supports many resilient control plane strategies, such
as controller selection and failure recovery. This example
illustrates the intelligent controller selection procedure imple-
mented by the EXPRESS network.

Initially, the tunnel implemented as the “virtual cable”
across PlanetLab, between NITOS and w-iLabs.t is inactive,
and the WMRs connect to their local available controllers.
Once the tunnel is activated, the OLSR messages start to flow
between these two wireless testbeds. Thus, the representative
WMR in WiLab learns the route to the high-priority controller
which is located in NITOS. And then the representative WMR
judges the activeness of the remote controller by sending an
OpenFlow Hello message. If it is active, the prior controller
in NITOS will take control of all the WiLab WMRs to be a
more resilient control network.

b) Secure BGP Routing: Securing inter-domain routing
(SIDR) challenges ISP networks. Some solutions are in devel-
opment, but they change BGP too much. The Secured Path
State Protocol (PSP-SEC) experiment in OpenLab proposes a
novel SDN approach for secure BGP routing.

The PSP-SEC implementation [161] in OpenLab is based
on OPENER [162], and the architecture is shown in Figure 30.
PSG (Path-State Graph) helps to keep consistent forwarding
paths with domain-level interconnections. The Path-State Pro-
tocol (PSP) messages spread to manage these PSGs over the
network, and monitor the general BGP messages. PSP-SEC is
implemented as the counter part of PSP to intercept the BGP
legacy UPDATE messages and evaluates them.

Two different PSP-SEC tests have been running [163]. The
first one hijacks traffic by pretending to own the particular
network prefix, and the other one attacks by advertising an
invalid AS-Path. The experiment results show the improve-

Figure 30. Architecture of PSP-SEC in OpenLab. PSP-SEC intercepts the BGP
legacy UPDATE messages and evaluates them to consolidate BGP security.

ment in BGP routing security, although extra delay would be
caused.

VI. COMPARISON OF SDN TESTBEDS

In this section, five SDN testbeds are compared in terms of
design objectives, key technologies, network deployment, and
experiments.

A. Design Objectives

Each testbed construction has certain design objectives,
which are closely sourced from actual needs. GENI Open-
Flow is constructed over GENI, and it is US nation-wide,
mainly serves for large-scale network researches. OFELIA is
underneath FIRE FP7, and it connects islands across Europe,
targeting to address OpenFlow to evolve the Internet network
infrastructure. RISE has been developed by NICT as an
overlay OpenFlow network across JGN-X, and it aims to pro-
vide large-scale and tailor-made environment for cutting edge
SDN experiments. OF@TEIN is launched mainly to build an
OpenFlow based SDN testbed over TEIN4. And the objective
of OpenLab is bringing together existing experimental facility
to be a large-scale unified platform.

We can see that all these testbeds wish to address cur-
rent Internet challenges, such as mobility management and
effective content delivery, by developing large-scale, flexible
and automatic networks that could accommodate innovative
network researches. SDN is born to take this work and
OpenFlow is usually chosen to be the fundamental technology.

B. Key Technologies

1) Management Technologies: SDN testbed accommodates
different slices for various networking researches, so the
control framework is needed for the management work. It is
generally a set of software tools, controlling the experiments’
lifecycle: reservation, instantiation, configuration, monitoring
and uninstantiation.

GENI’s Control Framework (GCF) contains four parts:
GMOC, Clearinghouse, Tools, and Aggregates. Using the SFA
model [99], in which multiple domains cooperate to provide a
coherent facility, GENI embraces contributions from a range of
networks. Each domain maintains its local autonomy and the
ability to set the policies of how to use its own resources. At

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

21

TABLE IV
COMPARISON OF SDN TESTBEDS

Objective and Development Key Technologies Network Deployment ExperimentsManagement Networking Slicing
GENI
OpenFlow

Over GENI
• At-scale
• Network-

innovating

GCF
• SFA model
• 3A services

• Single VLAN
• VLAN Transla-

tion
• Layer 2 Tunnel-

ing
• Direct Fiber

Connection

• FlowVisor
• OpenVirteX
• FlowSpace Fire-

wall

US nation wide
• Campuses
• National

backbone
network

• Wireless scenar-
ios

• Optical scenar-
ios

OFELIA Pan-Europe testbed
• Multi layer
• Multi

technology
• Geographically

distributed

OCF
• Life-controlling • Star topology

• GEANT L2 cir-
cuits

• VPN tunnels

• FlowVisor
• Optical FlowVi-

sor
• VerTIGO

10 islands
• Brazil: 1
• Europe: 9

• Optical integra-
tion

• ICN supporting

RISE Over JGN-X
• Large-scale
• Tailor-made

RISE Orchestrator
• Easy-managing • Q-in-Q

• Pseudo Wire,
based on
EoMPLS

• Logical path
• MAC rewriting

13 sites
• Japan: 10
• Fremdness: 3

• Video streaming
scenarios

• Optical scenario

OF@TEINOver TEIN4
• OpenFlow-

based

OF@TEIN Portal
• Based on OCF • NVGRE tunnel-

ing
• FlowVisor
• VLAN-based

12 sites
• All in Asia • OVSDB

automation
• Lifecycle verifi-

cation

OpenLab Unified platform
• Multi-prototype

FITeagle
• Easy-federating • “Virtual Cables” • FlowVisor (in

NITOS)
• Sliver-ovs kernel

(in PlanetLab
Europe)

Some branch testbeds
• NITOS
• PlanetLab

Europe
• OSIMS etc.

• Controller selec-
tion

• Secure BGP
routing

• PSTN scenario

the same time, GCF provides a mutual trust and collaboration
mechanism. The OFELIA Control Framework (OCF) is the
orchestration software for OFELIA FP7 facility. There is a for-
mal definition of three separate layers in OCF: the Portal layer,
the Clearinghouse layer and the Resource Management layer.
Interactions and interfaces among these layers are formally
defined. RISE Orchestrator plays the role of control framework
in RISE 3.0, it helps to ease the management work for
administrator. OF@TEIN Portal is developed based on OCF,
and SmartX Automation Center is specially built to manage
the infrastructure. OpenLab focuses on the interoperability
between existing control frameworks, and a more sustainable
approach that is agnostic to the actual federation protocol that
is being implemented within the FITeagle Framework.

