
Computer Science Review 38 (2020) 100298

h
1

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review article

A comprehensive survey of service function chain provisioning
approaches in SDN andNFV architecture
Karamjeet Kaur ∗, Veenu Mangat, Krishan Kumar
University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India

a r t i c l e i n f o

Article history:
Received 24 June 2020
Received in revised form 9 August 2020
Accepted 18 August 2020
Available online xxxx

Keywords:
Network Function Virtualization
Service Function Chaining
Service classifier
Virtual Network Function
Service Function Forwarder
Load balancing of VNFs
VNF placement
Availability

a b s t r a c t

Network Function Virtualization (NFV) has emerged as an innovative network architecture paradigm
that uses IT virtualization technology to abstract the network node functions from hardware. The
virtualized network services hosted on Virtual Machines (VMs) are called Virtual Network Functions
(VNFs). The sequence of multiple VNFs required by network operators to perform traffic steering is
called a Service Function Chain (SFC). Software Defined Networking (SDN) is a complementary technol-
ogy which allows programmatic control of network functions and policy-based resource management.
The flexibility of SDN facilitates structuring of SFCs with minimum latency. SFC provisioning using SDN
and NFV will enable implementation of next generation 5G networks and make the subscriber/operator
relationship more economical and flexible. In this paper, a Systematic Literature Review (SLR) is used
to select the high-quality research studies related to dynamic provisioning of SFCs in SDN and NFV. A
total of 70 studies available in the literature are analyzed. Thereafter, a layered taxonomy is proposed
to classify the literature based on the parameters of optimization approaches for the provisioning
of SFCs. Finally, the open research challenges for SFC deployment are identified and discussed. This
paper is intended to serve as a ready reference for the research community to develop effective and
efficient techniques for SFC provisioning in combined SDN/NFV networks by considering a combination
of multiple factors viz. placement of VNFs, load balancing, and availability. It will surely aid Cloud
Service Providers (CSPs), Application Service Providers (ASPs), and Internet Service Providers (ISPs) in
offering reliable, scalable and high-performance services to their customers.

© 2020 Elsevier Inc. All rights reserved.

Contents

1. Introduction... 2
1.1. Motivation .. 2
1.2. Related academic research ... 2
1.3. Contributions .. 2

2. Systematic literature review protocol.. 3
2.1. Defining research questions .. 4
2.2. Search methodology .. 4
2.3. Study selection criteria ... 4
2.4. Reference checking .. 5
2.5. Data extraction... 5

3. RA1: Service function chaining strategies ... 5
3.1. Static service function chaining ... 5
3.2. Dynamic service function chaining ... 5

4. RA2: Service function chaining architecture ... 6
4.1. Standardized architecture for SFC deployment.. 6

4.1.1. SFC data plane component.. 6
4.1.2. SFC control plane component... 7

4.2. SDN/nfv architecture for SFC deployment ... 7
4.3. Extended ETSI NFV architecture for SFC deployment ... 8

∗ Corresponding author.
E-mail addresses: bhullar1991@gmail.com (K. Kaur), vmangat@pu.ac.in (V. Mangat), k.salujauiet@gmail.com (K. Kumar).
ttps://doi.org/10.1016/j.cosrev.2020.100298
574-0137/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.cosrev.2020.100298
http://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2020.100298&domain=pdf
mailto:bhullar1991@gmail.com
mailto:vmangat@pu.ac.in
mailto:k.salujauiet@gmail.com
https://doi.org/10.1016/j.cosrev.2020.100298

2 K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298

s
T
a
e
t
c
v
a
i
t
c
p
(
n
n
t

t
w
V
a
o
b
o
m
t
a
a
t
f

t
f
m
a
u

d
f
s
s
n
m
s
V
t
o
V

5. RA3: Service function chaining provisioning techniques .. 8
5.1. Load balancing aware service function chaining (LBA-SFC) ... 8

5.1.1. Discussion.. 14
5.2. Placement aware service function chaining (PLA-SFC) ... 14

5.2.1. Discussion.. 19
5.3. Availability aware service function chaining (AVA-SFC)... 19

5.3.1. Discussion.. 23
6. RA4: Service function chaining challenges.. 23
7. RA5: Research gaps .. 23
8. Conclusion ... 23

Declaration of competing interest.. 24
References ... 24
1. Introduction

In the traditional network architecture, each network device
uch as Load Balancer (LB), Firewall (FW), Network Address
ranslation (NAT), Gateway (GW), Deep Packet Inspection (DPI),
nd Intrusion Detection System (IDS), requires dedicated and
xpensive hardware for its deployment. The hardware-based
raditional deployment phenomenon increases the rigidity and
omplexity of the network [1]. Due to various technological inno-
ations, the number of users of current networks and the required
pplication services, is rapidly growing each day. Therefore, it
s a very tedious and error-prone task for the network operator
o store and transfer a large volume of data according to spe-
ific requirements using a hardware-based network. Additionally,
roblems such as need for high investment in capital expenditure
CAPEX) and operating expenditure (OPEX), hinder the ability of
etwork operators to expand their capabilities. Innovations in
etwork technology are required to address the challenges of the
raditional network architecture [2].

NFV is a promising paradigm to alleviate the problems of the
raditional network approach. NFV converts conventional hard-
are devices into software-based virtual devices that run on the
M instead of a dedicated hardware appliance [3,4]. The software
ppliances are called VNFs. The network functionality running
n the VM provides a similar service as provided by hardware-
ased network function. NFV technology offers benefits in terms
f reduced capital and operating cost, efficiency, rapid develop-
ent, and resource sharing among multiple users according to

he requirement [5]. Moreover, network functions can be placed
nywhere according to the needs rather than using fixed places
nd dedicated hardware for the deployment, as is the case in a
raditional network. NFV is still in its nascent stage with scope
or further innovations.

SDN is another novel networking architecture used to separate
he control plane from the data plane. The centralized monitoring
eature offers many benefits that can help make the network
ore agile, flexible and innovative [6]. The combination of SDN
nd NFV enables automated service function provisioning to end
sers [7,8].
SFC is a popular service paradigm that has been proposed to

erive maximum benefits from both NFV and SDN [9]. Service
unction chaining is defined as an ordered sequence of VNFs and
ubsequent steering of flows through them to provide end-to-end
ervices. SFC using SDN and NFV, facilitates implementation of 5G
etwork slicing and makes the subscriber/operator relationship
ore economical and flexible. An example of an SFC request, as
hown in Fig. 1, consists of the client (source terminal), set of
NFs (FW, DPI, proxy) in a particular order, and a server (destina-
ion terminal). The source and destination are represented using
val shape, and rectangular shape is used to describe different
NFs [10].
1.1. Motivation

The primary motivation behind this work is the evolution
of service function chaining from traditional service chaining to
dynamic service chaining, which is gaining popularity due to
advancement in technologies such as SDN and NFV [11]. More-
over, SFC plays a pivotal role in the implementation of network
slicing in 5G networks which are future generation mobile net-
works [12,13]. NFV is used to virtualize the network functions on
a single high-volume server to create a chain of service functions.
SDN offers benefits to make the SFC more agile, flexible, and
automated. Dynamic service chaining gains maximum benefits
from an amalgamation of both SDN and NFV.

Due to the synergy between both NFV and SDN networking
technologies, many researchers are working to design and im-
plement provisioning techniques for SFCs in this field [14]. It
is also observed that this field is steadily growing in terms of
publications. This work is based on using digital libraries such as
IEEE (ieeexplore.org), Elsevier (sciencedirect.com), Springer, and
ACM for publication analysis. The analysis has been conducted
using the query ‘‘adaptive service function chaining in SDN and
NFV’’ in these digital libraries from 2013–2020, as illustrated in
Fig. 2.

1.2. Related academic research

After a detailed study of the available literature, a few survey
papers have been found on adaptive service function chaining in
NFV and SDN. The survey paper [9] provides information about
SFC standardization efforts and architecture, use cases, and the
importance of SFC in NFV to arrive at future research directions.
Various optimization approaches for SFC implementation are also
discussed in this paper. Another survey paper [15] shows tax-
onomy of control plane and data plane based SFC solutions and
sheds light on the research gaps. The [16] also discusses SFC
architecture along with different stages of SFC. Another survey
paper [10] provides a closer look at SDN architecture, benefits
for the SFC, and also identifies various traffic steering techniques
used by SDN based SFC approaches. [17] provides taxonomy for
VNF placement solutions in SDN. A close inspection of these
existing studies reveals that they fail to provide deep insight into
this research field in terms of combining SDN and NFV technolo-
gies with the aim of provisioning flexible, dynamic, and adaptive
SFCs. An exhaustive coverage of current literature is lacking in
the above mentioned [9,10,15–17] papers. Table 1 shows the
comparison of our survey with the existing related surveys.

1.3. Contributions

This research article aims to make a distinct contribution by
following a systematic methodology to conduct an exhaustive
survey in the field of adaptive provisioning of SFCs in SDN/NFV
networks. This article endeavors to provide an updated eagle’s

K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298 3

i

e
e
i
t
o
A
c
c
s
t
p
s
p
b
m
u
s

l

Table 1
Comparison of our survey with the existing surveys.
Reference Systematic

Literature
Review

SFC
architecture

SFC solutions Taxonomy of SFC
provisioning
techniques

Research
challenges

Research
gapsLoad balancing

based
Placement
based

Availability
based

[9] 2016 × ✓ × ✓ × × ✓ ×

[15] 2016 × ✓ ∗ × × × ✓ ×

[16] 2018 × ∗ × ∗ × × ✓ ×

[10] 2019 × ∗ × ∗ × × ✓ ×

[17] 2019 × × × ✓ × ✓ ✓ ×

This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓: Full ∗ : Partial ×: None
Fig. 1. Service Function Chaining Request.

Fig. 2. Number of publications from 2013–2020 in ‘‘Service function chaining
n NFV and SDN’’.

ye view of all perspectives of SFCs, based on review of the
xisting literature. There is an urgent need for systematic scrutiny
n this field owing to its vast potential and growing popularity in
he telecommunication industry [18]. Techniques for provisioning
f SFCs in SDN/NFV networks are highly sought by CSPs, ISPs,
SPs, to enhance their user experience and business profits. In
omputer science, there are a number of surveys in the field of
loud computing [19] , software engineering [20], and network
ecurity [21] that have used SLR. To the best of our knowledge,
his survey paper is the first in the field to utilize a survey
rotocol using a software engineering strategy for conducting a
ystematic review of the literature. Further, this survey paper
roposes a taxonomy for SFC optimization on the basis of load
alancing of VNFs, placement of VNFs, and availability, since
obile operators assign chains of service functions to a partic-
lar network slice by considering these principles [22,23]. The
ignificant contributions of this paper are as follows:

• Classification of standardized SFC architecture and extended
ETSI NFV architecture for the effective development of SFC.

• Layered taxonomy of different optimization approaches such
as load balancing of VNFs, placement of VNFs, and availabil-
ity for effective provisioning of adaptive SFCs.

• Identification of key research challenges in the area of SFC
deployment.

• Listing of research gaps in techniques for SFC provisioning
for SDN/NFV networks based on analysis of the existing
literature.

The complete article is organized in different sections as fol-
ows. Section 2 describes the SLR protocol consisting of a series
Fig. 3. Systematic Literature Review (SLR) Protocol Process.

of steps to conduct the literature survey systematically. Sec-
tion 3 provides a tutorial on SFC provisioning strategies. SFC
standardized architecture and extended ETSI NFV architecture are
discussed in Section 4. SFC optimization approaches are classi-
fied based on load balancing of VNFs, placement of VNFs, and
availability, in Section 5. The research challenges are discussed in
Section 6. A list of identified research gaps and further research
directions are presented in Section 7. Section 8 summarizes and
concludes the paper.

2. Systematic literature review protocol

The researchers use a sequence of methodologies for system-
atic literature evaluation which assist in achieving widespread
understanding of the problem at hand. The systematic study
offers a constructive method to collect and precisely identify
literature related to a particular research problem. Moreover, it
enables identification of research gaps that provide directions for
further research work. In computer science, there are a num-
ber of surveys in the field of cloud computing [19], software
engineering [20], and network security [21] that used SLR.

The theoretical view of the SLR protocol, as shown in Fig. 3,
consists of a sequence of steps. The first step is to define research
questions that will help formulate the search string. A compre-
hensive literature search is conducted based on the search string
to answer the research questions. The series of steps that are
needed to perform the systematic research are described in the
subsequent sub-sections, along with description of each step.

4 K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298

2

s
q
f
a

r
a
d
t
c
a
I
a
m
w
c
I
l

2

f
s
p
t
c
t

Fig. 4. Systematic Literature Review Process.
.1. Defining research questions

The construction of research questions is the most crucial
tep in systematic research. Then, according to these research
uestions, researchers can scrutinize the searched data and try to
ind out the answers to the specific set of questions. The following
re the four research questions that are addressed in this paper:

RQ1: What are the different strategies used for service func-
tion chaining? How do SDN and NFV technologies lend
momentum to SFCs? (Section 3)

RQ2: What is the standardized SFC architecture consisting of
data plane and control plane components? What is the
extended ETSI NFV architecture for SFC? (Section 4)

RQ3: What are the different approaches used by researchers for
the effective deployment of dynamic SFCs? What are the
strengths and weaknesses of the existing techniques in
literature? (Section 5)

RQ4: What are the different open research challenges faced by
practitioners and researchers in this field? (Section 6)

RQ5: What are the different research gaps in the existing ap-
proaches? (Section 7)

The main emphasis of this article is on answering the above
esearch questions after critically studying all articles related to
daptive service function chaining in NFV and SDN. In RA1, we
efine the evolution of service function chaining, beginning from
raditional SFCs to the current dynamic SFCs. The typical SFC ar-
hitecture consisting of data plane and control plane components
nd extended ETSI NFV architecture for SFC is elaborated in RA2.
n RA3, we critically analyze the SFC optimization approaches
nd propose a taxonomy based on load balancing of VNFs, place-
ent of VNFs, and availability, along with their strengths and
eaknesses. In RA4, we identify various research challenges that
an pave the way and motivate researchers to work in this field.
n RA5, we discuss the various research gaps in the existing
iterature.

.2. Search methodology

The systematic scrutiny of the existing literature started from
inding the appropriate material from the electronic libraries. The
earch strategy is an important step that can affect the overall
erformance of conducting the literature survey. In this paper,
hree phases viz. specific phase, general phase, and reference
hecking phase, are used to perform the literature research for

he period 2015–2020.
• In the specific phase, four digital libraries are considered,
namely ‘‘IEEEXplore [24]’’, ‘‘Springer [25]’’, ‘‘ScienceDirect
[26]’’, and ‘‘ACM Digital Library [27]’’, to find out the re-
search material corresponding to the research problem.

• In the general phase, the main concentration is on digital
search engine ‘‘Google Scholar’’ to find articles related to the
research problem.

• In the reference checking phase, references for some of the
research articles are analyzed. Then find the final set of pa-
pers from recommendations after filtering out the irrelevant
articles to our research topic.

The following are some standard search strings used to search
within digital libraries with slight alternations in the string.

• Dynamic Service Function Chaining in NFV and SDN
• Dynamic Service Function Chaining in NFV
• Service Function Chaining in Software-Defined NFV archi-

tecture
• Adaptive Service Function Chaining

The research articles obtained from all digital libraries using
the search query have been narrowed down for further detailed
analysis. The filtering criteria is based on title, abstract, and full
text, to refine the results for the comprehensive review. Fig. 4
represents different stages of the SLR process [21].

2.3. Study selection criteria

In this section, additional criteria has been adopted to select
only relevant work to the problem statement. At this stage, only
those studies have been added to the final list that were able to
answer the research questions.

In the specific phase, all four digital libraries returned a total
of 1481 entries. The general phase fetched a total of 1000 entries
from Google scholar. From the specific and general phase, a total
of 2481 entries are available in Stage 1. The total number of ar-
ticles fetched from both the phases were further narrowed down
after critical analysis. In Stage 2, 419 entries were withdrawn
from the list of total articles obtained from Stage 1 and remaining
2062 entries were passed to the next stage. Then the elimination
of items based on title (1465 studies excluded), abstract (419
entries removed), and full text (121 studies eliminated) was done
in the subsequent stages. After final Stage 5, a total of 70 studies
were extracted as shown in Fig. 5.

The following are the points for inclusion criteria:

• Articles that can provide valuable information regarding the

SFC concept in NFV.

K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298 5
Fig. 5. Total number of studies at each stage of Systematic Literature Review
(SLR) Protocol.

• Studies that can provide answers to the given research
questions.

• Studies related to the deployment of Service Function Chain-
ing with different approaches.

• Studies that can help to differentiate the Static Service
Chaining and Dynamic Service Chaining, their respective
strengths, and limitations.

• Articles that shed light on SFC architecture along with its
components, SDN/NFV based SFC architecture.

The following are the points for exclusion criteria:

• The research work was not able to provide an adequate
amount of information.

• The article was not written in the English Language.
• The studies were not related to the research topic.
• The paper was not published between the years 2015–2020.

2.4. Reference checking

The references of final set of articles were analyzed and these
articles were passed back to Stage 3 for scrutiny against exclu-
sion criteria defined in subsequent stages. This step reduced the
probability of omitting any relevant research article.

2.5. Data extraction

In the last step, remaining high-quality papers were critically
reviewed to extract the data from each article for answering
the research questions. A pre-designed excel form was filled
by analyzing the final set of documents. The spreadsheet con-
sists of fields such as title, objective, criteria for SFC, parame-
ters, methodology, experimentation tool, SFC strategy, number
of chains, strengths, weaknesses, and performance metrics. Ul-
timately, a total of 70 studies were entered with these fields.
Table 2 shows the distribution of the articles according to the type
of publication i.e. whether it is a journal, conference, symposium
or workshop publication.

