
Journal Pre-proof

A survey on data plane programming with P4: Fundamentals, advances,
and applied research

Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner,
Vladimir Gurevich, Florian Zeiger, Reinhard Frank, Michael Menth

PII: S1084-8045(22)00202-8
DOI: https://doi.org/10.1016/j.jnca.2022.103561
Reference: YJNCA 103561

To appear in: Journal of Network and Computer Applications

Received date : 5 August 2021
Revised date : 10 March 2022
Accepted date : 12 December 2022

Please cite this article as: F. Hauser, M. Häberle, D. Merling et al., A survey on data plane
programming with P4: Fundamentals, advances, and applied research. Journal of Network and
Computer Applications (2022), doi: https://doi.org/10.1016/j.jnca.2022.103561.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

https://doi.org/10.1016/j.jnca.2022.103561
https://doi.org/10.1016/j.jnca.2022.103561

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

A Survey on Data Plane Programming with P4:
Fundamentals, Advances, and Applied Research

Frederik Hausera, Marco Häberlea, Daniel Merlinga, Steffen Lindnera,
Vladimir Gurevichb, Florian Zeigerc, Reinhard Frankc, Michael Mentha

aUniversity of Tuebingen, Department of Computer Science, Chair of Communication
Networks, Tuebingen, Germany

bIntel, Barefoot Division (BXD), United States of America
cSiemens AG, Corporate Technology, Munich, Germany

Abstract

Programmable data planes allow users to define their own data plane algo-
rithms for network devices including appropriate data plane application pro-
gramming interfaces (APIs) which may be leveraged by user-defined software-
defined networking (SDN) control. This offers great flexibility for network cus-
tomization, be it for specialized, commercial appliances, e.g., in 5G or data
center networks, or for rapid prototyping in industrial and academic research.
Programming protocol-independent packet processors (P4) has emerged as the
currently most widespread abstraction, programming language, and concept for
data plane programming. It is developed and standardized by an open commu-
nity, and it is supported by various software and hardware platforms.

In the first part of this paper we give a tutorial of data plane programming
models, the P4 programming language, architectures, compilers, targets, and
data plane APIs. We also consider research efforts to advance P4 technology.
In the second part, we categorize a large body of literature of P4-based applied
research into different research domains, summarize the contributions of these
papers, and extract prototypes, target platforms, and source code availability.
For each research domain, we analyze how the reviewed works benefit from P4’s
core features. Finally, we discuss potential next steps based on our findings.

Keywords: P4, SDN, programmable data planes

Email addresses: frederik.hauser@uni-tuebingen.de (Frederik Hauser),
marco.haeberle@uni-tuebingen.de (Marco Häberle), daniel.merling@uni-tuebingen.de
(Daniel Merling), steffen.lindner@uni-tuebingen.de (Steffen Lindner),
vladimir.gurevich@intel.com (Vladimir Gurevich), florian.zeiger@siemens.com (Florian
Zeiger), reinhard.frank@siemens.com (Reinhard Frank), menth@uni-tuebingen.de (Michael
Menth)

Preprint submitted to JNCA 10.03.2022

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

1. Introduction

Traditional networking devices such as routers and switches process packets
using data and control plane algorithms. Users can configure control plane
features and protocols, e.g., via CLIs, web interfaces, or management APIs, but
the underlying algorithms can be changed only by the vendor. This limitation
has been broken up by SDN and even more by data plane programming.

SDN makes network devices programmable by introducing an API that al-
lows users to bypass the built-in control plane algorithms and to replace them
with self-defined algorithms. Those algorithms are expressed in software and
typically run on an SDN controller with an overall view of the network. Thereby,
complex control plane algorithms designed for distributed control can be re-
placed by simpler algorithms designed for centralized control. This is beneficial
for use cases that are demanding with regard to flexibility, efficiency and secu-
rity, e.g., massive data centers or 5G networks.

Programmable data planes enable users to implement their own data plane
algorithms on forwarding devices. Users, e.g., programmers, practitioners, or
operators, may define new protocol headers and forwarding behavior, which is
without programmable data planes only possible for a vendor. They may also
add data plane APIs for SDN control.

Data plane programming changes the power of the users as they can build
custom network equipment without any compromise in performance, scalabil-
ity, speed, or power on appropriate platforms. There are different data plane
programming models, each with many implementations and programming lan-
guages. Examples are Click [1], VPP [2], NPL [3], and SDNet [4].