2) Networking Technologies: Networking technologies help
to connect different sites in SDN testbeds to make a large-scale
and distributed network.

a) Control & Management Plane Networking: Control
& management plane of a testbed is usually an L7 overlay
network, because the channel is usually based on TCP/IP, and
users and administrators could access these plane remotely
over Internet. While in OFELIA, the control plane is deployed
out-of-band, using OSPF to route control traffic and uses
private IP schema with a subnet assigned to each island.
Interconnections of the islands’ in the control plane network
are implemented via either a dedicated GEANT circuit or an
L3 tunnel over the Internet.

b) Experimental Plane Networking: In GENI OpenFlow,
the experimental plane uses the existing campus connections to

regional and national research networks. The network options
used in GENI data plane mainly include: single VLAN, VLAN
translation, L2 tunnel and fiber connection. In OFELIA, the
experimental plane is an L2 network sliced using VLAN.
OFELIA islands are currently interconnected in a star topology
to the OFELIA hub and the interconnections between islands
are implemented via either dedicated GEANT L2 circuits or
L2 tunnels over the public Internet. In RISE, Pseudo Wire
technology that uses EoMPLS has been utilized to configure
ethernet tunnels between OpenFlow switches. In OF@TEIN,
multiple OpenFlow islands interconnect with each other via
NVGRE tunnels. In OpenLab, interconnections are often im-
plemented by the “virtual cables” UDP tunnels.

3) Slicing Technologies: Like FlowVisor, slicing tools sit
between the physical network and control network, allowing
multiple controllers to control the same forwarding elements,
thus providing a multi-tenancy network environment.

In GENI OpenFlow, FlowVisor, FlowSpace Firewall and
OpenVirteX are adopted to slice the substrate network. In
OFELIA, VeRTIGO and Optical FlowVisor are developed.
Meanwhile, RISE 3.0 slices its network by Logical Path and
OF@TEIN chooses VLAN via FLowVisor. OpenLab leaves
the slicing work to NITOS with FlowVisor and PLE with “vir-
tual cable” socket isolation. As many surveys [38], [40] have
put forward, these slicing strategies have their characteristics
and defects. Flowspaces in FlowVisor could overlap with each
other by misconfiguration, in which case FlowVisor would fail
to isolate different slices [85]. FlowSpace Firewall can pre-
vent interference but does not support topology virtualization.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

22

OpenVirteX utilizes MAC address to slice and provide address
and topology virtualization. VeRTIGO developed based on
FlowVisor provides dynamic optimization of virtual link with
VT Planner. Logical Path in RISE rewrites MAC address to
match physical paths in JGN-X networks.

C. Network Deployment

The deployment of GENI OpenFlow first started from
campus network. Then, at a larger scale, GENI provides
an OpenFlow core network with interconnected OpenFlow
enabled switches on Internet2 and NLR networks. OFELIA
was designed initially with five academic partners setting
up individual testbeds within their premises. Afterwards, it
expanded with another five partners. After the first duration,
OFELIA created a real-world experimental networking sub-
strate that allows flexible control down to individual flows.
OpenLab started from September 2011, until now the project
has deployed the hardware and software to support differ-
ent network protocols and applications. RISE has deployed
thirteen sites with 10 in Japan and 3 overseas (Los Angeles,
Bangkok and Singapore). OF@TEIN has connected 12 sites
spread over 7 Asian countries (Korea, Indonesia, Malaysia,
Thailand, Vietnam, Philippines, and Pakistan).

D. Experiments

SDN testbeda are important in promoting network innova-
tions. And in turn, experiments could also promote the further
development of the testbed. Actually, it is the experiments
running over SDN testbed that makes real sense, rather than
the testbed itself.

In the optical scenario, Infinera successfully demonstrate
a prototype of Open Transport Switch (OTS) in GENI. And
OFELIA has attempted several methods to control the circuit
switches. In RISE, the research of Optical Packet and Circuit
Integrated (OPCI) network is done. In the wireless scenario,
Clemson University has designed a system to provide wireless
resources for experiments over GENI. In the ICN scenario,
OFELIA has designed a simple prototype and proposed a
method towards real Name Routing System.

There are also many other interesting experiments that have
been supported over SDN testbeds. In RISE, huge demonstra-
tions have been performed on high-quality, real-time video
streaming applications. In OF@TEIN, a prototype lifecycle
experiment that attempts to link bandwidth measurements
has been demonstrated. In OpenLab, the Express project
has designed and evaluated an SDN system with intelligent
controller selection procedure, and the PSP-SEC experiment
has made some progresses in secure BGP routing.

VII. CHALLENGES AND FUTURE WORKS

In this section, the research challenges and future works of
SDN testbeds will be discussed.

A. Federation

Federation of global SDN testbeds is a certain trend. Feder-
ation implements resources integration, which helps different

SDN testbeds to expand the experimental scale and achieve
mutual improvement. GENI OpenFlow, OFELIA, RISE and
OF@TEIN have all been devoted to implementing federation
with other SDN testbeds.

1) The Federation of Control & Management Plane:
GENI OpenFlow is developing an international federation API
for Clearinghouse functions, which is supported by multiple
Clearinghouses and joins US/EU capability up. It is running
with shared access to resources from FIRE and GENI.

OFELIA has started to migrate the Expedient based control
framework towards emerging de facto standards, because a
single unified control framework is still not in sight. Thus,
OFELIA makes its clients capable of establishing communi-
cation with other testbeds, such as GENI and other SFA-based
testbeds.

To interconnect with RISE and Internet2, NICT develops the
Extended RISE controller (eRISE) [164]. eRISE is a modified
version of OESS, which is implemented by replacing NOX
[165] with Trema-based controller [166].

However, there are some important issues that the current
federation mechanism needs to resolve and improve. Take
eRISE for example, it does not support reactive control method
because OESS is originally designed for circuit networks,
where paths must be set up proactively. However, reactive
control such as OpenFlow PacketIn should be considered for
dynamic network control.

2) The Federation of Experimental Plane: Jointly with the
partners from GENI, Fed4FIRE has organized the second
GENI/FIRE Collaboration workshop in Boston (US) in May,
2014. The workshop scheduled some time to discuss new
topics including SDN. Moreover, GENI is investigating and
prototyping standards for experimenter-driven resources nego-
tiation and provisioning, extending experimental slices to other
research networks including Japan, Korea and Australia.