3. RA1: Service function chaining strategies

3.1. Static service function chaining

In traditional service chaining, network functions are imple-
mented as hardware middle boxes [28], and all are physically
Fig. 6. Static Service Function Chaining.

Table 2
Distribution of the articles according to the type of publication.
Publication type No.of studies Percentage

Journal 33 47.14%
Conference 24 33.80%
Symposium 10 14.08%
Workshop 3 4.22%

connected. FWs, NAT, Web Proxies, LBs are examples of middle
boxes used by network operators for security or performance
purposes [29]. In the static type of model, every packet, or flow
will have to pass through the chain, although some requests need
only a subset of these network services. The following are the
limitations of this approach [30]:

• Every device should have enough capacity to handle the full
traffic, although some have to only pass the traffic without
processing it. Therefore, all services are designed with a
pessimistic approach [31].

• It is not possible to apply only desired network functions
based on specific flow.

• CAPEX and OPEX cost due to purchasing new hardware
devices if the existing topology is not able to fulfill it.

• The network devices must be physically connected and
manually configured by network operators which may lead
to inconsistent configuration.

As shown in Fig. 6, the source wants to send the request
to destination and needs only firewall and deep packet inspec-
tion network function. But in static service chaining, traffic must
pass through the entire network function chain regardless of the
need [32].

3.2. Dynamic service function chaining

In dynamic service chaining, SDN and NFV replace traditional
middle-boxes with VMs and allow dynamic service chaining [33,
34]. In dynamic service chaining, the traffic needs to be steered
only through desired network functions according to specific flow
requirements [35]. SDN controller can create chains dynamically
and forward traffic intelligently to a particular network function
based on the label such as VLAN, source MAC address, network
service header (NSH). This type of chain is called a software
control service chain. The same network function can be used
in different function chains. The dynamic service chaining model
offers several advantages to operators, such as proper utilization
of network and compute resources [36,37]. The following are the
advantages of dynamic SFC:

• Service function chaining with SDN/NFV provides greater
flexibility for end-to-end service provisioning. The SDN con-
troller will configure the different service chains for a new
subscriber by defining a new policy.

6 K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298

A
f
c
i
T
a
D
f
c

4

t
f
u
d
(
f
a
a

T
S

Fig. 7. Dynamic Service Function Chaining.

Fig. 8. Different Service Function Chain examples.

• Reduces capital, operational cost as controller steers the
traffic to only essential network function and eliminates
over-provisioning of the network.

• SDN provides scalable, dynamic, flexible, and automatic ser-
vice function chaining. Moreover, it gives a better experi-
ence for users as providers keep in mind the requirements
of users.

• The pessimistic approach is not used to design networks
functions. Only those devices will have enough capacity that
are used for processing.

• If traffic requirement increases for a particular chain, the
ability of only those network functions increases, that are
present in that chain.

s shown in Fig. 7, request1 caters to accessing web service
rom the server and needs only basic firewall and NAT. The SDN
ontroller creates a service function chain for request1: [FW, NAT]
n which traffic will pass through the only firewall, and NAT [38].
he request2 caters to accessing critical data from the server,
nd the controller will create separate SFC of request2: [FW,
PI, and NAT] in which traffic will pass through all the network
unctions [39]. The request3 will pass through the only DPI using
hain: [DPI].

. RA2: Service function chaining architecture

In service function chaining, the sender sends the traffic into
he network that will pass through a chain of VNFs to reach the
inal destination according to the type of incoming traffic, and
ser. As shown in Fig. 8, different colors of the line represent
ifferent service chains (SCs) consisting of Network Functions
NFs) in a particular order [40]. When traffic enters, the classifier
irst classifies the traffic pattern into suitable category and then
pplies the most appropriate SC. Some examples of typical SCs
re as follows [41]:

• SC1: [LB, FW, Encryption]
• SC2: [FW, Encryption, DPI]
• SC3: [LB, DPI]
Fig. 9. SFC Data Plane and Control Plane Components.

able 3
FC data plane and control plane components.
SFC data plane elements : Responsibility
SCF : Data classification
SFF : Traffic forwarding
SF : Network functionality
SFC-Proxy : SFC encapsulation
SFC : Abstract view of series of SFs
SFP : Actual path of Service Function
SFC Encapsulation : Identification of SFP
SFC enabled domain : Region where SFC is implemented

SFC control plane elements : Responsibility
C1 (Interface between SFC Classifier and SFC control plane) : SFC control
plane inserts SFC classification rules into SFC classifier
C2 (Interface between SFF and SFC control plane) : SFC control plane inserts
flow rules into SFP forwarding table maintained by SFF
C3 (Interface between SFC aware SFs and SFC control plane) : SFs send their
status to SFC control plane
C4 (Interface between SFC Proxy and SFC control plane) : SFC proxy sends
information about unaware SF

4.1. Standardized architecture for SFC deployment

The delivery of end-to-end services to the user depends on a
series of network functions. The network functions such as FW,
IDS, Intrusion Prevention System (IPS), Web Proxy, and Video
Optimizer are sequentially processed in a chain called SFC [42].
Internet Engineering Task Force (IETF) [43] has developed SFC
architecture, and it defines all the components of SFC [44]. SFC ar-
chitecture consists of Service Classification Function (SCF), Service
Function (SF), Service Function Forwarder (SFF), SFC enabled do-
main, and SFC proxy, These components communicate with each
other with the help of SFC Encapsulation. IETF has defined SDN-
based SFC architecture as a two-layered architecture consisting of
data plane and control plane components [45].

4.1.1. SFC data plane component
The following elements are present in the SFC data plane

component, as shown in Fig. 9. All the standard terms used in
the SFC data plane and control plane architecture are shown in
Table 3 [46]. .

1. Service Classifier Function (SCF): This component is re-
sponsible for the classification of data. When a packet enters
into the network, SCF classifies and match it with avail-
able policies and then chooses the appropriate SFC. It adds
SFC encapsulation to define a set of the required service
functions [47].

2. Service Function (SF): SF is responsible for performing a
particular network function. SF is a logical or virtual compo-
nent used to give specific treatment to a packet. There may
be multiple instances of the same network function that can

K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298 7
Fig. 10. SDN/NFV based Dynamic Service Function Chaining.
be present in the SFC enabled domain. Network functions
can be of two types:If the data sent to SF contains SFC encap-
sulation (identifier to identify SF), then it is called SF aware.
If the data sent to SF does not include SFC encapsulation,
then it is called SF unaware.

3. Service Function Forwarder (SFF): A number of SFs can
be connected using SFF. It is responsible for forwarding the
traffic from one SF to another SF or SFF, according to the
attached SFC encapsulation. SFF acts as a forwarding device
for an incoming packet.

4. Service Function Chain (SFC): SFC is an abstract view of SF
that is applied to the packet resulting from SCF.

5. Service Function Path (SFP): The actual path that consists
of a number of SFFs and SFs to steer the traffic, is called SFP.

6. Service Function Chaining Proxy (SFC-Proxy): SFC proxy
inserts and removes SFC encapsulation for unaware SFs.

7. Service Function Chaining Encapsulation: It provides an
identifier that is used to forward the packet to particular SFF
and SF. It is used for SFP identification.

8. Service Function Chaining enabled domain: SFC enabled
domain is a network region where SFC is implemented.

9. Chain Termination Function (CTF): This is the termination
point of the SFC-enabled domain.

4.1.2. SFC control plane component
The following components are present in SFC Control Plane

as shown in Fig. 9 [46]. The primary responsibility of the SFC
control plane component is the management and controlling of
SFC, management of SFs, the mapping of an abstract view of SFC
to actual SFP, and inserting rules into SFF components of data
plane. This is shown in Table 3. It is responsible for dynamically
changing the SFP if any SF or link is overloaded or inactive due
to an error [48]. It is also used for administrating and controlling
SFC data plane components. The four reference interfaces, namely
C1, C2, C3, and C4 are used by the SFC control plane component
to communicate with the SFC data plane component [49].

1. Interface between SFC Classifier and SFC control plane
(C1): This interface is responsible for inserting SFC classifi-
cation rules into the SFC classifier. Then the classifier only
binds the incoming traffic to particular SFP according to
that rule. The control plane also updates and deletes the
classification rules.
2. Interface between SFF and SFC control plane (C2): The
SFC control plane inserts flow rules in the SFP forwarding
table of SFF using interface C2. Then SFF forwards the traffic
according to the rules stored in a table.

3. Interface between SFC aware SFs and SFC control plane
(C3): This interface is used by SFs to send their status to
the SFC control plane. Then the control plane uses this
information to update the rules into the SFP forwarding
table of SFF.

4. Interface between SFC Proxy and SFC control plane (C4):
Using this interface SFC control plane can interact with SFC
proxy. SFC proxy sends information about the unaware SF
to the SFC control plane.

4.2. SDN/nfv architecture for SFC deployment

In modern telecommunication networks, the demand for in-
ternet services has increased due to the emergence of novel
networking architectures such as the Internet of Things (IoT) [50].
But the static service chaining model is not optimized to provide
internet services in terms of reducing CAPEX and OPEX. Further-
more, adding new functionality to existing architecture is hard for
network operators [51]. As a result, the dynamic SFC model has
become a promising research area. The limitations of the static
SFC model can be eliminated by combining key technologies of
SDN and NFV. The central controller of SDN architecture has a
global view of the whole network topology. Then the controller
updates the rules into the flow table of the switch, thus providing
centralized control of VNFs [52].

The SDN/NFV based architecture for SFC consists of three types
of components, namely — Orchestration Plane, Control Plane,
and Data Plane, as shown in Fig. 10. The main responsibility of
the Orchestration Plane is to build SFC strategies to control the
global network according to different network traffic or user de-
mands [53]. The SDN controller adds flow rules into the OpenFlow
table of the switch to orchestrate different VNFs. According to
a particular SFC strategy, the SDN controller performs mapping
of VNFs and virtual links onto a substrate network and form a
SFP [54]. The switches/routers and NFV platforms reside in the
data plane and are responsible for the flow of traffic and service
processing [55].

8 K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298

4

i
e
s
r
d
I
M
i
i
t
i
G
a
‘
N

M
S
S
a
n
d
c

a

Fig. 11. Extended ETSI NFV Architecture for SFC.

.3. Extended ETSI NFV architecture for SFC deployment

The new component SFC Orchestrator (SFC control path) is
ntegrated with the existing ETSI NFV framework to provide an
ffective and flexible SFC deployment in the cloud network as
hown in Fig. 11. The NFV Orchestrator (NFVO) component is
esponsible for managing the operations such as instantiation,
eletion, and scalability of network functions using Virtualized
nfrastructure Manager (VIM) [56]. The Virtual Network Function
anager (VNFM) is accountable for managing VNF instances (SFs

n SFC terminology) [57]. The global view of the whole network
s used by the SDN controller to provide flow rules in the flow
able of switches. The main component of ETSI NFV architecture
s the SFC orchestrator responsible for making VNF Forwarding
raphs (VNFFGs) for network traffic. Consequently, SFC policies
re designed for classifiers and SFFs. The new component uses the
‘Sfco-Nfvo’’ and ‘‘Sfco-Sdnc’’ interface for communicating with
FVO and SDN controller respectively.
The SFC orchestrator consists of two functional blocks: SFC

anager, and SFC catalogue. The SFC manager is responsible for
FC deployment and its management by communicating with the
DN controller and NFVO. Moreover, it is also responsible for
dding, deleting, and updating the operation of SFC and building
ew SFP on top of the SDN controller. In turn, SFC catalogue is a
atabase that stores all information regarding SFP, SFC, and SFC
lassifier rules.
The successful SFC deployment depends upon the following

ctivities [58]:

1. Instantiation and Deletion Operation: All components
present in ETSI NFV architecture such as NFVO, VNFM, and
SDN controller are used for the dynamic deployment of SFC.
NFVO is responsible for extracting and launching VNFGG
and providing different SFPs that defines the specific order
of SFs. The VNFM receives requests from NFVO to initiate
and delete the VNFs according to a particular SFC request
and acknowledge back to NFVO. Then NFVO creates Name
Server (NS) records for addition and deletion and sends it
to SFC orchestrator [59]. The SFC orchestrator parses the
VNFFGs received from NFVO in the NS record. Consequently,
the SFC orchestrator creates flow rules of SFP for the SDN
controller. Finally, the SDN controller adds flow rules into
the flow table of switches. Then it notifies the SFC orches-
trator about the successful operation of SFC. This series of
steps is depicted in Fig. 12.
2. Scaling in/out Operation: For scaling operation, a set of au-
toscale policies are defined at the VNF level using a thresh-
old value. If the average amount of CPU load, memory uti-
lization increases/decreases from the threshold value, then
the monitoring component generates an alarm for scale
in/out the operation. The NFVO checks scale in/out of action
and then requests VNFM to instantiate or delete the VNFs
respectively. VNFM acknowledges back to NFVO after the
instantiation/ deletion of VNF [60]. NFVO creates an NS
record for the SFC orchestrator to update the SFP and SFC
according to scaling operation. The SFC orchestrator calcu-
lates the effective SFP and then creates flow rules for the
SDN controller. Finally, the SDN controller adds flow rules
into the flow table of a switch and notifies SFC orchestrator
of the successful scaling operation as shown in Fig. 13.

5. RA3: Service function chaining provisioning techniques

In this section, we have done the in-depth analysis of the final
set of 70 research articles that are obtained from Section 2. These
research articles are classified into three categories on the basis
of provisioning techniques for SFCs because mobile operators
assign chains of service functions to a particular network slice by
considering these principles three parameters.

1. Load Balancing Aware SFC provisioning (LBA-SFC)
2. PLacement Aware SFC provisioning (PLA-SFC)
3. AVailability Aware SFC provisioning (AVA-SFC)

In the final set of articles, 21 articles deal with LBA-SFC, 28
studies relate to PLA-SFC, and 21 studies provide information
regarding AVA-SFC. Fig. 14 presents a state-of-the-art taxonomy
that divides the service function chaining solutions into nine
categories based on criteria, type of network function, number
of chains, SFP strategy, objective, optimization method, network
scenario, experimentation tool, dataset, and performance metrics.

5.1. Load balancing aware service function chaining (LBA-SFC)

In this section, the proposed taxonomy considers criteria of
VNF load balancing, link load balancing, and both VNF and link
balancing, as well as parameters of CPU utilization, memory uti-
lization, disk usage rate, and bandwidth utilization [61], to di-
vide the load balancing solutions in the literature, as shown in
Fig. 15 [62]. Table 4 shows some LBA-SFC deployment solutions.

Lee et al. [63] used uniform distribution, and network-aware
distribution methods for flow distribution. In uniform distribu-
tion, no resource constraint (capacity or link bandwidth) of the
service function is considered. The flow is equally distributed
among service functions that provide the same service. In
network-aware distribution, flow distribution problems are rep-
resented as linear programming problems that also consider
link bandwidth. The authors proposed optimal flow distribution
that can minimize the end-to-end flow latency by considering
both capacity and link bandwidth. This model minimizes the
end-to-end flow latency. However, they considered only link
bandwidth and SF capacity but did not optimize the processing
delay and queueing delay at each SFF. In addition, different capac-
ity SF instances may be deployed. Moreover, there is no solution
presented by the authors to handle faulty components. Mixed
physical and virtual functions may be used for the effectiveness
of optimal flow distribution. Medhat et al. [64] provided efficient
SFP after selecting appropriate VNFs from multiples by consid-
ering the load parameter of VNFs across multiple data centers.
They used two algorithms for VNF selection: uni objective and
multi objective. The uni objective algorithm considered only load
balancing among number of VNFs. The multi objective algorithm

K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298 9

c
a
e
t
a
p
c

S
t
c
m
p
l
t
g
T
F
a
a
c
s
s
r
1
t
V
w
p
s
a
i

p
V

Fig. 12. Instantiation and deletion operation for SFC deployment.
onsidered multiple objectives such as VNF load, application type,
nd end-to-end delay for selection. This algorithm optimizes both
nd-to-end delay and load of service function jointly as compared
o other SF selection algorithms. The work can be extended by
dding dynamic mechanism in the monitoring of delay and load
arameters since they used static value. The proposed algorithm
an be tested in the ODL SFC real environment as a future step.
Lin et al. [65] introduced the Hashed Based Load Balancing

cheme named Balanced Hash Tree (BHT) that enables switches
o select service functions for chaining without the help of the
ontroller. This is the first work that helps to improve the perfor-
ance of the system by eliminating the data plane and control
lane overhead for selecting the service functions. The SF and Link
oad balancing should be addressed simultaneously, but the au-
hors considered only SF load balancing. Moreover, the OpenFlow
roup table is required on switches to implement this approach.
hai et al. [66] developed the 2-phase algorithm named Nearest
irst and Local–Global Transformation to address both network
nd server load balancing simultaneously. In the 1st phase of the
lgorithm, a greedy method is used to create a service chain that
onsiders both server and link load balancing. The next VNF is
elected from all VNFs having the lowest latency (network and
erver) from the current location. In the 2nd phase of the algo-
ithm, searching is used to improve the solution selected in the
st phase. In this method, a new service chain is built by replacing
he existing VNF with another VNF or by swapping the order of
NFs. In this approach, the overloaded server or overloaded path
ill not be selected to forward the traffic because both server and
ath load balancing is performed. However, it is a sub-optimal
olution because it does not consider all combinations of VNFs
nd their respective links. Moreover, the proposed work is not
mplemented in a real environment.