Programming protocol-independent packet processors (P4) is currently the
most widespread abstraction, programming language, and concept for data
plane programming. First published as a research paper in 2014 [5], it is now
developed and standardized in the P4 Language Consortium, it is supported by
various software- and hardware-based target platforms, and it is widely applied
in academia and industry.

In the following, we clarify the contribution of this survey, point out its
novelty, explain its organization, and provide a table with acronyms frequently
used in this work.

1.1. Contributions
This survey pursues two objectives. First, it provides a comprehensive intro-

duction and overview of P4. Second, it surveys publications describing applied
research based on P4 technology. Its main contributions are the following:

• We explain the evolution of data plane programming with P4, relate it
to prior developments such as SDN, and compare it to other data plane
programming models.

• We give an overview of data plane programming with P4. It comprises
the P4 programming language, architectures, compilers, targets, and data

2

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

plane APIs. These sections do not only include foundations but also
present related work on advancements, extensions, or experiences.

• We summarize research efforts to advance P4 data planes. It comprises
optimization of development and deployment, testing and debugging, re-
search on P4 targets, and advances on control plane operation.

• We analyze a large body of literature considering P4-based applied re-
search. We categorize 245 research papers into different application do-
mains, summarize their key contributions, and characterize them with
respect to prototypes, target platforms, and source code availability. For
each research domain, we analyze how the reviewed works benefit from
P4’s core features.

We consider publications on P4 that were published until the end of 2020
and selected paper from 2021. Beside journal, conference, and workshop papers,
we also include contents from standards, websites, and source code repositories.
The paper comprises 519 references out of which 377 are scientific publications:
73 are from 2017 and before, 66 from 2018, 113 from 2019, 116 from 2020, and
9 from 2021.

1.2. Novelty
There are numerous surveys on SDN published in 2014 [6, 7], 2015 [8, 9, 10],

and 2016 [11, 12] as well as surveys on OpenFlow (OF) from 2014 [13, 14, 15].
Only one of them [12] mentions P4 in a single sentence. Two surveys of data
plane programming from 2015 [10, 9] were published shortly after the release of
P4, one conference paper from 2018 [16] and a survey from 2019 [17] present P4
just as one among other data plane programming languages. Likewise, Michel
et al. [18] gives an overview of data plane programming in general and P4 is one
among other examined abstractions and programming languages. Our survey is
dedicated to P4 only. It covers more details of P4 and a many more papers of
P4-based applied research which have mostly emerged only within the last two
years.

A recent survey focusing on P4 data plane programming has been published
in [19]. The authors introduce data plane programming with P4, review 33 re-
search works from four research domains, and discuss research issues. Another
recent technical report [20] reviews 150 research papers from seven research do-
mains. While typical research areas of P4 are covered, others (e.g., industrial
networking, novel routing and forwarding schemes, and time-sensitive network-
ing) are not part of the literature review. The different aspects of P4, e.g., the
programming language, architectures, compilers, targets, data plane APIs, and
their advancements are not treated in the paper. In addition, a survey solely
focusing on P4 for network security [21] was recently published. Gao et al. in-
troduce the P4 language and review 60 research works in the field of network
security applications. They analyze the core idea of the reviewed literature
and point out limitations. Finally, a short comparison on P4 targets regarding

3

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

throughput, delay, jitter, resource constraints, flexibility and proportion in the
research literature is given. In contrast to the mentioned surveys on P4, we
cover a greater level of detail of P4 technology and their advancements, and our
literature review is more comprehensive.

1.3. Paper Organization
Figure 1 depicts the structure of this paper which is divided into two main

parts: an overview of P4 and a survey of research publications.
In the first part, Section 2 gives an introduction to network programmabil-

ity. We describe the development from traditional networking and SDN to data
plane programming and present the two most common data plane programming
models. In Section 3, we give a technology-oriented tutorial of P4 based on its
latest version P416. We introduce the P4 programming language and describe
how user-provided P4 programs are compiled and executed on P4 targets. Sec-
tion 4 presents the concept of P4 architectures as intermediate layer between
the P4 programs and the targets. We introduce the four most common archi-
tectures in detail and describe P4 compilers. In Section 5, we categorize and
present platforms that execute P4 programs, so-called P4 targets that are based
on software, FPGAs, ASICs, or NPUs. Section 6 gives an introduction to data
plane APIs. We describe their functions, present a characterization, introduce
the four main P4 data plane APIs that serve as interfaces for SDN controllers,
and point out controller use case patterns. In Section 7, we summarize research
efforts that aim to improve P4 data plane programming.