In addition to the collaboration between GENI and FIRE,
a connection has been established via GEANT to connect the
MANLAN open exchange point from Internet2. This provides
de facto connectivity to the OpenFlow related testbeds in US,
Korea, Japan, and Brazil. Moreover, due to the requirements of
the FIBRE project, OFELIA is acquiring an alternative link to
Brazil via RedIRIS and RedClara. However, in order to make
a load balance of experimental traffic, OFELIA also tries to
establishing a direct link via TEIN-3 to the Asian OpenFlow
communities in Korea and Japan.

RISE has been interconnecting with OFELIA in Europe and
OS3E in US. With OFELIA, the interconnection starts from
using each other’s OpenFlow testbed by OpenVPN. And with
OS3E, the interconnection is implemented by utilizing OESS.
Moreover, RISE is also collaborating with TWAREN through
US academic networks.

OF@TEIN has joint SMARTFIRE [167] since 2013.
SMARTFIRE is also an wireless network testbed, which aims
to enable SDN experiments across Korea and Europe.

It can be discovered that the current federations between
SDN testbeds are just on a small-scale, and have many
problems to solve. We believe that in the future the federations
and collaborations will have a larger scale and a deeper depth.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

23

B. Slicing

SDN testbeds are expected to serve as an innovative cradle
for all future network researchers. Network slicing mechanism
could segment the testbed’s physical network resources, which
are traditionally considered indivisible, and then aggregate
them for the isolated slices of different testbed users. Slicing
becomes the hotspot of all the SDN testbeds.

FlowVisor, developed based on OpenFlow v1.0, is de-
signed as the transparent proxy between SDN controllers and
switches, it could schedule the slice policies using the well-
known 12-tuples, and it acts as the slicing tool or the slicing
prototype of the SDN testbeds. VLAN is generally used for
slicing, and it works in GENI, OFELIA and RISE etc., where
the limited 4096 VLAN tags are not actually enough.

However, FlowVisor has the following awkward limita-
tions:Could not make arbitrary separation of the underlying
network; Flowspaces could not be overlapped and have no
address virtualization; Only supports limited 12-tuples com-
bined rules, and the fields in use could not be multiplexed for
different slices; Only available in packet-switching domain,
excluding wireless and optical scenarios.

Some new methods have been proposed to overcome these
limitations: VerTIGO in OFELIA could arbitrarily separate the
physical network by introducing the virtual link technology.
OVX exploited by Stanford fixes the address multiplexing
problem by address rewriting. OFELIA also explores the OFV
(Optical FlowVisor) in optical domain. However, there is still
a long way to go. Big gaps should be filled in to implement
CPU and bandwidth separation mechanisms [168], without
which the logical networks could not be really isolated, and
this may require proper configuration protocol (e.g., OVSDB)
to be integrated by the slicing tools. Supporting OpenFlow
1.x to introduce the pipeline flexibility still requires many
efforts, both theoretical and practical ways. Advanced network
embedding algorithms [169]–[171] could be introduced into
the slicing mechanism for a more flexible virtualization. Last
but not the least, because all the control traffic has to pass
through the slicing tool, it could probably need some strong
clustering mechanisms to avoid becoming a bottleneck.

C. Compatibility with Existing Network Equipment

To support diverse research efforts in different network
domains, SDN testbeds should not only be OpenFlow-enabled
for the packet domain, but also support wireless and optical
SDN devices; Moreover, the compatibility with existing IP
or circuit devices should also be carefully considered. All
these different network devices should be interconnected and
controlled and managed in a uniform manner.

Many SDN testbeds have been exploring the problem.
GENI introduces SDN into Wimax, achieving the prototype
of software defined wireless access. OFELIA supports optical
switching control by integrating GMPLS module in OpenFlow
controller. OSMIS, an OpenLab branch testbed, deploys Open-
Flow in PSTN, making it more flexible and well-managed
[172]. RISE also tries to provide access to various testbed
facilities, such as wireless and optical network, to enhance
OpenFlow testbed facilities.

The existing methods of heterogeneous device networking
are concluded as belonging to the following two categories:
First, extend SDN South Protocol, such as OpenFlow, in the
corresponding network domain. The second method comprises
the extend existing control and management protocols, such
as SNMP or GMPLS to act as an interpreter between SDN
controller and Non-SDN forwarding devices. In addition,
the corresponding protocol APPs on the controller are also
required for unified control. Alien is one of the sub-projects
of OFELIA, and it proposes the Hardware Abstraction Layer
(HAL), which performs a systematic search of heterogeneous
device networking [19].

VIII. CONCLUSION

This paper addresses large-scale SDN testbeds, which pro-
vide experimental environments for newly developed tech-
nologies. We began our discussion with some related survey
papers and background knowledge. Thereafter, an overview of
SDN testbeds was presented, including advantages and design
issues, and some key technologies were also briefly introduced.
Then, different large-scale SDN testbed implementations were
discussed in detail, including design objectives, key technolo-
gies, network deployment and experiments. Next, we presented
the comparison of different SDN testbeds in term of these
four aspects. Finally, we discussed the challenges and future
research directions of large-scale SDN testbeds, including fed-
eration, network slicing, tools and deployment, multi domain
and compatibility with existing network equipment.

To conclude, many efforts have been carried out to deploy
SDN testbeds. However, there is still a long way to go.
In this paper, we try to introduce some current large-scale
SDN testbed implementations, and raise some open issues.
Moreover, we have been exploring for years to construct a
national wide SDN testbed in China from 2012. A campus-
scale SDN testbed, called C-Lab, has been successfully set
up in Beijing University of Posts and Telecommunications
with great efforts of several laboratories. The success of C-
Lab inspires us to move forward, and the China Environment
for Network Innovations (CENI) represents our future vision
of a large national-scale SDN testbed. The deployment of
CENI has already covered some main cities of China, and
the enlargement is still in progress. CENI aims to serve for
researches of next generation network architecture such as Ser-
vice Customized Networking [173], Application Driven Net-
work [174] and Hyper-Converged Network, and new network
applications such as 4K/8K/VR video, cloud-based business
and IOT network intelligence. So far, great efforts have been
made on scalable network operating system, network virtual-
ization platform, programmable chip, forwarding devices, and
secure federated technologies, which should be valuable as
new methods to solve some open issues of large-scale SDN
testbeds.