Akhtar et al. [67] used a control-theoretic load balancing ap-
roach. The distributed monitoring application running on the

NF host using the RINA framework [68] continuously gets load
information. Then it sends this status information to the central
controller that uses control theoretic Propositional Integral (PI)
algorithm to balance the load. PI algorithm forwards the traffic
to the next VNF when the load on the first VNF exceeds its
maximum capacity. This is the first work that uses a control
theory approach for load balancing of VNFs. They did not handle
the scalability and fault tolerance issues in terms of VNFs. Also,
they performed only load balancing among VNFs while ignoring
link capacity. Thai et al. [69] designed, implemented, and vali-
dated load balancing algorithm for SFC named Hash-based Load
Balanced Traffic Steering on Soft-switches (HATS). The main idea
of this algorithm is that hash-based techniques are implemented
on soft-switches for network and server load balancing without
the intervention of the control plane. It can perform VNF and
network load balancing and also decrease data plane and control
plane overhead. Moreover, packets can follow a different path
to reduce hash collision. However, the author did not provide
any solution to solve the packet reordering problem when the
packets belonging to the same flow follow a different path. Fur-
thermore, the proposed approach also suffers from load balancing
performance issue due to elephant flow [70].

Hong et al. [71] proposed an improved version of the legacy
interface to Network Security Functions (l2NSF). They added a
monitoring component in the legacy framework that monitors
the load of network security functions (NSF) and sends this in-
formation to the controller. Then the controller calculates the
load status and other resource usage parameter of each NSF and
forwards the traffic to less-loaded NSF. It improves the efficiency
of the system by traffic load balancing. But, the authors did
not validate their research work in a real environment, such as
OpenStack. Moreover, the work has considered only one type of
network security function, which is a firewall for packet inspec-
tion. Also, packet inspection on a per user basis is not done. Chou
et al. [48] developed the VLAN tag and OpenFlow based service

function chain (VOFSFC) framework for the SDN environment

10 K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298
Fig. 13. Scale in/out operation for SFC deployment.
to improve the flexibility of the network and to maximize the
network resource utilization. It assigns a unique VLAN ID to
each SFP which makes deletion and updation of SFPs easier. The
limitation of the work is that it does not consider the load of the
virtual network function. The proposed work is not scalable in
terms of the addition and deletion of NFs.

Kim et al. [72] formulated dynamic service function chaining
by calculating the physical and virtual resource usage by each
network function using the reinforcement learning algorithm ‘‘Q-
learning’’ which is based on reward and penalty paradigm. The
agent performs an action on a particular state on the environment
and receives a positive (reward) or negative (penalty) response
from the environment. The best-calculated value of the reward
(R) is saved for each state. The best reward value is obtained
when the load is equally distributed leading to better utilization
of resources. They considered both network and VNF resources
to select the next node for SFC. But, the scalability is limited
in terms of adding and deleting VNF type on different nodes to
form a SFC. Moreover, fault tolerance is not included to handle
the fault in VNFs. A QoS aware scalable module for SFC orches-
tration that is capable of dynamically adding new SF instances
to handle the overload problem has been developed in [73]. It
re-routes the traffic towinin in ards a new path if any SF is
overloaded and provides QoS aware load balancing SF selection.
The proposed framework provides elasticity by adding a QoS
aware scalable module as the main module into the SFC or-
chestrator. But, the proposed framework has been validated with
only a small number of chains. Moreover, one chain consists of
only a small number of SFs. Scaling in/out should be validated
simultaneously. The model can be further extended in terms of
multiple SFF and multiple SFs running on each SFF.

Thai et al. [74] introduced subsequent extension of their previ-
ous work [69] to solve the hash collision problem. They designed
two algorithms based on the previous HATS algorithm. The first,
HATS with Flow-Cell Based Multipathing (HATS-Flow-Cell), di-
vides the elephant flows into small flows called flow-cell, and
each flow-cell acts as an individual flow and follows a differ-
ent path. The second, Dynamic Weight Adjustment for HATS
(D-HATS) algorithm, updates the weight value (VNFs and path)

according to the current load periodically. Overloaded VNFs and
Fig. 14. Taxonomy of SFC approaches.

K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298 11
Fig. 15. Criteria wise classification of SFC deployment.
paths have smaller weight values while underloaded VNFs and
paths have a higher weight value. These approaches helped to re-
duce the hash collisions effectiveness. It helps to remove control
plane overhead in terms of handling many packet-in messages
from the data plane. Also, it helps to improve system performance
by reducing flow setup time. However, this paper did not discuss
load balancing during the dynamic deployment and scalability of
VNFs. The heuristic algorithm named Closed Loop Feedback (CLF)
proposed by Sun et al. [75] is based on the consolidation-splitting
strategy for network resources. It finds the shortest path for
SFC that provides efficient and minimum resource consumption.
They also introduced the use of deep learning strategy, Restricted
Boltzmann Machine (RBM), to improve the performance of CLF.
The limitation is that the authors did not consider the actual link
delay between the nodes, instead they randomly assigned the
value of delay parameter. Furthermore, the scalability parameter
was not considered. Ma et al. [76] developed a framework for
the efficient collection of SFPs. In this approach, SFPs having
over-loaded service function and service function having price
higher than acceptable price, are eliminated. Then the efficiency
of remaining SFPs is calculated and the one having greatest ef-
ficiency is selected. It provides higher service level agreement
(SLA) to users. However, since all nodes are attached to a single
switch, so network latency is not optimized. Also, scalability is
not present in terms of the addition and deletion of SFs. The
resource utilization threshold value is taken as 80%, without
suitable explanation.

Hong et al. [77] performed a detailed analysis of a Differenti-
ated Routing Problem for SFC (DRP-SFC) to construct the path for
servicing the request by optimally selecting VNFs. Load balancing
of VNFs is performed when more than one resource of the same
type exists in the network. Resource Aware Routing Algorithm
(RA-RA) is proposed to solve the DRP-SFC problem. This is the
first work that manages differentiated routing strategies for flow
with a particular SFC request. The work can be extended by
VNF deployment in the ISP network along with the datacenter.
Moreover, SFC failure is not considered by the proposed frame-
work. Also, we can design more efficient differentiated routing
algorithm in terms of time efficiency to route the traffic. Hei-
deker et al. [60] used queueing based theory model to define
the capacity of VNFs and provide future prediction behavior. The
results show that only overloaded functions need to be scaled
out to reduce expenditure. The existing studies in the literature
used heuristic or AI based techniques for NFV that consider static
management. But, they used the queueing model in which future
prediction is easy. The work can be extended by adding more
number of VNFs or by considering multiple SFCs.

Sun et al. [78] developed a Service Function Chain Deployment
Optimization (SFCDO) algorithm based on Breadth-First Search
(BFS). It optimizes the delay, resource consumption, and load
balancing of VNFs. BFS finds the shortest path from source to des-
tination and then chooses a path with a smaller number of hops
to implement SFC. The developed algorithm gave satisfactory
results in terms of delay and resource utilization. It considered
both resource and link utilization for SFC deployment. Moreover,
the load balancing module also improves reliability. However, we
can add security network function in the SFC deployed to secure
the network. Gu et al. [79] proposed a proactive online learning
algorithm named Elastic Virtual Network Function Orchestration
(EVNFO) which is a dynamic policy model based on workload
prediction. All existing approaches mostly rely on offline poli-
cies and ignore the dynamic characteristics of the workload.
They implemented Online Instance Provisioning Strategy (OIPS)
to dynamically provision VNF instances according to the demand
and workload fluctuation. The proactive approach predicting the
workload offers significant benefits in terms of cost minimization
and service quality.

12
K.Kaur,V.M

angat
and

K.Kum
ar

/
Com

puter
Science

Review
38

(2020)
100298

ario Tools/Dataset Practical
implementation

Performance
metrics

network GT-ITM
(topology
generator)

Partial Flow latency,
flow dropping
rate

-enabled
center
ork

MATLAB Partial End-to-end
delay, SF load

-enabled
ork

Ryu controller,
OVS, Mininet

Partial Packet-in
processing
time, load
balancing
performance

and
-enabled
ork

Mininet, ODL
controller, OVS

Full Bandwidth
utilization

and
-enabled
ork

GENI testbed,
OpenFlow
Controller, OVS,
RINA
framework

Full CPU load

and
-enabled
ork

ODL controller,
OVS, Mininet,
Click OS

Full Flow entries,
service chaining
time and load
balancing
performance

and
-enabled
ork

ODL controller,
Mininet

Full Throughput

and
-enabled
ork

Pica8 OpenFlow
Switch, Ryu
Controller,
Hypervisor

Full Traffic statistics

and
-enabled
ork

ODL Controller,
OpenStack

Partial CPU utilization,
arrival time for
file

and
-enabled
ork

OpenStack, ODL
controller

Full Traffic load,
packet loss rate

and
-enabled
ork

ODL Controller,
OVS, Mininet

Full Flow entries,
service chaining
time and load
balancing
performance

-enabled
ork

US Network
Topology

Partial Communication
delay,
acceptance
ratio,
deployment
time cost,
resource
utilization

(continued on next page)
Table 4
Load Balancing Aware Service Function Chaining (LBA-SFC).
Ref Aim Load balancing criteria Parameters Number

of chains
Service function
path strategy

Type of network
functions

SFC deployment
objective

Optimization
method

Scen

VNF Link Both VNF
and Link

[63] Optimal
distribution of
traffic among
multiple SFs

✓ Node capacity
and link
bandwidth

Multiple Static —- Minimize flow
latency

ILP NFV

[64] Load balanced
and highly
available SFC

✓ VNF load,
application
type, delay

Multiple Static —- Reduce
end-to-end
delay and
improve
balanced load

—- NFV
data
netw

[65] Server load
balanced SFC

✓ Traffic in bytes
received from
server

—- Dynamic —- Reduce
packet-in
processing time

Hash algorithm NFV
netw

[66] Network and
Server Load
Balancing for
SFC

✓ Packet arrival
rate

Single Dynamic —- Improve
throughput,
increase
bandwidth
utilization

Greedy
approach

SDN
NFV
netw

[67] Control
theoretic based
load balancing
of VNFs

✓ Average CPU
load

—- Static IDS Minimize load Control theory SDN
NFV
netw

[69] Server and link
load balanced
SFC

✓ —- Multiple Dynamic LF, BS, IF and
NAT

Reduce
packet-in
processing time
and system
overhead

Hash Algorithm SDN
NFV
netw

[71] Load balancing
of network
functions based
on monitoring

✓ System state,
CPU and
memory usage
rate, disk usage
rate, remaining
disk space

—- Dynamic FW Improve packet
throughput and
resource
utilization

—- SDN
NFV
netw

[48] Load balancing
of SFC and
routing

✓ Traffic in bytes Multiple Static FW, IDS, NAT,
Web Optimizer,
Video
Optimizer, DPI,
Monitoring

Improve
resource
utilization

—- SDN
NFV
netw

[72] Learning
resource usage
using
reinforcement
learning for
SFC

✓ CPU, Memory,
and network
usage

—- Dynamic —- Equal load
distribution

Reinforcement
learning

SDN
NFV
netw

[73] QoS aware load
balancing for
scalable SFC

✓ CPU load,
network usage

Multiple Static FW, HHE, PC Minimize cost
and delay

—- SDN
NFV
netw

[74] Load balanced
SFC

✓ —- Multiple Dynamic LF, BS, IF and
NAT

Reduce
packet-in
processing time
and system
overhead

Hash function SDN
NFV
netw

[75] Cost-efficient
SFC

✓ —- Multiple Dynamic —- Optimal
resource
utilization and
cost
minimization

Heuristic
algorithm

NFV
netw

K.Kaur,V.M
angat

and
K.Kum

ar
/
Com

puter
Science

Review
38

(2020)
100298

13

Tools/Dataset Practical
implementation

Performance
metrics

NFV Mininet, ODL
controller

Full Utilization rate,
standard
deviation,
rejection rate
for SFC request,
packet loss rate

NFV MATLAB,
CORONET
CONUS
Topology

Partial Throughput,
hop count, load
balancing, and
acceptance rate

NFV Pica 8
OpenFlow
switch, XEN
hypervisor

Partial Throughput,
latency, service
rate

NFV OpenStack,
Chinese
Network
Topology

Full End-to-end-
delay,
bandwidth
consumption,
load rate of
node

work Geant Topology Partial CPU utilization,
throughput,
operational
expenditure

bled
ork

US wide
Network
topology

Partial Acceptance
ratio, link
utilization,
queueing delay,
mapping cost

bled Geant Topology Partial Delay,
operational
expenditure,
acceptance
ratio, workload
of VNF

bled
Containernet
emulator,
Topology
generator,
ONOS,
OpenvSwitch

Full No of
successful SFC
requests

bled Kubernetes
platform (K8),
docker

Partial Deployment
time, network
latency,
throughput
Table 4 (continued).
Ref Aim Load balancing criteria Parameters Number

of chains
Service function
path strategy

Type of network
functions

SFC deployment
objective

Optimization
method

Scenario

VNF Link Both VNF
and Link

[76] Load and
cost-effective
service function
selection for
SFC

✓ CPU utilization
rate, memory
utilization rate,
network
throughput,
unit price

Multiple Static —- Maximize
resource
utilization,
minimize SFC
rejection rate
and packet loss
rate

—- SDN and
network

[77] Resource aware
routing for SFC

✓ Link
Bandwidth,
end-to end
delay, CPU
utilization, flow
entries of
switch

Multiple Static —- Load balancing
and minimize
resource
consumption

—- SDN and
network

[60] Load balanced
SFC

✓ —- Multiple Static FW, NAT Reduce
complexity

Queueing
theory model

SDN and
network

[78] Less delay and
resource
efficient SFC

✓ Resource
consumption,
end-to-end
delay

Single Static —- Maximize
throughput and
proper resource
utilization

Heuristic
algorithm

SDN and
network

[79] Workload
prediction
based dynamic
SFC

✓ Aggregated
flow rate

Multiple Dynamic FW, Encryption,
IDS, NAT

Cost
minimization

Mathematical
model

NFV net

[80] Network load
balance based
parallelized SFC

✓ Computing
resources,
bandwidth
capacity

Multiple Dynamic —- Minimize
queueing delay
and improve
load balancing
and acceptance
ratio

Heuristic
Algorithm

SDN and
NFV-ena
DC netw

[81] Delay
guarantee
resource
allocation for
SFC

✓ Computing
resources,
bandwidth
capacity

Multiple Dynamic FW, Encryption,
IDS, NAT

Minimize
end-to-end
delay

—- NFV-ena
network

[82] State aware
SFC

✓ Bandwidth,
delay, packet
loss rate, link
cost

Single Dynamic —- Maximize
throughput
Minimize path
cost and
end-to-end
delay

Machine
Learning
Approach

SDN and
NFV-ena
network

[83] Microservice
based traffic
steering

✓ Threshold
capacity

Multiple Static Firewall, VPN
gateway

—- —- NFV ena
5G core
network

14 K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298
Sun et al. [80] proposed a parallel VNF chain for mice flow [84]
to alleviate the problems incurred by elephant flow [70] such as
long queueing delay and flow completion time. They designed an
online parallelized heuristic algorithm (ONP-SFO) based on the
worst-fit strategy. First, they divided user requests into several
sub-flows and also replicated the same number of sub-SFCs. Then
each sub-flow is forwarded into one of the parallelized sub-
SFC according to worst-fit strategy. The results show that this
algorithm outperforms in terms of improving load balancing,
acceptance ratio, and reducing delay. This work can reduce the
hash collisions discussed by Thai et al. [69] with the deployment
of parallel VNF-SFCs. The flow splitting operation, according to
latency-aware, throughput-aware, and security-aware demands,
was not considered in the experiment. To optimize resource
allocation while guaranteeing the service delay, Gu et al. [81]
proposed LGOS (Layered Graph-based SFC orchestration Scheme).
In this approach, resource cost and its corresponding delay are
labeled as a weight in a graph, which helps to find out the shortest
path. The proposed scheme able to reduce operational expendi-
ture, end-to-end delay, and improve the acceptance ratio. This
study proposes batch processing algorithm to process a number
of SFC requests in a single batch.

Jeong et al. [82] proposed a machine learning approach to
measure the network performance quickly and then select the
optimal path for the new SFC request. The existing mathematical
model cannot provide an optimal solution for scalable problems.
The proposed machine learning approach considers network pa-
rameters and finds a suboptimal solution. The work can be ex-
tended by adding VNF node characteristics (CPU usage) along
with link parameters into existing model. The proposed model
can be tested in a real environment such as OpenStack. Dab
et al. [83], authors discussed the 5G traffic steering in micro
services based NFV network. Then they proposed weighted round
robin load balancing algorithm to balance the traffic.

5.1.1. Discussion
In Load Balancing Aware SFC provisioning (LBA-SFC), our pro-

posed taxonomy considers criteria of VNF load balancing, link
load balancing, and combined VNF plus link load balancing to
segregate the existing load balancing solutions in literature. In
the final set of articles, 21 articles deal with LBA-SFC. This cat-
egory of methods considers parameters such as CPU utilization,
memory utilization, disk usage rate, and bandwidth utilization,
in order to balance the load among different VNFs and links with
the objective of improving resource utilization and minimizing
latency. After critically reviewing all the research articles, it can
be summarized that the design and implementation of load bal-
ancing based SFC solutions is still an open research area that
needs to be addressed properly. Most of the researchers have
examined the VNF load balancing, but link based load balancing
is not explored in depth in the literature. Further, the existing
methods can be improved by adding fault tolerance mechanisms
to make the network robust against failures at VNF or link level.
Additionally, the load balancing solutions should be scalable in
terms of adding or deleting more network functions

5.2. Placement aware service function chaining (PLA-SFC)

This section presents a discussion of the proposed taxonomy
considering criteria of NF placement and NF chaining, and NF type
as Physical NF (PNF), VNF, and Container NF (CNF), to divide the
VNF placement solutions in literature. This is shown in Fig. 15.
Placement aware SFC deployment solutions are discussed in this
section and presented in concise form in (Table 5).