ACKNOWLEDGMENT

We thank the reviewers for their detailed reviews and
constructive comments, which have helped to improve the

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

24

quality of this paper. This work is supported by the Na-
tional High Technology Research and Development Pro-
gram(863) of China (No. 2015AA016101), Beijing Nova
Program (No.Z151100000315078).

REFERENCES

[1] I. F. Akyildiz, J. McNair, J. S. Ho, H. Uzunalioğlu, and W. Wang, “Mo-
bility management in next-generation wireless systems,” Proceedings
of The IEEE, vol. 87, no. 8, pp. 1347–1384, 1999.

[2] L. Ma, F. Yu, V. C. M. Leung, and T. Randhawa, “A new method to
support UMTS/WLAN vertical handover using SCTP,” IEEE Wireless
Commun., vol. 11, no. 4, pp. 44–51, Aug. 2004.

[3] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu, “Power-
aware QoS management in web servers,” in Proc. Real-Time Systems
Symposium, 2003.

[4] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, 2009.

[5] S. Shenker, M. Casado, T. Koponen, N. McKeown et al., “The future
of networking, and the past of protocols,” in Proc. Open Networking
Summit, 2011.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Commun. Review,
vol. 38, no. 2, pp. 69–74, 2008.

[7] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. M. Parulkar, “Can the production network be
the testbed?” in Proc. Operating Systems Design and Implementation,
2010.

[8] M. Gerola, R. Doriguzzi Corin, R. Riggio, F. De Pellegrini, E. Sal-
vadori, H. Woesner, T. Rothe, M. Suñe, and L. Bergesio, “Demonstrat-
ing inter-testbed network virtualization in OFELIA SDN experimental
facility,” in Proc. IEEE INFOCOM WKSHPS, 2013.

[9] “OVX.onlab.” [Online]. Available: http://ovx.onlab.us/
[10] “Openstack Official.” [Online]. Available: http://www.openstack.org/
[11] “GMOC.” [Online]. Available: http://globalnoc.iu.edu/gmoc/index.html
[12] M. Su and Fundaci, 1st Version of the OFELIA

Management Software. [Online]. Available: http://www.fp7-ofelia.
eu/publications-and-presentations/public-deliverables

[13] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A dis-
tributed control platform for large-scale production networks,” in Proc.
Operating Systems Design and Implementation, 2010.

[14] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
“SDX: A software defined Internet exchange,” in Proc. ACM SIG-
COMM’14, 2014.

[15] “OpenDaylight Official.” [Online]. Available: www.opendaylight.org
[16] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,

B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: towards
an open, distributed SDN OS,” in Proc. the Third Workshop on Hot
Topics in Software Defined Networking, 2014.

[17] R. Izard, A. Hodges, J. Liu, J. Martin, K.-C. Wang, and K. Xu, “An
OpenFlow testbed for the evaluation of vertical handover decision
algorithms in heterogeneous wireless networks,” Testbeds and Research
Infrastructure: Development of Networks and Communities, vol. 137,
pp. 174–183, 2014.

[18] S. Azodolmolky, R. Nejabati, E. Escalona, R. Jayakumar, N. Efstathiou,
and D. Simeonidou, “Integrated OpenFlow–GMPLS control plane: an
overlay model for software defined packet over optical networks,”
Optics Express, vol. 19, no. 26, pp. B421–B428, 2011.

[19] HAL WhitePaper. [Online]. Available: http://www.fp7-alien.eu/files/
deliverables/ALIEN-HAL-whitepaper.pdf

[20] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Ray-
chaudhuri, R. Ricci, and I. Seskar, “GENI: A federated testbed for
innovative network experiments,” Computer Networks, vol. 61, pp. 5–
23, 2014.

[21] M. Suñé, L. Bergesio, H. Woesner, T. Rothe, A. Köpsel, D. Colle,
B. Puype, D. Simeonidou, R. Nejabati, M. Channegowda et al., “De-
sign and implementation of the OFELIA FP7 facility: The European
OpenFlow testbed,” Computer Networks, vol. 61, pp. 132–150, 2014.

[22] Y. Kanaumi, S.-i. Saito, E. Kawai, S. Ishii, K. Kobayashi, and S. Shi-
mojo, “RISE: A wide-area hybrid OpenFlow network testbed,” IEICE
Trans. on Commun., vol. 96, no. 1, pp. 108–118, 2013.

[23] J. Kim, B. Cha, J. Kim, N. L. Kim, G. Noh, Y. Jang, H. G. An,
H. Park, J. Hong, D. Jang et al., “OF@TEIN: An OpenFlow-enabled
SDN testbed over international SmartX Rack sites,” in Proc. Asia-
Pacific Advanced Network, 2013.

[24] “The Project of Openlab.” [Online]. Available: http://www.ict-openlab.
eu/project-info.html

[25] “OF@TEIN Official.” [Online]. Available: http://oftein.net/projects/
of-tein/wiki

[26] “JOLnet: a shared network infrastructure for SDN research.” [Online].
Available: http://www.telecomitalia.com/tit/it/notiziariotecnico/numeri/
2014-2/capitolo-05/approfondimenti-02.html

[27] “CoCo: an exploration of Software Defined Net-
working (SDN).” [Online]. Available: https://blog.surf.nl/en/
coco-an-exploration-of-software-defined-networking/

[28] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[29] W. Xia, Y. Wen, H. F. Chuan, H. Xie, and N. Dusit, “A survey on
software-defined networking,” IEEE Commun. Surveys and Tutorials,
vol. 17, no. 1, pp. 27–51, 2015.

[30] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and
OpenFlow: from concept to implementation,” IEEE Commun. Surveys
and Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014.

[31] J. Xie, D. Guo, Z. Hu, T. Qu, and P. Lv, “Control plane of software
defined networks: A survey,” Computer Commun., vol. 67, pp. 1–10,
2015.

[32] P. Bhaumik, S. Zhang, P. Chowdhury, S.-S. Lee, J. H. Lee, and
B. Mukherjee, “Software-defined optical networks (SDONs): a survey,”
Photonic Network Commun., vol. 28, no. 1, pp. 4–18, 2014.

[33] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking
(SDN) and distributed denial of service (DDoS) attacks in cloud com-
puting environments: A survey, some research issues, and challenges,”
IEEE Commun. Survey and Tutorials, vol. 18, no. 1, pp. 602–622,
2016.

[34] L. Cui, F. R. Yu, and Q. Yan, “When big data meets software-defined
networking (SDN): SDN for big data and big data for SDN,” IEEE
Network, vol. 30, no. 1, pp. 58–65, Jan. 2016.

[35] Q. Yan and F. R. Yu, “Distributed denial of service attacks in software-
defined networking with cloud computing,” IEEE Commun. Mag.,
vol. 53, no. 4, pp. 52–59, Apr. 2015.

[36] Q. Chen, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “An integrated
framework for software defined networking, caching and computing,”
IEEE Network, 2016, accepted, online.

[37] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and A. V. Vasilakos, “Software-
defined and virtualized future mobile and wireless networks: A survey,”
Mobile Networks and Applications, vol. 20, no. 1, pp. 4–18, 2015.

[38] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on
network virtualization hypervisors for software defined networking,”
IEEE Commun. Surveys and Tutorials, vol. 18, no. 1, pp. 655–685,
2016.

[39] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, and M. F. Zhani, “Data center network virtualiza-
tion: A survey,” IEEE Commun. Surveys and Tutorials, vol. 15, no. 2,
pp. 909–928, 2013.

[40] P. Rygielski and S. Kounev, “Network virtualization for QoS-aware
resource management in cloud data centers: A survey,” PIK-Praxis
der Informationsverarbeitung und Kommunikation, vol. 36, no. 1, pp.
55–64, 2013.

[41] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some
research issues and challenges,” IEEE Commun. Surveys and Tutorials,
vol. 17, no. 1, pp. 358–380, 2015.

[42] K. Wang, H. Li, F. R. Yu, and W. Wei, “Virtual resource allocation in
software-defined information-centric cellular networks with device-to-
device communications and imperfect CSI,” IEEE Trans. Veh. Tech.,
2016, accepted, online.

[43] R. Huo, F. R. Yu, T. Huang, R. Xie, J. Liu, V. C. M. Leung, and
Y. Liu, “Software defined networking, caching, and computing for
green wireless networks,” IEEE Commun. Mag., no. 11, pp. 185–193,
Nov. 2016.

[44] Y. Cai, F. R. Yu, C. Liang, B. Sun, and Q. Yan, “Software defined
device-to-device (D2D) communications in virtual wireless networks
with imperfect network state information (NSI),” IEEE Trans. Veh.
Tech., no. 9, pp. 7349–7360, Sept. 2016.

[45] C. Liang, F. R. Yu, and X. Zhang, “Information-centric network func-
tion virtualization over 5G mobile wireless networks,” IEEE Network,
vol. 29, no. 3, pp. 68–74, May 2015.

[46] C. Liang and F. R. Yu, “Wireless virtualization for next generation
mobile cellular networks,” IEEE Wireless Comm., vol. 22, no. 1, pp.
61–69, Feb. 2015.

[47] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” Queue,
vol. 11, no. 12, p. 20, 2013.

[48] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and
G. J. Minden, “A survey of active network research,” IEEE Commun.
Magazine, vol. 35, no. 1, pp. 80–86, 1997.

[49] D. Sheinbein and R. Weber, “Stored program controlled network: 800
service using spc network capability,” Bell System Technical Journal,
vol. 61, no. 7, pp. 1737–1744, 1982.

[50] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong,
R. Gopal, and J. Halpern, “Forwarding and control element separation
(ForCES) protocol specification,” IETF RFC 5810, 2010.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

25

[51] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in Proc. 2nd Conf. on Networked Systems Design and
Implementation, 2005.

[52] J. Vasseur and J. Le Roux, “Path computation element (PCE) commu-
nication protocol (PCEP),” 2009.

[53] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
G. Xie, J. Zhan, and H. Zhang, “Network-wide decision making:
Toward a wafer-thin control plane,” in Proc. HotNets, 2004.

[54] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach
to network control and management,” ACM SIGCOMM Computer
Commun. Review, vol. 35, no. 5, pp. 41–54, 2005.

[55] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: taking control of the enterprise,” ACM SIGCOMM
Computer Commun. Review, vol. 37, no. 4, pp. 1–12, 2007.

[56] OpenFlow Switch Consortium, “OpenFlow Switch Specification Ver-
sion 1.0,” 2009.

[57] “OpenFlow Configuration and Management Protocol.” [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow-config/of-config1dot0-final.
pdf

[58] B. Pfaff and B. Davie, The Open vSwitch Database Management
Protocol, 2013.

[59] “OVS Official.” [Online]. Available: http://www.openvswitch.org
[60] “NS Wiki.” [Online]. Available: https://en.wikipedia.org/wiki/Ns

(simulator)
[61] R. Xie, F. R. Yu, H. Ji, and Y. Li, “Energy-efficient resource allocation

for heterogeneous cognitive radio networks with femtocells,” IEEE
Trans. Wireless Commun., vol. 11, no. 11, pp. 3910 –3920, Nov. 2012.

[62] H.-W. Kim and A. Kachroo, “Low power routing and channel allocation
of wireless video sensor networks using wireless link utilization,” Ad
Hoc and Sensor Wireless Networks, vol. 30, no. 1-2, pp. 83–112, 2016.

[63] S. Bu, F. R. Yu, Y. Cai, and P. Liu, “When the smart grid meets energy-
efficient communications: Green wireless cellular networks powered
by the smart grid,” IEEE Trans. Wireless Commun., vol. 11, pp. 3014–
3024, Aug. 2012.

[64] C. Wang and Y. Zhang, “Time-window and voronoi-partition based
aggregation scheduling in multi-sink wireless sensor networks,” Ad Hoc
and Sensor Wireless Networks, vol. 32, no. 3-4, pp. 221–238, 2016.

[65] Z. Li, F. R. Yu, and M. Huang, “A distributed consensus-based
cooperative spectrum sensing in cognitive radios,” IEEE Trans. Veh.
Tech., vol. 59, no. 1, pp. 383–393, Jan. 2010.

[66] Y. Wei, F. R. Yu, and M. Song, “Distributed optimal relay selection
in wireless cooperative networks with finite-state Markov channels,”
IEEE Trans. Veh. Tech., vol. 59, no. 5, pp. 2149 –2158, June 2010.

[67] “Emulab Official.” [Online]. Available: http://emulab.net/
[68] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordström, and C. Tschudin,

“A large-scale testbed for reproducible ad hoc protocol evaluations,”
Proc. IEEE WCNC’02, vol. 1, pp. 412–418, 2002.