Ghribi et al. [85] designed Dynamic Programming (DP) algo-
rithm for fast, efficient, and combined placement and chaining
of VNF within polynomial time. The DP optimization approach
divides large problems into sub parts, then obtains the solution of
large problem by combining the solutions of sub-problems. The
computed value is stored in the form of a matrix. The diagonal
elements represent the cost of placing the VNF(i) on a particular
node j. The non-diagonal elements represent the cost of steering
the traffic from VNF(i) placed on node j to the next VNF(i+1)
placed on node k. This study focuses on link constraint because
it does not force VNF embedding on the same physical node.
Moreover, VNF placement and chaining are jointly addressed by
the authors. Xiong et al. [86], the authors formulated the Con-
figurable Network Service Chaining (CNSC) as an integer linear
programming problem and modeled Service Path

Computation Algorithm (SPCM) to compute optimal SFC by
considering the node and link constraints with segment routing.
The proposed solution provides flexible service to users by com-
bining both SDN and NFV framework. However, the proposed
model can be extended to adopt dynamical construction of the
service chain.

Mechtri et al. [87] proposed an extended version of Ume-
yama’s eigen decomposition approach [88] for joint VNF place-
ment and chaining. They also offered multi-tenancy service model
and chaining of heterogeneous resources such as VNFs and PNFs.
The existing Umeyama’s approach required graphs having the
same size to perform matching and performed only link mapping.
Heterogeneous resources are considered in this study although
existing literature is limited to either only PNFs or VNFs. More-
over, this is the first work that considered eigen decomposition
approach for VNF placement and chaining and supported multi-
tenancy. Furthermore, the proposed approach is faster and scal-
able as compared to other algorithms. The eigen decomposition
approach can be extended by adding multiple objectives and
constraints to generalize the model. Wang et al. [89] studied
the resource allocation problem (NFV-RA) that consists of three
phases: VNF chain composition (VNF-CC), VNF forwarding graph
embedding (VNF-FGE), and VNF scheduling (VNF-SCH). Then they
developed jointly optimized resource allocation algorithm (Jo-
raNFV) based on mixed integer linear programming to solve
the resource allocation problem. They presented two models
in JoraNFV: one hop scheduling (OneHop-SCH) and multipath
greedy (MPG) model. The study makes it possible to dynamically
allocate resources (CPU, memory) to the requested chain more
flexibly with the help of SDN controller. However, the work can
be improved to reduce the execution time by launching multiple
VNFs into a single docker or a Linux container server rather than
implementing each VNF on different servers. Heuristic model can
be implemented to reduce execution time for the deployment of
VNFs.

Hsieh et al. [90] proposed a framework in which network
functions are implemented on the SDN switches to minimize
the traffic inside the network. The results show that reduction
of up to 2/3 of original traffic in a network is achieved using
this method. Moreover, performance is also increased as it re-
duces packet latency. However, network functions implemented
on SDN switches is not powerful as traditional network func-
tions. Kim et al. [91] developed an efficient SFC algorithm in
order to fulfill the user’s QoS requirements while minimizing
the energy consumption. In this algorithm, first shortest path is
calculated from source to destination that can satisfy the latency
constraint and then VNFs are deployed on VMs along that path.
It also offers reconfiguration of SFC when energy consumption
exceeds a given threshold value. However, only limited types of
VNFs are considered which make it impractical to use in real
environment. Soualah et al. [92] developed an Energy Efficient
Tree-search based Chain placement Algorithm (EE-TCA) for effi-
cient VNF placement and chaining. It helps to reduce the power

K.Kaur,V.M
angat

and
K.Kum

ar
/
Com

puter
Science

Review
38

(2020)
100298

15

io Tools/Dataset Practical
implementation

Performance
metrics

rk
er

GT-ITM
topology
generator

Partial Acceptance
rate, resource
utilization,
execution time,
and revenue

nd NFV
d
rk

ONOS
controller,
NetFPGA-10G,
ClickOS, GT-ITM

Full Request
acceptance
ratio, resource
utilization ratio

loud and
twork

GT-ITM
topology
generator

Full Convergence
time,
acceptance rate
and revenue

FV, and
twork

—- Partial Execution time,
cost
performance

nd NFV
d
rk

OpenFlow
switches, SDN
controller

None Number of
hops

nd Cloud
twork

OMNET ++ 4.6 Full Energy
consumption,
average service
latency

FV and
network

GT-ITM,
OpenStack, ODL
controller

Full Rejection rate,
resource usage,
power
consumption,
execution time

abled
rk

OpenStack Full Execution time,
acceptance
ratio, average
delay, overall
cost

abled
rk

—- Partial Execution time,
Acceptance
rate, average
cost, and
revenue

nd NFV
rk

ONOS
controller,
OpenFlow
Switch, KVM

Partial Throughput

nd NFV
rk

Controller,
Berkeley
Extensible
Software
Switch (BESS)

Partial Latency,
throughput

(continued on next page)
Table 5
Placement Aware Service Function Chaining (PLA-SFC).
Ref Aim Placement criteria Number

of chains
Service function
path strategy

Type of
network
functions

SFC deployment
objective

Optimization
method

Scala-bility Scenar

Place-
ment

Chain-
ing

Type of SFs

[85] Fast and
efficient
placement and
traffic steering

✓ ✓ VNFs —- Dynamic —- Maximize
acceptance rate,
resource
utilization, and
revenue

Dynamic
Programming
algorithm

Yes Netwo
Provid

[86] Optimal and
flexible SFC

✓ ✓ VNFs —- Static —- Maximum
network
utilization

Heuristic
algorithm

No SDN a
enable
netwo

[87] Joint placement
and steering
flows

✓ ✓ VNFs and
PNFs

Multiple Static —- Maximize
revenue and
acceptance rate

Eigen
decomposition
method,
heuristic
method

Yes NFV, C
DC ne

[89] Optimal
placement and
service function
chaining

✓ ✓ VNFs Multiple Static —- Minimize
execution time,
maximize
network
performance

MILP based
heuristic
algorithm

No SDN, N
DC ne

[90] Traffic steering
through VNFs
running on
OpenFlow
switches

✓ VNFs Multiple Static FW, IDS. Proxy Minimize
network traffic

—- No SDN a
enable
netwo

[91] Energy aware
SFC

✓ ✓ PNFs Multiple Static NAT, Proxy,
Firewall, router, LB,
Flow monitor, IDS,
DPI

Maximize QoS,
Minimize
energy
consumption

Genetic
Algorithm (GA)

No NFV a
DC ne

[92] Cost and
Energy efficient
Service function
placement

✓ ✓ PNFs and
VNFs

Multiple Dynamic FW, Proxy, IDS,
NAT

Minimize cost
and power
consumption

Decision Tree
Model

Yes SDN, N
Cloud

[93] Scalable SFC
provisioning

✓ ✓ VNFs Multiple Static Transcoder,
compressor

Cost
minimization

ILP, Heuristic
Algorithm

Yes NFV-en
netwo

[58] Cost efficient
and scalable
solution for
VNF-CPP
problem

✓ ✓ VNFs Multiple Dynamic DPI, Proxy,
Transcoder

Cost and time
minimization
for function
placement

Heuristic
Algorithm

Yes NFV-en
netwo

[94] NSH based
flexible SFC

✓ VNFs Multiple Static DPI, TC, IC increase
flexibility in
SFC

—- No SDN a
netwo

[95] Delay
optimized SFC

✓ VNFs Multiple Static FW, NAT, TS Minimize
latency,
maximize
throughput

—- No SDN a
netwo

16
K.Kaur,V.M

angat
and

K.Kum
ar

/
Com

puter
Science

Review
38

(2020)
100298

nario Tools/Dataset Practical
implementation

Performance
metrics

N and NFV
twork

OpenStack,
OpenvSwitch,
OpenDayLight,
Ixia (traffic
generation)

Partial —-

N and NFV
twork

—- Full Execution time,
energy
consumption,
saved energy,
link load,
delay, accuracy

N and
V-enabled
network

NetFPGA-10G,
OpenDayLight,
sFlow, MATLAB,
GT-ITM

Full Request
acceptance rate,
node load
balancing, path
load balancing,
running time

V network —- Full Bandwidth
usage,
Execution time

V network US Backbone
network
Topology

Partial Average
bandwidth
consumption

V network —- Partial Network
resource
consumption

N and NFV
twork

SDN controller Partial Path
computation
time, NFP
computation
time, feasibility
delay,
Migration time

V network —- None Average delay,
resource usage

N, NFV, and
bernetes

OpenStack, K8
(Kubernetes),
SONATA GUI
(to access both
OpenStack and
K8)

Partial ICMP Ping
request

N and NFV
twork

—- Partial Acceptance
ratio, QoS,
resource
utilization,
execution time

ud DC
twork

Fat-tree
topology

Partial VNF instance
utilization, Link
utilization

V network fat-tree
topology

Partial Acceptance
ratio, server
utilization,
bandwidth
usage

(continued on next page)
Table 5 (continued).
Ref Aim Placement criteria Number

of chains
Service function
path strategy

Type of
network
functions

SFC deployment
objective

Optimization
method

Scala-bility Sce

Place-
ment

Chain-
ing

Type of SFs

[96] Practical
implementation
of SFC

✓ VNFs Single Static Router, FW, DPI Minimize
overhead

—- No SD
ne

[97] Energy efficient
SFC
provisioning

✓ ✓ VNFs Multiple Static VOC, IDPS, FW,
WOC, NAT, TM

Minimize
energy
consumption

ILP, heuristic
method,
column
generation

No SD
ne

[98] Optimal SFC
placement and
routing

✓ ✓ VNFs Multiple Static NAT, Firewall Minimize
server and link
consumption,
improve
network
utilization and
balance load

ILP, greedy
heuristic
algorithm

No SD
NF
DC

[99] Bandwidth and
delay optimized
SFC

✓ VNFs Multiple Static NAT, FW, TM,
WOC, IDPS, VOC

Minimize
end-to-end
latency,
network
resource

Heuristic
algorithm based
on Column
Generation

Yes NF

[100] Dependence-
aware
SFC

✓ VNFs Multiple Static FW, LB, Encryption Minimize
bandwidth
consumption

—- No NF

[40] Bandwidth
utilized SFC

✓ ✓ VNFs Multiple Static NAT, TS,
Encryption,
Firewall, IDS, QOS

Minimize
resource
consumption

ILP based
scheme

No NF

[101] Service function
placement with
minimum
resource cost

✓ VNFs Single Dynamic —- Minimize
network
resource cost

Heuristic
Method

No SD
ne

[102] Delay
optimized SFC

✓ VNFs Single Static —- Minimize delay,
and resource
consumption

Heuristic
Method

No NF

[103] Service function
chaining in
heterogeneous
domains

✓ VNFs and
CNFs

Single Static VM based
forwarder and CN
based forwarder

Reduce
overhead

—- No SD
Ku

[104] Resource
utilized VNF
embedding and
scheduling

✓ ✓ VNFs Multiple Static —- Increase
resource
utilization and
QoS demand

Heuristic
Algorithm

No SD
ne

[105] Composition,
Placement, and
assignment of
SFC

✓ ✓ VNFs Multiple Dynamic —- Increase VNF
utilization and
reduce link
consumption

Heuristic
Algorithm

No Clo
ne

[106] Time efficient
VNF placement

✓ ✓ VNFs Multiple Static Firewall, IDS,
Encryption, and
VPN

Improve time
efficiency and
minimize cost

—- No NF

K.Kaur,V.M
angat

and
K.Kum

ar
/
Com

puter
Science

Review
38

(2020)
100298

17

io Tools/Dataset Practical
implementation

Performance
metrics

etwork GT-ITM, GEANT
Topology

Partial Rejection rate,
acceptance
ratio, execution
time, resource
usage, and
power
consumption

omain
network

GT-ITM, GEANT
topology, SDN
controller,
OpenFlow
switch

Full Average server
and link power
consumption,
average power
consumption,
average
response time

twork SDN controller,
BCube Topology

Partial Throughput,
resource
utilization,
scaling
frequency

rk
MATLAB Partial Average

accepted
requests,
time-cost value

—- Partial End-to-end
delay, run time,
rejection rate
Table 5 (continued).
Ref Aim Placement criteria Number

of chains
Service function
path strategy

Type of
network
functions

SFC deployment
objective

Optimization
method

Scala-bility Scenar

Place-
ment

Chain-
ing

Type of SFs

[107] VNF placement
in batch mode

✓ ✓ VNFs and
PNFs

Multiple Static —- Minimize cost
and energy
consumption

Heuristic
algorithm

Yes NFV n

[108] Energy-efficient
and
traffic-aware
SFC

✓ ✓ VNFs Multiple Static —- Minimize
energy
consumption

ILP approach,
heuristic
algorithm

No Multi-d
cloud

[109] Optimal SFC
scheduling

✓ ✓ VNFs Multiple Dynamic —- Improve
resource
utilization and
decrease scaling
frequency

ILP approach Yes DC ne

[110] Efficient
mapping of SFC

✓ VNFs Multiple Static —- Improve
resource
efficiency

Deep
Q-learning
based heuristic
algorithm

No Mobile
Netwo

[111] Cluster based
placement and
chaining

✓ ✓ VNFs Multiple Static —- Minimize
energy
consumption,
delay, and
bandwidth
usage

Heuristic
algorithm

No —-

18 K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298
consumption of network devices that are involved in available
SFP. Efficient use of energy is accomplished by consolidating the
physical resources and sharing VNFs among multiple tenants. A
decision tree is incrementally built based on Monte-Carlo search
tree that offers scalability features for large scale networks. How-
ever, they did not consider the fault tolerance of link or VNFs in
terms of measuring its effect on power consumption.

Yi et al. [93] used reactive and proactive strategies to solve
scalable SFC provisioning problem (s2FCp2). The reactive scheme
(SFC-RS) aims to fulfill the scalable demand without changing
SFP. On the other hand, proactive approach (SFC-PS) prepared
resources beforehand to serve incoming requests. The results
show that SFC-RS is better for large scale networks but SFC-PS is
better for small networks. The proposed solution not only handles
the SFC request, but also considers scale-in (SI) and scale-out (SO)
procedure for dynamic addition and deletion of VNFs. However,
we can increase or decrease the VNF resources such as bandwidth
for the deployed SFC. Khebbache et al. [58], authors proposed
Perfect-2 matching, matrix optimization and multi-stage graph
method to solve the VNF Chain Placement Problem (VNF-CPP)
in polynomial time for small and large scale graphs. Then they
compared these three algorithms on the basis of execution time,
acceptance rate, and average cost to find the optimal solution.
Their proposed heuristic solution can scale according to the de-
mands. But, the authors did not consider the replications of VNF
to solve VNF-CPP problem in polynomial time. Moreover, the
remaining resources are not utilized for the next request.

Davoli et al. [94] proposed a framework that uses OpenFlow
protocol to control the network nodes and successfully adds
dynamicity and programmability to the network. SDN technology
is used to implement dynamic SFC using OpenFlow protocol. The
proposed work used mixed proactive and reactive approach to
install flow rules into the flow table of switch. The work can be
enhanced by replacing it with a reactive approach to increase
flexibility. Zhang et al. [95] proposed an algorithm ParaBox for
parallel packet processing across multiple network functions to
reduce SFC latency for delay sensitive applications. The first com-
ponent, order dependency function, is responsible for checking
the dependency of data and can be processed in parallel. The
second component, mirror function, distributes packets to the
parallel network functions. In the end, a merge function combines
the packets after processing to produce the output. This is the first
study that worked on parallel packet processing to optimize the
SFC latency and maximize the throughput. However, it is very dif-
ficult to determine which VNFs can be parallelized. Moreover, the
calculation of VNF order dependency, mirror and merge functions,
should be optimized in terms of processing time.

Another approach for design, implementation, and validation
of SFCs in real environment is given in [96]. In this approach,
all the valid SFPs are stored in the database and then service
classifier classifies the incoming traffic into the appropriate ser-
vice category. If traffic does not match with the traffic classes,
then default path is followed. This paper offers a new OpenFlow
based solution in which there is no need of static encapsulation
and de-encapsulation of the packet. However, we can add a
scalability module to dynamically add or delete VNFs. Also, they
did not consider the load of network functions or link during
provisioning of SFC. Huin et al. [97] studied how NFV can be
coupled with SDN to improve energy efficiency of the network for
SFC provisioning by adapting the utilization of network resources.
They proposed ILP formulation to solve Energy Efficient SFC Pro-
visioning (EE-SFCP) problem for small networks. They proposed
ILP based heuristic algorithm named GREENCHAIN to solve EE-
SFCP problem for large networks. Lastly, they presented two
variants of the column generation model: CG-cut and CG-cut+

based on ON–OFF approach of power model. They showed how
virtualization technology can reduce the energy consumption and
improve efficiency of the network.

Liu et al. [98] formulated SFC placement problem as an integer
linear programming problem and proposed heuristic solution to
solve placement problem. They modeled modified version of two
step mapping algorithm by adding new greedy module, sorting
module and k-Dijkstra strategy. They formed Greedy node map-
ping with k-shortest path link algorithm (G-kSP). In this paper
both parameters (node and link) are considered for the place-
ment. In future work, a failure-resilience module can be added
to handle failure of VNF nodes or links. Huin et al. [99] proposed
exact scalable mathematical model with decomposition scheme
for the placement of VNFs. The proposed framework avoids data
passing through unnecessary devices in order to minimize the
bandwidth consumption and end-to-end latency. The exact num-
ber and location of VNFs are also considered as factors for arriving
at an optimal solution. They offered a routing solution for SFC
request of up to 50 nodes within a few minutes. However, they
considered a static scenario in which all service functions and
requests are known in advance.