[69] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: an overlay testbed for broad-coverage
services,” ACM SIGCOMM Computer Commun. Review, vol. 33, no. 3,
pp. 3–12, 2003.

[70] G. Werner-Allen, P. Swieskowski, and M. Welsh, “Motelab: A wireless
sensor network testbed,” in Proc. the 4th Int’l Symposium on Informa-
tion Processing in Sensor Networks, 2005.

[71] N. S. Rao, W. R. Wing, S. M. Carter, and Q. Wu, “Ultrascience net:
Network testbed for large-scale science applications,” IEEE Commun.
Magazine, vol. 43, no. 11, pp. S12–S17, 2005.

[72] T. Miyachi, K.-i. Chinen, and Y. Shinoda, “StarBED and SpringOS:
Large-scale general purpose network testbed and supporting software,”
in Proc. 1st Int’l Conf. Performance Evaluation Methodolgies and
Tools, 2006.

[73] “LISP-LAB official website.” [Online]. Available: http://lisplab.
openlisp.org/

[74] D. Medhi, B. Ramamurthy, C. Scoglio, J. P. Rohrer, E. K. Çetinkaya,
R. Cherukuri, X. Liu, P. Angu, A. Bavier, C. Buffington et al., “The
GpENI testbed: Network infrastructure, implementation experience,
and experimentation,” Computer Networks, vol. 61, pp. 51–74, 2014.

[75] B. Davie and Y. Rekhter, MPLS: Technology and Applications. Mor-
gan Kaufmann Publishers Inc., 2000.

[76] L. Martini, E. Rosen, N. El-Aawar, and G. Heron, “Encapsulation
methods for transport of ethernet over mpls networks,” RFC4448, April,
2006.

[77] D. Farinacci, P. Traina, S. Hanks, and T. Li, “Generic routing encap-
sulation (GRE),” RFC 2784, 1994.

[78] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “Virtual extensible local area network
(VXLAN): A framework for overlaying virtualized layer 2 networks
over layer 3 networks,” Internet Req. Comments, 2014.

[79] M. Sridharan, A. Greenberg, N. Venkataramiah, Y. Wang, K. Duda,
I. Ganga, G. Lin, M. Pearson, P. Thaler, and C. Tumuluri, “NVGRE:
Network virtualization using generic routing encapsulation,” IETF
draft, 2011.

[80] “KVM Official.” [Online]. Available: http://www.linux-kvm.org/page/
Main Page

[81] “Xen Official.” [Online]. Available: http://xenproject.org/
[82] “OpenDaylight Virtual Tenant Network.” [Online]. Available: https:

//github.com/opendaylight/vtn
[83] “ONOS ONOSFW.” [Online]. Available: https://wiki.opnfv.org/

display/onosfw/ONOS+Framework+Homen
[84] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,

N. McKeown, and G. Parulkar, “Flowvisor: A network virtualization
layer,” OpenFlow Switch Consortium, Tech. Rep, pp. 1–13, 2009.

[85] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “OpenVirteX: make your virtual SDNs
programmable,” in Proc. the Third Workshop on Hot Topics in Software
Defined Networking, 2014.

[86] “FSFW.” [Online]. Available: http://globalnoc.iu.edu/sdn/fsfw.html
[87] R. Doriguzzi Corin, M. Gerola, R. Riggio, F. De Pellegrini, and

E. Salvadori, “Vertigo: Network virtualization and beyond,” in Proc.
Software Defined Networking (EWSDN), 2012 European Workshop on,
2012.

[88] S. Das, “Extensions to the OpenFlow protocol in support of circuit
switching,” Addendum to OpenFlow Protocol Specification (v1. 0)Cir-
cuit Switch Addendum v0, vol. 3, 2010.

[89] “Open Networking Foundation.” [Online]. Available: https://www.
opennetworking.org/

[90] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
Internet impasse through virtualization,” Computer, no. 4, pp. 34–41,
2005.

[91] J. S. Turner and D. E. Taylor, “Diversifying the Internet,” in Proc.
IEEE Globecom’05, 2005.

[92] “GENI Wiki Spiral Three.” [Online]. Available: http://groups.geni.net/
geni/wiki/SpiralThree

[93] “GENI Wiki Spiral Six.” [Online]. Available: http://groups.geni.net/
geni/wiki/SpiralSix

[94] “Open-networking-summit-explore-software-defined-networking.”
[Online]. Available: http://engineering.stanford.edu/news/
open-networking-summit-explore-software-defined-networking

[95] “GENI Portal.” [Online]. Available: https://portal.geni.net/
[96] “GENI Federation Software Architecture Document.” [Online]. Avail-

able: http://groups.geni.net/geni/attachment/wiki/GeniArchitectTeam/
GENI\%20Software\%20Architecture\%20v1.0.pdf

[97] “Clearinghouse.” [Online]. Available: http://groups.geni.net/geni/wiki/
GeniClearinghouse

[98] “GENI Aggregate Manager API Version 3.” [Online]. Available:
http://groups.geni.net/geni/wiki/GAPI AM API V3

[99] “SFA Official.” [Online]. Available: http://groups.geni.net/geni/wiki/
SliceFedArch

[100] “The ExoGENI Official.” [Online]. Available: http://www.exogeni.net/
[101] “The InstaGENI Group Page.” [Online]. Available: http://groups.geni.

net/geni/wiki/INSTAGENI
[102] “GeniApi.” [Online]. Available: http://groups.geni.net/geni/wiki/

GeniApi
[103] “ExecuteExperiment.” [Online]. Available: http://groups.geni.

net/geni/wiki/GENIExperimenter/Tutorials/PortalOmniExample/
ExecuteExperiment

[104] “ConnectivityOverview.” [Online]. Available: http://groups.geni.net/
geni/wiki/ConnectivityOverview

[105] D. Li, X. Hong, and J. Bowman, “Evaluation of security vulnerabilities
by using ProtoGENI as a launchpad,” in Proc. IEEE Globecom’11,
2011.