Jalalitabar et al. [100] developed an efficient algorithm, namely
Dependence aware SFC Group Mapping (D_SFC_GM) for depen-
dence aware SFC design and mapping while considering the
resource demand, and function dependency of the user request.
The proposed algorithm is able to jointly optimize the design and
mapping for the construction of SFC chain. The algorithm called
Dependence aware SFC design and Adaptive mapping (D_SFC_AM)
designed by authors did not take the benefits of joint optimiza-
tion. The existing algorithm can be extended by mapping multiple
VNFs node onto the same substrate node. Gupta et al. [40]
developed a mathematical model to service chain the VNFs while
minimizing the network resource consumption (bandwidth con-
sumption) to fulfill the user needs. This analysis will help network
operators to choose the appropriate service chain strategy, ac-
cording to their OPEX and CAPEX budget. This is the first work
that practically considers the location and number of NFV capable
nodes and their impact on resource consumption. However, they
did not consider the ‘‘NFV ALL’’ strategy in the experiment. Fur-
thermore, SDN is not considered to centrally manage all service
chain strategies.

Gadre et al. [101] formulated that Network Function Place-
ment (NFP) problem deals with placing network functions at the
right location so that SFC requests can be satisfied. Existing static
NFP solutions that use divide-and-conquer (DCA) cannot handle
real time requests and are also slow. A heuristic version of the
algorithm (DCA-H) is proposed, which is more agile and faster.
To handle dynamic requests, they proposed an algorithm that
is a combination of divide-and-conquer and modified version of
Dijkstra. They proposed a centralized and SDN enabled solution.
Existing studies are either working in the routing of flow or op-
timal placement of network functions individually, but the focus
of this work is on both the paradigms. However, the scalability
in terms of adding new VNF is not optimized. Furthermore, the
fault tolerance module is not considered to handle the failure of
a link or VNFs. Cheng et al. [102] proposed heuristic algorithm to
implement delay sensitive SFCs. It is able to reduce complexity
by minimizing both delay and resource consumption simulta-
neously. The algorithm can be improved by varying flow rates
dynamically. Moreover, queueing delay can also be considered for
better optimization.

Kouchaksaraei et al. [103] proposed a Pishahang framework
that chains the VM based services and CN (container) based ser-
vices implemented over Kubernetes and OpenStack environment.
Overall cost and latency is reduced if the combination of VMs and
CNs is used to deploy network functions rather than using only

VMs. But, more complex VNFs such as DPI, NAT, IDS have not

K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298 19
been considered in the experiment. Cao et al. [104] formulated,
mixed integer linear programming (MILP) based heuristic model
for dynamic VNF embedding and scheduling while improving
resource utilization. The proposed algorithm is divided into two
stages: first greedy strategy is used for VNF embedding and
scheduling. Then to satisfy the delay demand, re-embedding and
re-scheduling is carried out. The method offers dynamic VNF
embedding and scheduling that can change according to the
service demands. The work can be extended by considering the
link propagation delay for better QoS. Wang et al. [105] developed
heuristic algorithm named Jcap to solve SFC-CPA (Composition,
Placement, Assignment) problem. They jointly addressed the SFC
composition, placement, and scheduling of traffic steering in a
data center environment. The proposed method is able to service
the online arrival demands. The proposed heuristic algorithm
can be extended for general topology rather than data center
topology and considering the end-to-end service across a wide
area network. Qi et al. [106] modeled multi-stage graph and
greedy algorithm for VNF placement. The proposed algorithms
provides a time efficient solution by defining accessible scope
for limiting the search space. The authors proposed time efficient
solution for VNF placement without degradation of quality.

Soualah et al. [107] modeled batch R-ILP approach to reduce
the limitations of ILP. They proposed online and batch algo-
rithm that process the requests in a batch mode to reduce the
complexity and improve performance. The online approach takes
into account the sharing of VNFs by multiple SFCs. The batch
algorithm services the requests jointly according to batch window
rather than sequential online ILP. The algorithm outperforms
other algorithms such as Monte Carlo Tree Search (MCTS) in all
performance parameters. Only a limited number of candidates are
searched for placement and chaining, and this improves overall
performance. The R-ILP approach can be extended to RBR-ILP
by re-submitting the batch requests that are not satisfied in the
previous time window. Sun et al. [108] proposed a heuristic
algorithm named Energy Efficient SFC Orchestration across Multi
Domain (EE-SFCO-MD) as an optimal solution to handle online
SFC requests. This is the only work that has implemented en-
ergy efficient orchestration to handle online SFC requests in a
multi-domain network.

A Four Stage Adaptive Scheduling Mechanism (FSASM) to meet
both dynamic flows and network performance requirements has
been suggested in [109]. NP hardness of FSASM is proved and
then a minimum weight path selection scheme (MEPS) is dis-
cussed. The scheme takes polynomial time for SFC scheduling
while reducing extra scaling and cost. The proposed novel
scheduling algorithm can handle dynamic SFC requests without
degradation of network performance and ensures lower network
cost. However, FSASM should be validated in real NFV-based
scenarios. Li et al. [110] showed that efficient mapping of mul-
tiple SFCs into the substrate network is very challenging where
SFC requests contain multiple resource demands with different
priorities like in a 5G network. To alleviate the complexity of ILP
solution, they proposed two heuristic algorithms based on Deep
Q-learning for SFC mapping into substrate network. They used a
dummy resource pool to evaluate resource efficiency of different
strategies. They considered the multiple priority constraint SFC
and balance the node and link utilization. The learning process is
expensive for agent and the learning speed can be improved by
simultaneously updating of Q-values. A cluster based placement
and chaining approach that divides the substrate network into
set of on-demand clusters to optimize energy consumption, delay
and bandwidth usage is developed in [111]. When a cluster is
set up, then heuristic based solution is used to place and chain
the dynamic request. This is the first work that used the cluster
based approach for placement and chaining. In the future, further
investigation of cluster techniques can be done to improve the
quality of the clusters and to allow dynamically changing the
number of clusters according to network state.
5.2.1. Discussion
In PLacement Aware SFC provisioning (PLA-SFC), the criteria

used for developing the proposed taxonomy are — NF placement,
chaining of NFs, or combined placement and chaining. NF place-
ment deals with deploying VNFs on VMs and chaining defines
how traffic steers through these VNFs. The existing VNF place-
ment solutions have been segregated by considering the type of
network function such as Physical NF (PNF), Virtual NF (VNF), and
Container NF (CNF). In the final set of articles, 28 articles deal
with PLA-SFC. A careful study of these techniques shows that the
scalability issue has not been addressed during implementation of
dynamic SFC provisioning strategies. Most of the existing litera-
ture considered a static scenario in which all service functions and
requests are known in advance. Further, researchers can include
energy efficiency as a parameter in the orchestration module
to handle SFC requests. Additionally, employing CNFs based on
Kubernetes technology for development of scalable SFC solutions,
instead of VNFs, may yield more benefits because containers can
direct access the hardware with little virtualization overhead.

5.3. Availability aware service function chaining (AVA-SFC)

This section presents the proposed taxonomy considering fault
recovery criteria of node failure, link failure, and whole SFP fail-
ure, and fault detection strategy of single instance and multi-
ple instances, to categorize resilient-aware solutions in litera-
ture. This division is shown in Fig. 15. Table 6 represents some
Availability Aware SFC deployment solutions at a glance.

Lee et al. [112] presented a self recovery scheme to handle
failure of any service function in order to minimize the signaling
delay among control plane and data plane. Self recovery scheme
temporally handles the failure by assigning the workload of fail-
ure SF to another SF in the data plane without intervention of
the control plane. The proposed work helps to improve quality by
reducing the delay between data and control plane. However, the
performance of the proposed work is not validated. Optimal algo-
rithm is not defined for the selection of remote SFF from multiple
SFFs. Jeon et al. [113] elaborated the mechanism to improve the
availability of the network by allowing VNFs to be outsourced by
the third party. The proposed work offers significant advantage
in terms of scalability due to outsourced VNFs by the third party.

Herker et al. [114] presented the model for the high availabil-
ity of SFC by creating different backup strategies. They selected
Data Center (DC) topology that offers better performance in terms
of cost per throughput for a given availability level of SFC and
provides resilient embedding. The configuration, management,
and control traffic is not mentioned and they considered only
switch and server failure. They assumed link availability is 100%
for simplicity. Medhat et al. [56] presented resilient orchestration
feature of SFC that is able to create a new chain at any time
as well as re-route the traffic into new SFP if any fault appears.
This feature helps to keep the high availability and reliability
of service. The strength of this paper is that authors have vali-
dated their proposed work in real testbed. The proposed solution
can be enhanced to handle a more complex scenario with the
simultaneous failure of VNF and link.

To detect any type of failure in SFC, the author of the pa-
per [115] proposed alarm based monitoring mechanism for high
availability of SFC. The main strength of proposed mechanism is
to provide SFC reliability. There is no auto scaling module for
adding new VNF when monitoring component generates alarm
after failure detection. The existing framework can be enhanced
by adding alarm based link failure detection. Bijwe et al. [116]
proposed SFC embedding method that can ensure end-to-end
reliability of service chain and provide highly available service.
To provide end-to-end reliability, fault avoidance approaches are

20
K.Kaur,V.M

angat
and

K.Kum
ar

/
Com

puter
Science

Review
38

(2020)
100298

ario Tools/Dataset Practical
implementation

Performance
metrics

—- None —-

ice-provider
ork, cloud
ork

—- None —-

based
Center
Network

—- Partial Cost per
throughput,
availability

d Network Openstack and
ODL

Partial Recovery time

d Network Openstack and
ODL

None —-

-enabled
ork

—- Partial Average service
downtime

ice
ider
ork

Fat tree
topology

Partial Recall,
False-positive,
and forwarding
time

-enabled
ork

—- Partial Average failure
time

d network —- Partial Rejection rate,
acceptance
revenue,
penalties

enabled
ice provider
ork

ODL controller Partial Failure recovery

and
-enabled
ator
ork

SDN controller,
java-based
simulator

Partial Time to locate
alternative
server, MTTF

comm
ator
ork

GT-ITM tool Partial Resource
consumption,
deployment
time, and block
ratio

Center
ork

Fat tree
topology

Partial Average
bandwidth,
unavailability
rate

-enabled
ork

—- Partial Maximum
availability,
resource
consumption,
total data rate,
acceptance
ratio, cost

(continued on next page)
Table 6
Availability Aware Service Function Chaining (AVA-SFC).
Ref Aim Fault recovery criteria Failure detection

of multiple
instances

Recovered
SFP after
failure

Type of
network
functions

Optimization
method

SFC
deployment
objective

Scalability Scen

Node
failure

Link
failure

Whole SFP

[112] Self-recovery
scheme to
handle fault in
SFC

✓ No Static —- Optimal
algorithm

Minimize delay
between data
and control
plane

No —-

[113] VNF
outsourcing by
third party

✓ —- Static —- —- Increase
availability

Yes Serv
netw
netw

[114] High
Availability of
service function

✓ Yes Static —- —- End-to-end
high availability

No NFV
Data
(DC)

[56] Resilient
orchestration or
VNF fault
recovery in SFC

✓ No Static Firewall —- Service delivery
high availability

No Clou

[115] Fault
management
using
alarm-based
monitoring for
SFC

✓ Yes Static —- —- Increase
availability

No Clou

[116] End-to-end
reliable SFC

✓ —- —- LB, FW, CPE, DPI Heuristic
Algorithm

Improve
availability of
service and
reduce cost

—- NFV
netw

[117] Service failure
detection and
localization

✓ ✓ Yes Static —- Heuristic
Algorithm

Minimize
detection cost

No Serv
prov
netw

[118] Distributed
failover
mechanism

✓ Yes Static —- —- Reduce failure
time

No NFV
netw

[119] Link failure
recovery

✓ Yes Static DPI, NAT Monte-Carlo
Search Tree

Minimize
service
interruptions
due to link
outages,
provide reliable
path

No Clou

[120] High available,
and load
balanced SFC

✓ No Static FW1, DPI1, FW2,
DPI2

—- Minimize
overloading and
failure of SF

No SDN
serv
netw

[121] Provide
Resiliency for
SFC

✓ Yes Static —- Heuristic
Algorithm

Minimize
resource
redundancy
and Cost

No SDN
NFV
oper
netw

[122] Reliable SFC ✓ —- Static —- Heuristic
Algorithm

Reduce CAPEX
and OPEX,
improve
reliability

No Tele
Oper
Netw

[123] Highly reliable
SFC

✓ ✓ Yes —- —- —- Minimize
resource
consumption
and cost and
improve QOS

No Data
Netw

[123] Combine
VNF-path
backup

✓ Yes Static Load balancer,
Video encoder

—- Minimum
resource
consumption
and improve
availability

No NFV
netw

K.Kaur,V.M
angat

and
K.Kum

ar
/
Com

puter
Science

Review
38

(2020)
100298

21

Tools/Dataset Practical
implementation

Performance
metrics

bled —- Partial Network
resource
consumption,
loss ratio, CPU
resource
utilization

bled —- Partial Resource
consumption,
convergence
rate

bled —- Partial Cost, node and
link usage rate,
service
acceptance rate

bled
—- Partial Resource

utilization,
average SFC
reliability,
average SFC
delay

bled python
simulator

Partial Redundancy
deployment
cost, number of
admitted
services,
average SFC
reliability

bled
MATLAB,
GT-ITM tool

Full Request
acceptance
ratio, resource
consumption,
running time

bled
etwork

—- Partial Execution time,
total network
resources cost,
acceptance
ratio
Table 6 (continued).
Ref Aim Fault recovery criteria Failure detection

of multiple
instances

Recovered
SFP after
failure

Type of
network
functions

Optimization
method

SFC
deployment
objective

Scalability Scenario

Node
failure

Link
failure

Whole SFP

[124] Cost effective
and highly
available SFC

✓ Yes Static —- Heuristic
Algorithm

Minimum
resource
consumption

No NFV-ena
network

[125] resource aware
backup for
VNFs

✓ Yes Static —- Heuristic
Algorithm

Minimum
resource
consumption

No NFV-ena
network

[126] Reliable SFC ✓ Yes Static —- —- Improve
resource
utilization, and
reduce cost

No NFV-ena
network

[127] Reliability and
delay aware
SFC

✓ ✓ Yes Static —- Heuristic
Algorithm

Minimize delay
and resource
consumption

No SDN and
NFV-ena
network

[128] Cost efficient
reliable SFC

✓ Yes Static —- —- Minimize cost
and VNF
redundancy,
increase SLA

No NFV ena
network

[129] Reliable SFC ✓ Yes Static —- Q learning
algorithm

Minimize cost,
and delay

No SDN and
NFV-ena
network

[130] Reliable SFC
with minimum
cost

✓ ✓ Yes Static Firewall, NAT,
content delivery
network, IDS, DPI

Heuristic
Algorithm

Resource cost
minimization

No NFV-ena
Carrier N

22 K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298
used to continue system service by embedding highly used VNF
on the highly reliable resource. Authors showed that proposed
method is able to reduce total downtime as compared to tra-
ditional method. Fault avoidance method improved end-to-end
reliability by increasing priority of mostly used VNFs. However,
they considered limited SFC embedding examples to validate
their work.

Zhang et al. [117] developed a mechanism for service fail-
ure detection and failure localization in the existing SFC with
minimum cost. In failure detection, total failure detection path
is calculated. The failure localization analyzes the location of
failure. The authors elaborated the existing work by using the
unidirectional and bidirectional network. The proposed method
is able to reduce detection cost and improve false-positive rate
of failure localization. The work can be extended by adding a
scalability module to diagnose failure in a dynamic environment.
Suh et al. [118] proposed a distributed failover mechanism, in
which failover agent is placed with each SF instance to recover
from failure of SF. It is shown that distributed failover mechanism
is able to reduce failover time as compared to centralized mech-
anism. The approach is also able to reduce control-data plane
communication by recovering from SF failure without interven-
tion of the centralized SFC controller. The failover mechanism can
be implemented using open source software and tested using real
testbed.

Soualah et al. [119] developed R-SFC-MCTS algorithm based
on Monte-Carlo Search Tree for SFC placement and chaining
while minimizing the effects of physical link failure. They used
preventive and reactive approaches to handle the link failure.
This is the first work that used MCTS for SFC placement and
chaining in which only partial tree construction is needed to
take any decision. The proposed solution is dynamic in nature
and reduces complexity. However, they considered only physical
link failure while SFC placement and chaining. The work can be
enhanced by considering node failure, scaling, and VNF migration.
Lee et al. [120], authors developed Overloading and Failure Man-
agement (OFM) that consists of Overloading Module (OM) and
Failure Module (FM) for SFCs to handle overloads and failure of
SFs. The OM module periodically monitors the SF to check the
load of SF and FM detects failure of SF using alarm. This is the
only work that recovered from the failure while considering the
load of service function. The developed module can be extended
for NFV environment and VNFM can be used to create a backup
SF instance for overloaded and failed SF.

Karra, and Sivalingam [121] designed two algorithms to pro-
vide resilient services with minimum resource redundancy. The
algorithms either migrate the network service from failed to
functional server or improve robustness of the failed component
of SFC. The combination of proactive (critical SFC) and reactive
(non critical) approaches are used to handle failure instead of only
proactive approach used in prior literature studies. The limitation
is that only server failure is considered, and link failure is ignored
by the authors. Sun et al. [122] developed Ensure Reliability
Cost Saving (ER_CS) algorithm to reduce capital and operational
expenditure of TSPs by reducing the reliability of SFC deployment.
They further proposed ER_CS_ADJ algorithm that can minimize
the resource consumption. They offer a tradeoff between resource
consumption and reliability for effective use of resources.