[106] “Understanding Q-in-Q Tunneling and VLAN Translation.”
[Online]. Available: http://www.juniper.net/techpubs/en US/junos13.
1/topics/concept/qinq-tunneling-qfx-series.html#jd0e34

[107] “National LambdaRail.” [Online]. Available: http://www.nlr.net
[108] “Floodlight Official.” [Online]. Available: http://www.

projectFloodlight.org
[109] “OpenFlow Stanford Deployment.” [Online]. Available: http://www.

openflow.org/wp/stanford-deployment/
[110] “Internet2.” [Online]. Available: http://www.internet2.edu
[111] “NetworkCore.” [Online]. Available: http://groups.geni.net/geni/wiki/

NetworkCore
[112] “Testbed networks: Provided by nlr.” [Online]. Available: http:

//www.nlr.net/testbeds.php
[113] “GENI OpenFlow Backbone Deployment at Internet2.” [Online].

Available: http://groups.geni.net/geni/wiki/OFI2
[114] F. Yu and V. C. M. Leung, “Mobility-based predictive call admission

control and bandwidth reservation in wireless cellular networks,” in
Proc. IEEE INFOCOM’01, Anchorage, AK, Apr. 2001.

[115] F. Yu and V. Krishnamurthy, “Optimal joint session admission control
in integrated WLAN and CDMA cellular networks with vertical
handoff,” IEEE Trans. Mobile Computing, vol. 6, no. 1, pp. 126–139,
Jan. 2007.

[116] “Infinera.” [Online]. Available: http://www.infinera.com/
[117] I. Monga, C. Guok, W. E. Johnston, and B. Tierney, “Hybrid networks:

Lessons learned and future challenges based on esnet4 experience,”
IEEE Commun. Magazine, vol. 49, no. 5, pp. 114–121, 2011.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

26

[118] A. Sadasivarao, S. Syed, P. Pan, C. Liou, A. Lake, C. Guok, and
I. Monga, “Open transport switch: a software defined networking archi-
tecture for transport networks,” in Proc. the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, 2013.

[119] “The OFELIA Project and Testbed Federation.” [Online].
Available: http://www.csg.ethz.ch/education/lectures/ATCN/hs2013/
material/08 OFELIA slides

[120] The EU FP7 Project and The European OpenFlow Experimental
Facility. [Online]. Available: https://github.com/fp7-ofelia

[121] “Opt-In Manager software website.” [Online]. Available: http:
//www.openflow.org/wk/index.php/OptIn Manager

[122] W. Tavernier, First Year Report on Planning Development Testing and
Operation of Individual Islands. [Online]. Available: www.fp7-ofelia.
eu/publications-and-presentations/public-deliverables

[123] “OpenWRT Official.” [Online]. Available: https://openwrt.org/
[124] “GEANT Official.” [Online]. Available: www.geant.net
[125] R. Riggio, F. De Pellegrini, E. Salvadori, M. Gerola, and

R. Doriguzzi Corin, “Progressive virtual topology embedding in Open-
Flow networks,” in Proc. IFIP/IEEE Int’l Symposium Integrated Net-
work Management, 2013.

[126] S. Azodolmolky, R. Nejabati, S. Peng, A. Hammad, M. P. Chan-
negowda, N. Efstathiou, A. Autenrieth, P. Kaczmarek, and D. Sime-
onidou, “Optical FlowVisor: An OpenFlow-based optical network
virtualization approach,” in Proc. National Fiber Optic Engineers
Conference, 2012.

[127] The EU FP7 Project and The Euro-
pean OpenFlow Experimental Facility, “Publications-
and-PresentationsOFELIAFebruary2013.” [Online]. Avail-
able: http://www.fp7-ofelia.eu/assets/Publications-and-Presentations/
OFELIAFebruary2013.pdf

[128] “Specialties and capabilities of each islands.” [Online]. Available:
http://www.fp7-ofelia.eu/ofelia-facility-and-islands/

[129] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox, “Information-centric networking: seeing the forest for the
trees,” in Proc. the 10th ACM Workshop on Hot Topics in Networks,
2011.

[130] C. Fang, F. R. Yu, T. Huang, J. Liu, and Y. Liu, “A survey of green
information-centric networking: Research issues and challenges,” IEEE
Comm. Surveys Tutorials, vol. 17, no. 3, pp. 1455–1472, Thirdquarter
2015.

[131] L. Veltri, G. Morabito, S. Salsano, N. Blefari-Melazzi, and A. Detti,
“Supporting information-centric functionality in software defined net-
works,” in Proc. IEEE ICC, 2012.

[132] A. Detti, N. Blefari Melazzi, S. Salsano, and M. Pomposini, “CONET:
a content centric inter-networking architecture,” in Proc. ACM SIG-
COMM Workshop on Information-Centric Networking, 2011.

[133] “JGN-X.” [Online]. Available: http://www.jgn.nict.go.jp/english/index.
html

[134] “User access to RISE.” [Online]. Available: http://www.jgn.nict.go.jp/
rise/ja/procedures/index.html

[135] S. Ishii, E. Kawai, Y. Kanaumi, S.-i. Saito, T. Takata, K. Kobayashi,
and S. Shimojo, “A study on designing OpenFlow controller RISE 3.0,”
in Proc. IEEE ICON’13, 2013.

[136] “IEEE standard for local and metropolitan area networks, virtual
bridged local area networks, amendment 4: Provider bridges.” [Online].
Available: http://www.ieee802.org/1/pages/802.1ad.html

[137] E. Kawai, “Experience of the RISE Testbed Deployment.”
[Online]. Available: http://meetings.internet2.edu/media/medialibrary/
2015/04/01/20150401-kawai-RISETesbedDeployment.pdf

[138] “RISE: SDN Testbed on JGN-X -RISE Orchestrator.” [Online]. Avail-
able: http://www.jgn.nict.go.jp/english/reports/presentation/documents/
apii ws-2014 03.pdf

[139] L. Martini, E. Rosen, N. El-Aawar, and G. Heron, “Encapsulation
Methods for Transport of Ethernet over MPLS Networks,” IETF RFC
4448, 2006.

[140] B. Davie and Y. Rekhter, MPLS: Technology and Applications. Mor-
gan Kaufmann Publishers Inc., 2000.

[141] “RISE 3.0: The Design and Implementation of SDN/OpenFlow Testbed
Considering Node Capacity and Inflexible Topology.” [Online].
Available: https://www.apan.net/meetings/Nantou2014/Sessions/FIT/
apan38th itoh.pdf

[142] Y. Kanaumi, S. Saito, and E. Kawai, “Toward large-scale programmable
networks: Lessons learned through the operation and management of
a wide-area openflow-based network,” in Proc. Network and Service
Management (CNSM), 2010.

[143] “Broadcasting Operation Experiment over Multiple SDN Switching
Network Succeeds in Sapporo Snow Festival.” [Online]. Available:
http://www.nict.go.jp/en/press/2013/03/18-1.html

[144] “Worlds First Successful Ultra-High-Speed Transmission of
Uncompressed 8K Streaming Video of Sapporo Snow Festival.”
[Online]. Available: http://www.nict.go.jp/en/press/2014/03/12-1.html

[145] T. Miyazawa, H. Furukawa, N. Wada, H. Harai, H. Otsuki, and
E. Kawai, “Experimental demonstrations of interworking between
an optical packet and circuit integrated network and openflow-based
networks,” in Proc. IEEE Globecom Workshops, 2013.

[146] H. Harai, “Optical Packet and Circuit Integrated Network for Future
Networks,” IEICE Trans. on Commun., vol. E95-B, no. 3, pp. 714–722,
2010.

[147] T. Miyazawa, H. Furukawa, K. Fujikawa, N. Wada, and H. Harai,
“Development of an Autonomous Distributed Control System for
Optical Packet and Circuit Integrated Networks,” Optical Commun. and
Networking, vol. 4, no. 1, p. 2537, 2012.

[148] H. Furukawa, S. Shinada, T. Miyazawa, H. Harai, W. Kawasaki,
T. Saito, K. Matsunaga, T. Toyozumi, and N. Wada, “A Multi-Ring
Optical Packet and Circuit Integrated Network with Optical Buffering,”
Optics Express, vol. 20, no. 27, pp. 28 764–28 771, 2012.

[149] T. Miyazawa, H. Furukawa, N. Wada, and H. Harai, “Development of
a common path control-plane for interoperating hybrid optical packet-
and circuit-switched ring networks and WSONs,” in Proc. Int’l Conf.
Photonics in Switching, 2013.

[150] N. Kim, J. Kim, C. Heermann, and I. Baldine, “Interconnecting inter-
national network substrates for networking experiments,” Testbeds and
Research Infrastructure. Development of Networks and Communities,
vol. 90, pp. 116–125, 2012.

[151] M. Sridharan, A. Greenberg, N. Venkataramiah, Y. Wang, K. Duda,
I. Ganga, G. Lin, M. Pearson, P. Thaler, and C. Tumuluri, “NVGRE:
Network virtualization using generic routing encapsulation,” IETF
draft, 2011.

[152] “SmartX Automation Center for OF@TEIN Multi-point International
OpenFlow Islands.” [Online]. Available: http://scent.gist.ac.kr/
downloads/2014hpcss 6.pdf

[153] T. Na and J. Kim, “Inter-connection automation for of@tein multi-point
international openflow islands,” in Proc. The Ninth Int’l Conference on
Future Internet Technologies, 2014, p. 12.

[154] “Onelab Portal.” [Online]. Available: https://onelab.eu/services
[155] J. Auge et al., “Control plane extension Status of the SFA

deployment,” 2013. [Online]. Available: http://www.ict-openlab.eu/
publications/deliverables.html

[156] “FITeagle Github.” [Online]. Available: https://github.com/FITeagle
[157] “The openflow experimentation of nitlab.” [Online]. Available: http:

//nitlab.inf.uth.gr/NITlab/index.php/testbed/openflow-experimentation
[158] “PlanetLab Europe.” [Online]. Available: www.planet-lab.eu
[159] G. Lettieri and L. Rizzo, OpenFlow enhancements for PLE,

2013. [Online]. Available: http://www.ict-openlab.eu/publications/
deliverables.html

[160] S. Salsano, N. Blefari-Melazzi et al., EXPRESS final evaluation and
overall report, 2014. [Online]. Available: http://www.ict-openlab.eu/
publications/deliverables.html

[161] R. Serral-Graci, G. Riera-Prez et al., PSP-SEC - Testbed Setup and
Interdomain routing Security Evaluation, 2013. [Online]. Available:
http://www.ict-openlab.eu/publications/deliverables.html

[162] “OPENER: An open tool for managing experimentation with SDN
Applications.” [Online]. Available: http://www.craax.upc.edu/opener.
html

[163] R. Serral-Graci, G. Riera-Prez et al., PSP-SEC - Final
experiment report, 2013. [Online]. Available: http://www.ict-openlab.
eu/publications/deliverables.html

[164] S. Ishii, E. Kawai, T. Takata, Y. Kanaumi, S.-i. Saito, K. Kobayashi, and
S. Shimojo, “Extending the RISE controller for the interconnection of
RISE and OS3E/NDDI,” in 2012 18th IEEE International Conference
on Networks (ICON), 2012.

[165] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: Towards an operating system for networks,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 3, pp.
105–110, 2008.

[166] “Trema: An Open Source modular framework for developing
OpenFlow controllers in Ruby/C.” [Online]. Available: https://github.
com/trema/trema

[167] “SmartFire Project.” [Online]. Available: http://projects.sigma-orionis.
com/smartfire/project-key-facts/

[168] A. Blenk, A. Basta, and W. Kellerer, “Hyperflex: An SDN virtu-
alization architecture with flexible hypervisor function allocation,”
in 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), 2015.

[169] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Commun. Review, vol. 38, no. 2, pp. 17–29,
2008.

[170] N. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network
embedding with coordinated node and link mapping,” in Proc. IEEE
INFOCOM’09, 2009.

[171] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
ACM SIGCOMM Computer Commun. Review, vol. 41, no. 2, pp. 38–
47, 2011.

[172] “OSMIS Official.” [Online]. Available: http://www.ict-openlab.eu/
technologies/testbeds/osims.html

[173] Y.-J. Liu, T. Huang, J. Zhang, J. Liu, H.-P. Yao, and R.-C. Xie, “Service
customized networking,” Tongxin Xuebao/Journal on Communications,
vol. 35, no. 12, pp. 1–9, 2014.

1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2016.2630047, IEEE
Communications Surveys & Tutorials

27

[174] “Application Driven Network: providing On-Demand Services for
Applications, author=Wang, Yi and Lin, Dong and Li, Changtai and
Zhang, Junping and Liu, Peng and Hu, Chengchen and Zhang, Gong,”
in Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference, 2016.