To improve reliability of the system, weights are assigned to
the important VNFs so that only important VNFs are redundant
in paper [123]. Reliability is offered while reducing the need
of resource consumption. The proposed work can be extended
by considering the dynamic network configuration. Moreover,
we can assign weight to VNF by considering other parameters
apart from bandwidth. Wang et al. [131] developed availability

model by considering both VNF and hardware failure. Then they
proposed Joint Path-VNF (JPV) model to consider the VNF-Path
backup jointly. They also designed the priority algorithm for SFC
that minimizes the resource consumption and guarantees avail-
ability. They considered a hardware failure along with VNF failure
that is missing in prior in literature. Moreover, they also solved
the VNF and path back up jointly. The work can be enhanced to
optimize the service chain composition for a large scale network.

Torkamandi et al. [124] developed Availability-aware clus-
tered SFC Embedding (AV-SFC) to handle multiple failures at
the same time and reduce the need of multiple resources for
backup by using Share Protection Cluster (SPC). Zhang et al. [125]
developed Resource Aware Backup Allocation (RABA-CODE) for
VNF while minimizing the backup resource consumption and
maximizing the availability. They also considered heterogeneous
resource requirements for each VNF. To reduce the overhead they
also proposed greedy RABA. They offered an efficient solution
in terms of backup resource consumption by considering the
heterogeneous resource requirements for each VNF. But, they
assumed that the VNF is static and has independent availability,
which is not the case in practical situations.

Tang et al. [126] developed Reliability-Aware Service Chain
Mapping (RSCM) algorithm. They used Improved Breadth-First
Search (IBFS) to get cost-effective routing path. Then they also
proposed a P*Q replication model that can improve the relia-
bility with QoS requirements. The algorithm proposed by the
authors is able to provide a cost efficient solution that ensures
low latency and high reliability. They also considered load bal-
ancing of the backup node to avoid excessive load in a network.
Load balancing module should consider the load of both VNF
and link. The proposed algorithm can be improved to handle
dynamic service chain requests. Qu et al. [127] formulated the
optimal VNF placement and traffic routing problem as a mixed
integer linear programming problem. They developed a heuristic
algorithm that consists of VNF decomposition strategy for backup
along with delay-aware multipath routing to increase reliability
of the network. They handled optimal VNF placement and traf-
fic routing jointly that was previously missing in the literature.
Further research direction can be to decrease the delay that gets
introduced due to function decomposition. Dinh et al. [128] pro-
posed Cost-aware Criticality based priority Index (CCI) parameter
to calculate the priority level of VNF for redundancy. Based on CCI,
they developed cost efficient VNF Redundancy Allocation (CCI-
RA) algorithm. They developed redundancies for only appropriate
VNFs based on a priority index that is able to reduce costs. More-
over, they considered the VNF redundancy deployment cost, and
priority index, for the evaluation of VNF redundancy. They did not
consider the optimal method for primary VNF deployment. Liu
et al. [129] also formulated the reliability-aware service chaining
problem as mixed integer linear programming problem and then
developed Joint Protection (JP) redundancy model and backup
redundancy model with cost, delay, and reliability constraints.
The proposed algorithm provided cost efficient and reliable solu-
tion jointly without violating the delay and capacity constraints.
The proposed mapping algorithm can be enhanced so that it can
intelligently create SFCs.

Fang et al. [130] formulated the Reliability-Aware VNF Place-
ment (RAVP) problem as an integer linear programming. Then
they proposed two heuristic algorithms for reliable protection:
All-Node Protection Mechanism (ANPM) and Single Node Protec-
tion Mechanism (SNPM). ANPM provides protection to entire SFC,
while SNPM provides protection to only single VNF. All existing
work considered reliability of VNFs only, but the link reliability of
SFC is missing. This scheme offers multiple path protection rather
than a single path to improve SFC reliability.

K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298 23
5.3.1. Discussion
In AVailability Aware SFC provisioning (AVA-SFC), the pro-

posed taxonomy considered fault recovery criteria of node failure,
link failure, and whole SFP failure, as well as a fault detection
strategy of single instance and multiple instances, to categorize
resilient-aware solutions in literature. In the final set of articles,
21 articles deal with AVA-SFC. In this category of methods, the
recovery of node and link failure is done by assigning the work-
load of failed node to another SF and choosing an alternative
path for it. We observed that most of the researchers worked
on either node or link failure, whereas in a real scenario, whole
SFP has to recover from the failure. Hence, fault recovery of
whole SFP is identified as an open research issue that needs to be
explored. Moreover, the proposed solutions can be enhanced to
handle a more complex scenario with the simultaneous failure of
multiple VNFs and links. The existing approaches should also offer
multiple path protection rather than a single path to improve SFC
reliability.

6. RA4: Service function chaining challenges

A number of advantages are offered by dynamic service chain-
ing, but it also comes with its own research challenges. The
following are some of the research challenges faced during SFC
deployment.

1. Dedicated Topology: The network topology is a core com-
ponent to deploy any network functionality. Therefore, the de-
pendency on network topology to deploy any network function
restricts the redundancy, scalability, and resource utilization.

2. Complex Network Configuration: The complexity of net-
work configuration depends upon the dedicated network topol-
ogy for deployment of SFC. Any type of change (addition or
deletion of network service) in existing chains requires a change
in the ordering of chain, network topology and accordingly, there
is a need to change the configuration of the chain. Due to this
complexity, network operators do not want to change network
topology once they have installed, configured and deployed the
network.

3. Dynamic ordering of service functions: The number of
services in the SFC is independent of each other, but current
SFCs are rigid in nature because they are built based on man-
ual configuration. In the static type of model, every packet or
flow, will have to pass through the chain, even though some
requests need only a subset of these network services [28]. The
solution of this problem is solved by dynamic service chaining.
In dynamic service chaining, SDN and NFV replace traditional
middle-boxes with VMs and allow dynamic service chaining [33].
In dynamic service chaining, the traffic needs to be steered only
through desired network functions according to specific flow
requirements [132]. SDN controller can create chains dynamically
and forward traffic intelligently to a particular network function
based on the label such as VLAN, Source MAC address, or Network
Service Header (NSH). This type of chain is called a software
control service chain [94].

4. Security: The protection of SFC architecture from attacks
is most prominent research challenge that need to be addressed
for better performance [133]. The primary purpose of security is
to ensure the SFC architecture is stable and robust [3]. The VNFs
can be vulnerable to security attacks and whole service function
chain can fail. Although in literature a limited number of solutions
are provided, but still it is an open issue for the researchers. The
paper [134] provided a survey on security challenges in NFV and
discussed security solutions.

5. Resiliency: In order to improve the availability of net-
work services, re-composition, re-mapping, and re-scheduling
of the failed SFC should be automated. This mechanism should
not impact the other service chains to maintain service conti-
nuity. In ref [114], authors presented the model for the high
availability of SFCs by creating different backup strategies. The
authors of [56] presented resilient orchestration feature of SFC
that is able to create a new chain at any time as well as re-
route the traffic to new SFP, if any fault appears. Karra, and
Sivalingam [121] designed two algorithms to provide resilient
services with minimum resource redundancy.

5. VNF placement: The optimal mapping of SFC to the sub-
strate network is an open research topic that is not discussed
enough in literature. The problem of optimally placing the net-
work functions is called VNF placement or SFC resource allocation
problem. The placement of new instantiated SFs or migrated
SF instances, should be clearly investigated. The authors of the
paper [106] modeled multi-stage graph and greedy algorithm for
VNF placement. The proposed algorithms provide a time efficient
solution by defining accessible scope for limiting the search space.
Wang et al. [105] developed heuristic algorithm named Jcap to
solve SFC-CPA (Composition, Placement, Assignment) problem.

7. RA5: Research gaps

The following are some of the research gaps that were found
after comprehensive study of existing SFC provisioning strategies.
Further exploration and investigation of these gaps will aid in the
development of efficient and effective SFC solutions.

• Majority of researchers such as [63–66,69,71,74,76,77,91,
121] validated their SFC provisioning strategies using a
mininet emulator. So, actual validation of the SFC strategies
by creating VMs on real hardware is an open research issue.

• The LBA-SFC approaches such as [60,65,67,71,73,76,83] con-
sidered only VNF load balancing and link load balancing
is ignored by the researchers. On the other hand, [48,82]
validated only link load balancing. A combination of both
VNF and link load balancing is an open research area which
may lead to reducing latency and improving throughput.

• The PLA-SFC provisioning solutions such as [40,58,85,86,89,
90,93–100,104,105,108–110] considered only VNFs for their
SFC. SFC provisioning strategy for PNFs is discussed by [91].
The other researchers such as [87,92,107] validated their SFC
strategy using combination of VNFs and PNFs. But none of
the works has discussed the combination of CNFs and VNFs
to reduce the service response time.

• The AVA-SFC provisioning solutions such as [56,112,113,
115,116,118,120,121,124–126,128,129] recovered only from
the node failure. The recovery of link failure has been dis-
cussed by [119]. To improve reliability, the fault recovery of
whole service function path needs to be addressed.

• The researchers [48,60,63,64,73,76–78,83,86,87,89–91,93–
96,98,99,99] have validated their proposed approaches with
only static SFCs. But considering dynamic scenario in real
world is also an open research area.

8. Conclusion

In the era of 5th generation mobile network, we can con-
nect almost everything such as machines, objects, and devices
together. 5G technology is being adopted as a global standard
and promises high bandwidth, low latency, improved reliability,
increased availability, and uniform user experience. NFV and SDN
are complementary technologies that help overcome architec-
tural challenges in deployment of 5G by providing capabilities
such as network slicing and optimal flow management. An im-
portant factor in ensuring QoS delivery to users in these networks
is the deployment of dynamic SFCs with the synergy of multiple
factors viz. placement of VNFs, load balancing, and availability.

24 K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298
In this paper, a comprehensive and systematic survey of the
SFC provisioning approaches has been presented. The most rel-
evant research articles have been selected using Systematic Lit-
erature Review (SLR) protocol. A total of 70 articles published
between 2015 to 2020 have been selected from IEEE Xplore,
Science Direct, ACM and Google Scholar digital libraries. It has
been found that around 30% researchers have used Load Bal-
ancing Aware SFC (LBA-SFC) techniques, about 40% have used
Placement Aware SFC (PLA-SFC) approaches, and approximately
30% have used Availability Aware SFC (AVA-SFC) approaches.
After critically reviewing these research articles, it is summarized
that to provide the high quality, reliable, scalable, pragmatic and
cost-effective SFCs, there is a need and demand of innovative
solutions in placement of VNFs, load balancing, and providing
availability. Further, an optimal amalgamate of these novel so-
lutions with minimum overheads shall serve the requirements of
next generation networks.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, Vyas Sekar, Making middleboxes someone else’s problem:
Network processing as a cloud service, ACM SIGCOMM Comput. Commun.
Rev. 42 (4) (2012) 13–24.

[2] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip
De Turck, Raouf Boutaba, Network function virtualization: State-of-the-
art and research challenges, IEEE Commun. Surv. Tutor. 18 (1) (2015)
236–262.

[3] Shin-ichi Kuribayashi, Allocation of virtual firewall functions in NFV-
based networks with minimum network cost, Int. J. Comput. Netw.
Commun. 11 (2) (2019) 1–15.

[4] Simon Grinberg, Shlomo Weiss, Architectural virtualization extensions: A
systems perspective, Comp. Sci. Rev. 6 (5–6) (2012) 209–224.

[5] A.U. Rehman, Rui L. Aguiar, João Paulo Barraca, Network functions
virtualization: The long road to commercial deployments, IEEE Access 7
(2019) 60439–60464.

[6] Jagdeep Singh, Sunny Behal, Detection and mitigation of DDoS attacks in
SDN: A comprehensive review, research challenges and future directions,
Comp. Sci. Rev. 37 (2020) 100279.

[7] Yong Li, Min Chen, Software-defined network function virtualization: A
survey, IEEE Access 3 (2015) 2542–2553.

[8] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi
Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov,
William Snow, et al., ONOS: Towards an open, distributed SDN OS, in:
Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, 2014, pp. 1–6.

[9] Deval Bhamare, Raj Jain, Mohammed Samaka, Aiman Erbad, A survey on
service function chaining, J. Netw. Comput. Appl. 75 (2016) 138–155.

[10] Hajar Hantouti, Nabil Benamar, Tarik Taleb, Abdelquoddous Laghrissi,
Traffic steering for service function chaining, IEEE Commun. Surv. Tutor.
21 (1) (2018) 487–507.

[11] Irena Trajkovska, Michail-Alexandros Kourtis, Christos Sakkas, Denis
Baudinot, João Silva, Piyush Harsh, George Xylouris, Thomas Michael
Bohnert, Harilaos Koumaras, SDN-based service function chaining mech-
anism and service prototype implementation in NFV scenario, Comput.
Stand. Interfaces 54 (2017) 247–265.

[12] Xu Li, Jaya Rao, Hang Zhang, Aaron Callard, Network slicing with elastic
SFC, in: 2017 IEEE 86th Vehicular Technology Conference, VTC-Fall, IEEE,
2017, pp. 1–5.

[13] Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, Andrew Hines,
5G network slicing using SDN and NFV: A survey of taxonomy,
architectures and future challenges, Comput. Netw. 167 (2020) 106984.

[14] Michel S. Bonfim, Kelvin L. Dias, Stenio F.L. Fernandes, Integrated
NFV/SDN architectures: A systematic literature review, ACM Comput.
Surv. 51 (6) (2019) 1–39.
[15] Ahmed M Medhat, Tarik Taleb, Asma Elmangoush, Giuseppe A Carella,
Stefan Covaci, Thomas Magedanz, Service function chaining in next
generation networks: State of the art and research challenges, IEEE
Commun. Mag. 55 (2) (2016) 216–223.

[16] Ghasem Mirjalily, Luo Zhiquan, Optimal network function virtualization
and service function chaining: A survey, Chin. J. Electron. 27 (4) (2018)
704–717.

[17] Sedef Demirci, Seref Sagiroglu, Optimal placement of virtual network
functions in software defined networks: A survey, J. Netw. Comput. Appl.
147 (2019) 102424.

[18] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, Seungjoon Lee, Network func-
tion virtualization: Challenges and opportunities for innovations, IEEE
Commun. Mag. 53 (2) (2015) 90–97.

[19] Pooyan Jamshidi, Aakash Ahmad, Claus Pahl, Cloud migration research: A
systematic review, IEEE Trans. Cloud Comput. 1 (2) (2013) 142–157.

[20] Muhammad Ali Babar, He Zhang, Systematic literature reviews in soft-
ware engineering: Preliminary results from interviews with researchers,
in: 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, IEEE, 2009, pp. 346–355.

[21] Karanpreet Singh, Paramvir Singh, Krishan Kumar, A systematic review
of IP traceback schemes for denial of service attacks, Comput. Secur. 56
(2016) 111–139.

[22] Xin Li, Mohammed Samaka, H Anthony Chan, Deval Bhamare, Lav Gupta,
Chengcheng Guo, Raj Jain, Network slicing for 5G: Challenges and
opportunities, IEEE Internet Comput. 21 (5) (2017) 20–27.

[23] Fifth generation mobile network 5G, 2020, https://www.qualcomm.com/
invention/5g/what-is-5g. (Accessed 17 March 2020).

[24] IEEEXplore Digital Library, 2019, https://ieeexplore.ieee.org/Xplore/home.
jsp. (Accessed 26 June 2019).

[25] Springer digital library, 2019, https://link.springer.com/. (Accessed 20
June 2019).

[26] Sciencedirecct digital library, 2019, https://www.sciencedirect.com/.
(Accessed 23 June 2019).

[27] ACM Digital library, 2019, https://dl.acm.org/. (Accessed 24 June 2019).
[28] Can Ouyang, Yunkai Wei, Supeng Leng, Yijin Chen, Service chain perfor-

mance optimization based on middlebox deployment, in: 2017 IEEE 17th
International Conference on Communication Technology, ICCT, IEEE, 2017,
pp. 1947–1952.

[29] Bilal Anwer, Theophilus Benson, Nick Feamster, Dave Levin, Program-
ming slick network functions, in: Proceedings of the 1st Acm Sigcomm
Symposium on Software Defined Networking Research, 2015, pp. 1–13.

[30] Taixin Li, Huachun Zhou, Hongbin Luo, A new method for providing
network services: Service function chain, Opt. Switch. Netw. 26 (2017)
60–68.

[31] Uwe G. Wilhelm, Sebastian M. Staamann, Levente Buttyán, A pessimistic
approach to trust in mobile agent platforms, IEEE Internet Comput. 4 (5)
(2000) 40–48.

[32] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar,
Minlan Yu, SIMPLE-fying middlebox policy enforcement using SDN, in:
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, 2013,
pp. 27–38.

[33] Ola Salman, Imad H. Elhajj, Ayman Kayssi, Ali Chehab, SDN controllers:
A comparative study, in: 2016 18th Mediterranean Electrotechnical
Conference, MELECON, IEEE, 2016, pp. 1–6.

[34] Gursharan Singh, Sunny Behal, Monal Taneja, Advanced memory reusing
mechanism for virtual machines in cloud computing, Procedia Comput.
Sci. 57 (5) (2015) 91–103.

[35] Zili Ning, Ning Wang, Rahim Tafazolli, Deep reinforcement learning for
NFV-based service function chaining in multi-service networks, in: 2020
IEEE 21st International Conference on High Performance Switching and
Routing, HPSR, IEEE, 2020, pp. 1–6.

[36] H. Kitada, H. Kojima, N. Takaya, M. Aihara, Service function chaining
technology for future networks, NTT Tech. Rev. 12 (8) (2014) 1–5.

[37] Cristina K. Dominicini, Gilmar L. Vassoler, Rodolfo Valentim, Rodolfo S.
Villaca, Moisés R.N. Ribeiro, Magnos Martinello, Eduardo Zambon, KeySFC:
Traffic steering using strict source routing for dynamic and efficient
network orchestration, Comput. Netw. 167 (2020) 106975.

[38] Wenke Yan, Konglin Zhu, Lin Zhang, Sixi Su, Efficient dynamic service
function chain combination of network function virtualization, in: 2017
IEEE 37th International Conference on Distributed Computing Systems
Workshops, ICDCSW, IEEE, 2017, pp. 163–168.

[39] Salvatore Renato Ziri, Ahmad Tajuddin Samsudin, Christophe Fontaine,
Service chaining implementation in network function virtualization with
software defined networking, in: Proceedings of the 5th International
Conference on Communications and Broadband Networking, 2017, pp.
70–75.

http://refhub.elsevier.com/S1574-0137(20)30398-1/sb1
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb1
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb1
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb1
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb1
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb1
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb1
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb2
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb2
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb2
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb2
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb2
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb2
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb2
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb3
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb3
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb3
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb3
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb3
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb4
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb4
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb4
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb5
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb5
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb5
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb5
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb5
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb6
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb6
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb6
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb6
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb6
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb7
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb7
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb7
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb9
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb9
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb9
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb10
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb10
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb10
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb10
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb10
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb11
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb11
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb11
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb11
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb11
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb11
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb11
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb11
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb11
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb12
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb12
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb12
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb12
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb12
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb13
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb13
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb13
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb13
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb13
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb14
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb14
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb14
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb14
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb14
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb15
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb15
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb15
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb15
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb15
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb15
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb15
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb16
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb16
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb16
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb16
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb16
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb17
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb17
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb17
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb17
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb17
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb18
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb18
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb18
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb18
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb18
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb19
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb19
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb19
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb20
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb20
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb20
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb20
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb20
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb20
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb20
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb21
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb21
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb21
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb21
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb21
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb22
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb22
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb22
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb22
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb22
https://www.qualcomm.com/invention/5g/what-is-5g
https://www.qualcomm.com/invention/5g/what-is-5g
https://www.qualcomm.com/invention/5g/what-is-5g
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb25
https://link.springer.com/
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb25
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb25
https://www.sciencedirect.com/
https://dl.acm.org/
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb28
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb28
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb28
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb28
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb28
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb28
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb28
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb30
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb30
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb30
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb30
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb30
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb31
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb31
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb31
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb31
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb31
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb33
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb33
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb33
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb33
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb33
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb34
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb34
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb34
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb34
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb34
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb35
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb35
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb35
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb35
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb35
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb35
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb35
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb36
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb36
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb36
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb37
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb37
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb37
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb37
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb37
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb37
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb37
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb38
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb38
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb38
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb38
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb38
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb38
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb38

K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298 25
[40] Abhishek Gupta, M. Farhan Habib, Uttam Mandal, Pulak Chowdhury,
Massimo Tornatore, Biswanath Mukherjee, On service-chaining strategies
using virtual network functions in operator networks, Comput. Netw. 133
(2018) 1–16.

[41] Ming Xia, Meral Shirazipour, Ying Zhang, Howard Green, Attila Takacs,
SOLuTIoN: SDN-based OpticaL traffic steering for NFV, in: Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking,
2014, pp. 227–228.

[42] Emmanouil Fountoulakis, Qi Liao, Nikolaos Pappas, An end-to-end perfor-
mance analysis for service chaining in a virtualized network, IEEE Open
J. Commun. Soc. 1 (2020) 148–163.

[43] Internet engineering task force (IETF), 2020, https://www.ietf.org.
(Accessed 21 February 2020).

[44] Guozhen Cheng, Hongchang Chen, Hongchao Hu, Zhiming Wang, Ju-
long Lan, Enabling network function combination via service chain
instantiation, Comput. Netw. 92 (2015) 396–407.

[45] Service function chaining (SFC) architecture, 2020, https://www.hjp.at/
(de)/doc/rfc/rfc7665.html. (Accessed 20 January 2020).

[46] Seungik Lee, Sangheon Pack, Myung-Ki Shin, Service function path
adaptation in SFC, in: 2017 19th International Conference on Advanced
Communication Technology, ICACT, IEEE, 2017, pp. 510–513.

[47] Paul Quinn, Jim Guichard, Service function chaining: Creating a service
plane via network service headers, Computer 47 (11) (2014) 38–44.

[48] Li-Der Chou, Chia-Wei Tseng, Hsin-Yao Chou, Yao-Tsung Yang, A SFC
network management system in SDN, in: International Conference on
Mobile and Wireless Technology, Springer, 2017, pp. 360–369.

[49] Service chaining in carrier networks, 2020, https://www.qosmos.com/wp-
content/uploads/Service-Chaining-in-Carrier-Networks_WP_Heavy-
Reading_Qosmos_Feb2015.pdf. (Accessed 22 January 2020).

[50] Lalit Chettri, Rabindranath Bera, A comprehensive survey on internet of
things (IoT) toward 5G wireless systems, IEEE Internet Things J. 7 (1)
(2019) 16–32.

[51] Gustavo Miotto, Marcelo Caggiani Luizelli, Weverton Luis
da Costa Cordeiro, Luciano Paschoal Gaspary, Adaptive placement &
chaining of virtual network functions with NFV-PEAR, J. Internet Serv.
Appl. 10 (1) (2019) 3.

[52] Hye-Jin Ku, J.H. Jung, Gu-In Kwon, A study on reinforcement learning
based SFC path selection in SDN/NFV, Int. J. Appl. Eng. Res. 12 (12) (2017)
3439–3443.

[53] Yong Li, Feng Zheng, Min Chen, Depeng Jin, A unified control and opti-
mization framework for dynamical service chaining in software-defined
NFV system, IEEE Wirel. Commun. 22 (6) (2015) 15–23.

[54] Nikolaos Petroulakis, Konstantinos Fysarakis, Andreas Miaoudakis, Kon-
stantinos Ramantas, Panos Chatziadam, Christos Verikoukis, Service
chaining using software-defined networks, in: Wiley 5G Ref: The Essential
5G Reference Online, Wiley Online Library, 2019, pp. 1–23.

[55] Hajar Hantouti, Nabil Benamar, A novel SDN-based architecture and
traffic steering method for service function chaining, in: 2018 Interna-
tional Conference on Selected Topics in Mobile and Wireless Networking,
MoWNeT, IEEE, 2018, pp. 1–8.

[56] Ahmed M. Medhat, Giuseppe A. Carella, Michael Pauls, Marcello Monach-
esi, Marius Corici, Thomas Magedanz, Resilient orchestration of service
functions chains in a NFV environment, in: 2016 IEEE Conference on Net-
work Function Virtualization and Software Defined Networks, NFV-SDN,
IEEE, 2016, pp. 7–12.

[57] Sang-Min Shin, Gu-In Kwon, Real-time monitoring technique using SFC
classifier in nfv environment, Int. J. Appl. Eng. Res. 12 (19) (2017)
8676–8680.

[58] Selma Khebbache, Makhlouf Hadji, Djamal Zeghlache, Virtualized network
functions chaining and routing algorithms, Comput. Netw. 114 (2017)
95–110.

[59] Wen-Ping Lai, Kuan-Chun Chiu, Automatic deployment and dynamic
scaling of NFV service chaining on Bare Metal (SCBM), in: 2018 IEEE
Vehicular Networking Conference, VNC, IEEE, 2018, pp. 1–2.

[60] Alexandre Heideker, Ivan Zyrianoff, Carlos A. Kamienski, Profiling ser-
vice function chaining behavior for NFV orchestration, in: 2018 IEEE
Symposium on Computers and Communications, ISCC, IEEE, 2018, pp.
01020–01025.

[61] Hao Wang, Jens Schmitt, Load balancing-towards balanced delay guar-
antees in NFV/SDN, in: 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), IEEE, 2016, pp.
240–245.

[62] Sikandar Ejaz, Zeshan Iqbal, Peer Azmat Shah, Bilal Haider Bukhari,
Armughan Ali, Farhan Aadil, Traffic load balancing using software defined
networking (SDN) controller as virtualized network function, IEEE Access
7 (2019) 46646–46658.
[63] Giwon Lee, Myeongsu Kim, Sukjin Choo, Sangheon Pack, Younghwa Kim,
Optimal flow distribution in service function chaining, in: The 10th
International Conference on Future Internet, 2015, pp. 17–20.

[64] Ahmed M. Medhat, Giuseppe Carella, Christian Lück, Marius-Iulian Corici,
Thomas Magedanz, Near optimal service function path instantiation in a
multi-datacenter environment, in: 2015 11th International Conference on
Network and Service Management, CNSM, IEEE, 2015, pp. 336–341.

[65] Po-Ching Lin, Ying-Dar Lin, Cheng-Ying Wu, Yuan-Cheng Lai, Yi-Chih Kao,
Balanced service chaining in software-defined networks with network
function virtualization, Computer 49 (11) (2016) 68–76.

[66] Minh-Tuan Thai, Ying-Dar Lin, Yuan-Cheng Lai, A joint network and server
load balancing algorithm for chaining virtualized network functions, in:
2016 IEEE International Conference on Communications, ICC, IEEE, 2016,
pp. 1–6.

[67] Nabeel Akhtar, Ibrahim Matta, Yuefeng Wang, Managing NFV using SDN
and control theory, in: NOMS 2016-2016 IEEE/IFIP Network Operations
and Management Symposium, IEEE, 2016, pp. 1113–1118.

[68] Boston university recursive internetwork architecture (RINA) lab, 2020,
http://csr.bu.edu/rina/. (Accessed 12 March 2020).

[69] Minh-Tuan Thai, Ying-Dar Lin, Po-Ching Lin, Yuan-Cheng Lai, Hash-based
load balanced traffic steering on softswitches for chaining virtual-
ized network functions, in: 2017 IEEE International Conference on
Communications, ICC, IEEE, 2017, pp. 1–6.

[70] Mosab Hamdan, Bushra Mohammed, Usman Humayun, Ahmed Abdelaziz,
Suleman Khan, M. Akhtar Ali, Muhammad Imran, Muhammad Nadzir
Marsono, Flow-aware elephant flow detection for software-defined
networks, IEEE Access 8 (2020) 72585–72597.

[71] Dongjin Hong, Jinyong Kim, Daeyoung Hyun, Jaehoon Paul Jeong, A
monitoring-based load balancing scheme for network security functions,
in: 2017 International Conference on Information and Communication
Technology Convergence, ICTC, IEEE, 2017, pp. 668–672.

[72] Sang Il Kim, Hwa Sung Kim, A research on dynamic service function
chaining based on reinforcement learning using resource usage, in:
2017 Ninth International Conference on Ubiquitous and Future Networks,
ICUFN, IEEE, 2017, pp. 582–586.

[73] Ahmed M. Medhat, Giuseppe A. Carella, Michael Pauls, Thomas Magedanz,
Orchestrating scalable service function chains in a NFV environment, in:
2017 IEEE Conference on Network Softwarization, NetSoft, IEEE, 2017, pp.
1–5.

[74] Minh-Tuan Thai, Ying-Dar Lin, Po-Ching Lin, Yuan-Cheng Lai, To-
wards load-balanced service chaining by hash-based traffic steering on
softswitches, J. Netw. Comput. Appl. 109 (2018) 1–10.

[75] Gang Sun, Gungyang Zhu, Dan Liao, Hongfang Yu, Xiaojiang Du, Mohsen
Guizani, Cost-efficient service function chain orchestration for low-
latency applications in NFV networks, IEEE Syst. J. 13 (4) (2018)
3877–3888.

[76] Yi-Wei Ma, Jiann-Liang Chen, Jia-Yi Jhou, Adaptive service function
selection for network function virtualization networking, Future Gener.
Comput. Syst. 91 (2019) 108–123.

[77] Peilin Hong, Kaiping Xue, Defang Li, et al., Resource aware routing for
service function chains in SDN and NFV-enabled network, IEEE Trans.
Serv. Comput. (2018) 1–13.

[78] Gang Sun, Zhu Xu, Hongfang Yu, Xi Chen, Victor Chang, Athanasios V.
Vasilakos, Low-latency and resource-efficient service function chaining
orchestration in network function virtualization, IEEE Internet Things J. 7
(7) (2020) 5760–5772.

[79] Yunjie Gu, Yuxiang Hu, Yuehang Ding, Jie Lu, Jichao Xie, Elastic virtual
network function orchestration policy based on workload prediction, IEEE
Access 7 (2019) 96868–96878.

[80] Gang Sun, Zhenrong Chen, Hongfang Yu, Xiaojiang Du, Mohsen Guizani,
Online parallelized service function chain orchestration in data center
networks, IEEE Access 7 (2019) 100147–100161.

[81] Yunjie Gu, Yuehang Ding, Yuxiang Hu, Joint optimization of delay guar-
antees and resource allocation for service function chaining, IEICE Trans.
Inf. Syst. 102 (12) (2019) 2611–2614.

[82] Seyeon Jeong, Heegon Kim, Jae-Hyoung Yoo, James Won-Ki Hong, Ma-
chine learning based link state aware service function chaining, in:
2019 20th Asia-Pacific Network Operations and Management Symposium,
APNOMS, IEEE, 2019, pp. 1–4.

[83] Boutheina Dab, Ilhem Fajjari, Mathieu Rohon, Cyril Auboin, Arnaud
Diquélou, An efficient traffic steering for cloud-native service function
chaining, in: 2020 23rd Conference on Innovation in Clouds, Internet and
Networks and Workshops, ICIN, IEEE, 2020, pp. 71–78.

[84] Tatsuya Mori, Masato Uchida, Ryoichi Kawahara, Jianping Pan, Shigeki
Goto, Identifying elephant flows through periodically sampled packets,
in: Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, 2004, pp. 115–120.

http://refhub.elsevier.com/S1574-0137(20)30398-1/sb40
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb40
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb40
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb40
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb40
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb40
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb40
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb42
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb42
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb42
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb42
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb42
https://www.ietf.org
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb44
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb44
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb44
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb44
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb44
https://www.hjp.at/(de)/doc/rfc/rfc7665.html
https://www.hjp.at/(de)/doc/rfc/rfc7665.html
https://www.hjp.at/(de)/doc/rfc/rfc7665.html
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb46
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb46
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb46
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb46
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb46
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb47
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb47
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb47
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb48
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb48
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb48
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb48
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb48
https://www.qosmos.com/wp-content/uploads/Service-Chaining-in-Carrier-Networks_WP_Heavy-Reading_Qosmos_Feb2015.pdf
https://www.qosmos.com/wp-content/uploads/Service-Chaining-in-Carrier-Networks_WP_Heavy-Reading_Qosmos_Feb2015.pdf
https://www.qosmos.com/wp-content/uploads/Service-Chaining-in-Carrier-Networks_WP_Heavy-Reading_Qosmos_Feb2015.pdf
https://www.qosmos.com/wp-content/uploads/Service-Chaining-in-Carrier-Networks_WP_Heavy-Reading_Qosmos_Feb2015.pdf
https://www.qosmos.com/wp-content/uploads/Service-Chaining-in-Carrier-Networks_WP_Heavy-Reading_Qosmos_Feb2015.pdf
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb50
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb50
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb50
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb50
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb50
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb51
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb51
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb51
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb51
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb51
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb51
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb51
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb52
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb52
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb52
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb52
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb52
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb53
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb53
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb53
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb53
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb53
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb54
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb54
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb54
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb54
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb54
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb54
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb54
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb55
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb55
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb55
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb55
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb55
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb55
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb55
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb56
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb56
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb56
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb56
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb56
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb56
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb56
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb56
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb56
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb57
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb57
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb57
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb57
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb57
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb58
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb58
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb58
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb58
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb58
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb59
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb59
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb59
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb59
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb59
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb60
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb60
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb60
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb60
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb60
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb60
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb60
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb61
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb61
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb61
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb61
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb61
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb61
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb61
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb62
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb62
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb62
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb62
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb62
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb62
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb62
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb64
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb64
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb64
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb64
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb64
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb64
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb64
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb65
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb65
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb65
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb65
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb65
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb66
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb66
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb66
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb66
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb66
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb66
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb66
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb67
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb67
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb67
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb67
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb67
http://csr.bu.edu/rina/
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb69
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb69
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb69
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb69
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb69
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb69
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb69
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb70
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb70
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb70
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb70
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb70
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb70
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb70
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb71
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb71
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb71
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb71
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb71
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb71
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb71
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb72
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb72
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb72
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb72
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb72
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb72
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb72
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb73
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb73
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb73
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb73
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb73
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb73
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb73
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb74
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb74
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb74
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb74
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb74
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb75
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb75
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb75
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb75
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb75
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb75
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb75
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb76
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb76
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb76
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb76
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb76
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb77
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb77
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb77
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb77
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb77
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb78
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb78
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb78
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb78
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb78
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb78
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb78
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb79
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb79
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb79
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb79
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb79
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb80
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb80
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb80
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb80
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb80
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb81
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb81
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb81
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb81
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb81
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb82
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb82
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb82
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb82
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb82
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb82
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb82
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb83
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb83
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb83
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb83
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb83
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb83
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb83

26 K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298
[85] Chaima Ghribi, Marouen Mechtri, Djamal Zeghlache, A dynamic program-
ming algorithm for joint VNF placement and chaining, in: Proceedings of
the 2016 ACM Workshop on Cloud-Assisted Networking, 2016, pp. 19–24.

[86] Gang Xiong, Yuxiang Hu, Julong Lan, Guozhen Cheng, A mechanism for
configurable network service chaining and its implementation, KSII Trans.
Internet Inf. Syst. 10 (8) (2016) 3701–3727.

[87] Marouen Mechtri, Chaima Ghribi, Djamal Zeghlache, A scalable algorithm
for the placement of service function chains, IEEE Trans. Netw. Serv.
Manag. 13 (3) (2016) 533–546.

[88] Shinji Umeyama, An eigendecomposition approach to weighted graph
matching problems, IEEE Trans. Pattern Anal. Mach. Intell. 10 (5) (1988)
695–703.

[89] Luhan Wang, Zhaoming Lu, Xiangming Wen, Raymond Knopp, Rohit
Gupta, Joint optimization of service function chaining and resource
allocation in network function virtualization, IEEE Access 4 (2016)
8084–8094.

[90] Cheng-Liang Hsieh, Ning Weng, Virtual network functions instantiation
on SDN switches for policy-aware traffic steering, in: Proceedings of the
2016 Symposium on Architectures for Networking and Communications
Systems, 2016, pp. 119–120.

[91] Siri Kim, Yunjung Han, Sungyong Park, An energy-aware service function
chaining and reconfiguration algorithm in NFV, in: 2016 IEEE 1st Inter-
national Workshops on Foundations and Applications of Self* Systems,
FAS* W, IEEE, 2016, pp. 54–59.

[92] Oussama Soualah, Marouen Mechtri, Chaima Ghribi, Djamal Zeghlache,
Energy efficient algorithm for VNF placement and chaining, in: 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGRID, IEEE, 2017, pp. 579–588.

[93] Bo Yi, Xingwei Wang, Min Huang, Design and evaluation of schemes
for provisioning service function chain with function scalability, J. Netw.
Comput. Appl. 93 (2017) 197–214.

[94] Gianluca Davoli, Walter Cerroni, Chiara Contoli, Francesco Foresta, Franco
Callegati, Implementation of service function chaining control plane
through openflow, in: 2017 IEEE Conference on Network Function Vir-
tualization and Software Defined Networks, NFV-SDN, IEEE, 2017, pp.
1–4.

[95] Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan, Bo Han, Joshua Reich,
Aman Shaikh, Zhi-Li Zhang, Parabox: Exploiting parallelism for virtual
network functions in service chaining, in: Proceedings of the Symposium
on SDN Research, 2017, pp. 143–149.

[96] Salvatore Renato Ziri, Ahmad Tajuddin Samsudin, Christophe Fontaine,
Service chaining implementation in network function virtualization with
software defined networking, in: Proceedings of the 5th International
Conference on Communications and Broadband Networking, 2017, pp.
70–75.

[97] Nicolas Huin, Andrea Tomassilli, Frédéric Giroire, Brigitte Jaumard,
Energy-efficient service function chain provisioning, J. Opt. Commun.
Netw. 10 (3) (2018) 114–124.

[98] Yicen Liu, Yu Lu, Xingkai Chen, Xi Li, Wenxin Qiao, Liyun Chen, A
dynamic placement mechanism of service function chaining based on
software-defined networking, TIIS 12 (10) (2018) 4640–4661.

[99] Nicolas Huin, Brigitte Jaumard, Frédéric Giroire, Optimal network service
chain provisioning, IEEE/ACM Trans. Netw. 26 (3) (2018) 1320–1333.

[100] Maryam Jalalitabar, Evrim Guler, Danyang Zheng, Guangchun Luo, Ling
Tian, Xiaojun Cao, Embedding dependence-aware service function chains,
J. Opt. Commun. Netw. 10 (8) (2018) C64–C74.

[101] Akshay Gadre, Anix Anbiah, Krishna M. Sivalingam, Centralized ap-
proaches for virtual network function placement in SDN-enabled net-
works, EURASIP J. Wireless Commun. Networking 2018 (1) (2018)
197.

[102] Yulun Cheng, Longxiang Yang, Hongbo Zhu, Deployment of service
function chain for NFV-enabled network with delay constraint, in: 2018
International Conference on Electronics Technology, ICET, IEEE, 2018, pp.
383–386.

[103] Hadi Razzaghi Kouchaksaraei, Holger Karl, Service function chaining
across openstack and kubernetes domains, in: Proceedings of the 13th
ACM International Conference on Distributed and Event-Based Systems,
2019, pp. 240–243.

[104] Haotong Cao, Hongbo Zhu, Longxiang Yang, Dynamic embedding and
scheduling of service function chains for future SDN/NFV-enabled
networks, IEEE Access 7 (2019) 39721–39730.

[105] Zenan Wang, Jiao Zhang, Tao Huang, Yunjie Liu, Service function chain
composition, placement, and assignment in data centers, IEEE Trans.
Netw. Serv. Manag. 16 (4) (2019) 1638–1650.

[106] Dandan Qi, Subin Shen, Guanghui Wang, Towards an efficient VNF
placement in network function virtualization, Comput. Commun. 138
(2019) 81–89.
[107] Oussama Soualah, Marouen Mechtri, Chaima Ghribi, Djamal Zeghlache,
Online and batch algorithms for VNFs placement and chaining, Comput.
Netw. 158 (2019) 98–113.

[108] Gang Sun, Yayu Li, Hongfang Yu, Athanasios V. Vasilakos, Xiaojiang
Du, Mohsen Guizani, Energy-efficient and traffic-aware service function
chaining orchestration in multi-domain networks, Future Gener. Comput.
Syst. 91 (2019) 347–360.

[109] Gengbiao Shen, Qing Li, Yong Jiang, Yu Wu, Jianhui Lv, A four-stage
adaptive scheduling scheme for service function chain in NFV, Comput.
Netw. 175 (2020) 107259.

[110] Guanglei Li, Bohao Feng, Huachun Zhou, Yuming Zhang, Keshav Sood,
Shui Yu, Adaptive service function chaining mappings in 5G using deep
q-learning, Comput. Commun. 152 (2020) 305–315.

[111] Imane El Mensoum, Omar Abdul Wahab, Nadjia Kara, Claes Edstrom,
MuSC: A multi-stage service chains embedding approach, J. Netw.
Comput. Appl. 159 (2020) 102593.

[112] Seung-Ik Lee, Myung-Ki Shin, A self-recovery scheme for service func-
tion chaining, in: 2015 International Conference on Information and
Communication Technology Convergence, ICTC, IEEE, 2015, pp. 108–112.

[113] Hongseok Jeon, BhumCheol Lee, Network service chaining challenges for
VNF outsourcing in network function virtualization, in: 2015 International
Conference on Information and Communication Technology Convergence,
ICTC, IEEE, 2015, pp. 819–821.

[114] Sandra Herker, Xueli An, Wolfgang Kiess, Sergio Beker, Andreas
Kirstaedter, Data-center architecture impacts on virtualized network
functions service chain embedding with high availability requirements,
in: 2015 IEEE Globecom Workshops, GC Wkshps, IEEE, 2015, pp. 1–7.

[115] Lyunsik Yang, Doan Van Tung, Minsik Kim, Younghan Kim, Alarm-
based monitoring for high availability in service function chain, in: 2016
International Conference on Cloud Computing Research and Innovations,
ICCCRI, IEEE, 2016, pp. 86–91.

[116] Shashank Bijwe, Fumio Machida, Shinya Ishida, Seiichi Koizumi, End-
to-end reliability assurance of service chain embedding for network
function virtualization, in: 2017 IEEE Conference on Network Function
Virtualization and Software Defined Networks, NFV-SDN, IEEE, 2017, pp.
1–4.

[117] Shilei Zhang, Ying Wang, Wenjing Li, Xuesong Qiu, Service failure di-
agnosis in service function chain, in: 2017 19th Asia-Pacific Network
Operations and Management Symposium, APNOMS, IEEE, 2017, pp.
70–75.

[118] Dongeun Suh, Hosung Baek, Seokwon Jang, Sol Han, Sangheon Pack,
Distributed service function failover mechanism in service function chain-
ing, in: 2017 International Conference on Information Networking, ICOIN,
IEEE, 2017, pp. 148–150.

[119] Oussama Soualah, Marouen Mechtri, Chaima Ghribi, Djamal Zeghlache,
A link failure recovery algorithm for virtual network function chain-
ing, in: 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management, IM, IEEE, 2017, pp. 213–221.

[120] Jaewook Lee, Haneul Ko, Dongeun Suh, Seokwon Jang, Sangheon Pack,
Overload and failure management in service function chaining, in: 2017
IEEE Conference on Network Softwarization, NetSoft, IEEE, 2017, pp. 1–5.

[121] Karthik Karra, Krishna M. Sivalingam, Providing resiliency for service
function chaining in NFV systems using a SDN-based approach, in: 2018
Twenty Fourth National Conference on Communications, NCC, IEEE, 2018,
pp. 1–6.

[122] Jian Sun, Gang Sun, Dan Liao, Yao Li, Muthu Ramachandran, Victor
Chang, Reliable and efficient deployment for virtual network functions,
in: International Conference on Smart Computing and Communication,
Springer, 2017, pp. 375–384.

[123] O.I. Aiko, Motomu Nakajima, Yuji Soejima, Mitsuho Tahara, Reliable
design method for service function chaining, in: 2019 20th Asia-Pacific
Network Operations and Management Symposium, APNOMS, IEEE, 2019,
pp. 1–4.

[124] Pegah Torkamandi, Siavash Khorsandi, Bahador Bakhshi, Availability
aware SFC embedding in NFV: A clustering approach, in: 2019 27th
Iranian Conference on Electrical Engineering, ICEE, IEEE, 2019, pp.
1922–1928.

[125] Jiao Zhang, Zenan Wang, Chunyi Peng, Linquan Zhang, Tao Huang, Yunjie
Liu, RABA: Resource-aware backup allocation for a chain of virtual
network functions, in: IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, IEEE, 2019, pp. 1918–1926.

[126] Guanjun Tang, Yonghua Chen, Shiguang Xu, Qian Chen, Wenchen He,
RSCM: A reliability-aware service chain mapping, in: International
Conference on Artificial Intelligence and Security, Springer, 2019, pp.
653–662.

http://refhub.elsevier.com/S1574-0137(20)30398-1/sb86
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb86
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb86
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb86
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb86
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb87
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb87
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb87
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb87
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb87
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb88
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb88
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb88
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb88
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb88
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb89
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb89
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb89
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb89
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb89
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb89
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb89
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb91
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb91
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb91
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb91
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb91
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb91
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb91
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb92
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb92
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb92
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb92
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb92
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb92
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb92
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb93
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb93
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb93
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb93
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb93
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb94
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb94
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb94
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb94
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb94
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb94
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb94
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb94
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb94
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb97
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb97
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb97
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb97
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb97
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb98
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb98
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb98
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb98
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb98
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb99
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb99
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb99
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb100
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb100
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb100
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb100
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb100
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb101
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb101
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb101
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb101
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb101
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb101
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb101
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb102
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb102
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb102
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb102
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb102
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb102
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb102
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb104
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb104
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb104
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb104
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb104
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb105
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb105
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb105
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb105
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb105
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb106
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb106
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb106
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb106
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb106
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb107
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb107
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb107
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb107
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb107
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb108
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb108
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb108
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb108
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb108
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb108
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb108
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb109
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb109
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb109
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb109
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb109
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb110
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb110
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb110
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb110
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb110
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb111
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb111
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb111
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb111
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb111
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb112
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb112
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb112
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb112
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb112
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb113
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb113
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb113
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb113
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb113
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb113
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb113
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb114
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb114
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb114
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb114
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb114
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb114
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb114
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb115
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb115
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb115
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb115
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb115
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb115
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb115
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb116
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb116
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb116
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb116
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb116
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb116
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb116
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb116
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb116
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb117
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb117
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb117
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb117
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb117
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb117
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb117
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb118
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb118
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb118
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb118
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb118
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb118
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb118
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb119
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb119
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb119
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb119
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb119
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb119
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb119
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb120
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb120
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb120
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb120
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb120
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb121
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb121
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb121
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb121
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb121
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb121
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb121
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb122
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb122
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb122
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb122
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb122
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb122
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb122
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb123
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb123
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb123
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb123
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb123
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb123
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb123
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb124
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb124
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb124
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb124
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb124
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb124
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb124
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb125
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb125
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb125
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb125
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb125
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb125
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb125
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb126
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb126
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb126
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb126
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb126
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb126
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb126

K. Kaur, V. Mangat and K. Kumar / Computer Science Review 38 (2020) 100298 27
[127] Long Qu, Chadi Assi, Maurice J. Khabbaz, Yinghua Ye, Reliability-aware
service function chaining with function decomposition and multipath
routing, IEEE Trans. Netw. Serv. Manag. 17 (2) (2019) 835–848.

[128] Ngoc-Thanh Dinh, Younghan Kim, An efficient reliability guaranteed
deployment scheme for service function chains, IEEE Access 7 (2019)
46491–46505.

[129] Yicen Liu, Yu Lu, Wenxin Qiao, Xingkai Chen, Reliability-aware ser-
vice chaining mapping in NFV-enabled networks, ETRI J. 41 (2) (2019)
207–223.

[130] Lang Fang, Xiaoning Zhang, Keshav Sood, Yunqing Wang, Shui Yu,
Reliability-aware virtual network function placement in carrier networks,
J. Netw. Comput. Appl. 154 (2020) 102536.

[131] Meng Wang, Bo Cheng, Shuai Zhao, Biyi Li, Wendi Feng, Junliang
Chen, Availability-aware service chain composition and mapping in
NFV-enabled networks, in: 2019 IEEE International Conference on Web
Services, ICWS, IEEE, 2019, pp. 107–115.

[132] ChiSheng Sua, Fu-Min Changb, Shang-Juh Kaoa, An OpenFlow-based
dynamic service chaining approach for hybrid network functions vir-
tualization, in: Proceedings of the 4th IIAE International Conference on
Industrial Application Engineering, 2016, pp. 83–88.

[133] Kalpana D. Joshi, Kotaro Kataoka, pSMART: A lightweight, privacy-aware
service function chain orchestration in multi-domain NFV/SDN, Comput.
Netw. 178 (2020) 107295.

[134] Wei Yang, Carol Fung, A survey on security in network functions virtual-
ization, in: 2016 IEEE NetSoft Conference and Workshops, NetSoft, IEEE,
2016, pp. 15–19.

Karamjeet Kaur received the B.Tech. degree from Pun-
jabi University Patiala and M.Tech. degree from Punjab
Technical University, Jalandhar in Computer Science
Engineering. She is currently pursuing her Ph.D. in
Information Technology from Panjab University Chandi-
garh. Her research interest is on Software-Defined
Networking, Virtualization, Network Function Virtual-
ization and Cloud Computing. She has published 22
papers in International & National Conferences. She has
got 4 years teaching experience. She is the author of
the 1 book. She is UGC-NET qualified.
Dr. Veenu Mangat received her Masters of Engineering
in Computer Science and Engineering from Punjab
Engineering College (PEC) in 2004 and Ph.D. in Engi-
neering and Technology (Computer Science) in 2016
from Panjab University, India. She is currently working
as Associate Professor in Information Technology at
UIET, Panjab University. She has a teaching experience
of more than 15 years. Her areas of research include
data mining, machine learning, privacy and security.
She is co-Principal Investigator in research project on
‘Monitoring of Active Fire Locations and Precision in

Allied Agricultural Activities using Communication Technologies’ funded by
Ministry of Electronics & IT of Government of India worth Rs. 75.75 lakhs
from 2020–2022. She has also worked on research project entitled ‘Pedestrian
Detection from Thermal Imaging’ funded by Design Innovation Centre of Ministry
of HRD and consultancy project in the area of machine learning. She has
successfully guided 21 Masters of Engineering dissertations and is currently
guiding 7 Ph.D. scholars.

Dr. Krishan Kumar is currently Professor in Depart-
ment of Information Technology, University Institute
of Engineering and Technology, Panjab University,
Chandigarh. He has done B. Tech. Computer Science
& Engineering from National Institute of Technology,
Hamirpur in 1995. He completed his Master of Soft-
ware Systems from Birla Institute of Technology &
Sciences, Pilani in 2001. He finished his regular Ph.D.
from Indian Institute of Technology, Roorkee in Febru-
ary, 2008. He has more than 22 years of teaching,
research and administrative experience. His general

research interests are in the areas of Network Security and Computer Networks.
Specific research interests include Intrusion Detection, Protection from Internet
Attacks, Web performance, Network architecture/protocols, and Network mea-
surement/ modeling. He has published 2 national and 2 International Books
in the field of Computer Science & Network security. He has published more
than 150 papers in national/International peer reviewed/Indexed/impact factor
Journals and IEEE, ACM and Springer proceedings. His publications are well cited
by eminent researchers in the field.

http://refhub.elsevier.com/S1574-0137(20)30398-1/sb127
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb127
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb127
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb127
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb127
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb128
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb128
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb128
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb128
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb128
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb129
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb129
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb129
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb129
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb129
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb130
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb130
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb130
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb130
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb130
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb131
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb131
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb131
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb131
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb131
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb131
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb131
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb133
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb133
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb133
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb133
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb133
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb134
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb134
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb134
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb134
http://refhub.elsevier.com/S1574-0137(20)30398-1/sb134

	A comprehensive survey of service function chain provisioning approaches in SDN and NFV architecture
	Introduction
	Motivation
	Related academic research
	Contributions

	Systematic literature review protocol
	Defining research questions
	Search methodology
	Study selection criteria
	Reference checking
	Data extraction

	RA1: Service function chaining strategies
	Static service function chaining
	Dynamic service function chaining

	RA2: Service function chaining architecture
	Standardized architecture for SFC deployment
	SFC data plane component
	SFC control plane component

	SDN/nfv architecture for SFC deployment
	Extended ETSI NFV architecture for SFC deployment

	RA3: Service function chaining provisioning techniques
	Load balancing aware service function chaining (LBA-SFC)
	Discussion

	Placement aware service function chaining (PLA-SFC)
	Discussion

	Availability aware service function chaining (AVA-SFC)
	Discussion

	RA4: Service function chaining challenges
	RA5: Research gaps
	Conclusion
	Declaration of competing interest
	References