The second part of the paper surveys P4-based applied research in com-
munication networks. In Section 8, we classify core features of P4 that make
it attractive for the implementation of data plane algorithms. We use these
properties in later sections to effectively reason about P4’s value for the im-
plementation of various prototypes. We present an overview of the research
domains and compile statistics about the included publications. The super-
ordinate research domains are monitoring (Section 9), traffic management and
congestion control (Section 10), routing and forwarding (Section 11), advanced
networking (Section 12), network security (Section 13), and miscellaneous (Sec-
tion 14) to cover additional, different topics. Each category includes a table to
give a quick overview of the analyzed papers with regard to prototype imple-
mentations, target platforms, and source code availability. At the end of each
section, we analyze how the reviewed works benefit from P4’s core features.

In Section 15 we discuss insights from this survey and give an outlook on
potential next steps. Section 16 concludes this work.

1.4. List of Acronyms
The following acronyms are used in this paper.

ACL access control list

ALU arithmetic logic unit

API application programming interface

4

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofPart I: Overview of P4

Network Programmability (Sect. II)

The P4
Programming

Language
(Sect. III)

Part II: Applied Research Domains

Discussion & Outlook (Sect. XV)

Monitoring
(Sect. IX)

Introduction (Sect. I)

P4
Architectures
& Compilers

(Sect. IV)

P4
Targets

(Sect. V)

P4 Data
Plane APIs
(Sect. VI)

Advances in P4 Data Plane Programming (Sect. VII)

Classification & Overview (Sect. VIII)

Advanced
Networking
(Sect. XII)

Network
Security

(Sect. XIII)

Routing and
Forwarding
(Sect. XI)

Miscellaneous
Research Domains

(Sect. XIV)

Traffic Management and
Congestion Control

(Sect. X)

Conclusion (Sect. XVI)

Figure 1: The paper is organized in two parts: Part I gives an overview on P4; Part II reviews
P4-based applied research in communication networks.

AQM active queue management

ASIC application-specific integrated circuit

AWW adjusting advertised windows

bmv2 Behavioral Model version 2

BGP Border Gateway Protocol

BPF Berkeley Packet Filter

CLI command line interface

DAG directed acyclic graph

DDoS distributed denial of service

DPI deep packet inspection

DPDK Data Plane Development Kit

DSL domain-specific language

eBPF Extended Berkeley Packet Filter

ECN Explicit Congestion Notification

FPGA field programmable gate array

FSM finite state machine

GTP GPRS tunneling protocol

HDL hardware description language

HLIR high-level intermediate representation

IDE integrated development environment

IDL Intent Definition Language

IDS intrusion detection system

INT in-band network telemetry

5

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

LDWG Language Design Working Group
LPM longest prefix matching
LUT look up table
MAT match-action-table
ML machine learning
NDN named data networking
NF network function
NFP network flow processing
NFV network function virtualization
NIC network interface card
NPU network processing unit
ODM original design manufacturer
ODP Open Data Plane
OEM original equipment manufacturer
OF OpenFlow
ONF Open Networking Foundation
OVS Open vSwitch
PISA Protocol Independent Switching Architecture
PSA Portable Switch Architecture
REG register
RPC remote procedure call
RTL register-transfer level
SDK software development kit
SDN software-defined networking
SF service function
SFC service function chain
SRAM static random-access memory
TCAM ternary content-addressable memory
TSN Time-Sensitive Networking
TNA Tofino Native Architecture
uBPF user-space BPF
VM virtual machine
VNF virtual network function
VPP Vector Packet Processors
WG working group
XDP eXpress Data Path

6

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

2. Network Programmability

In this section, we first define the notion of network programmability and
related terms. Then, we discuss control plane programmability and data plane
programming, elaborate on data plane programming models, and point out the
benefits of data plane programming.

2.1. Definition of Terms
We define programmability as the ability of the software or the hardware

to execute an externally defined processing algorithm. This ability separates
programmable entities from flexible (or configurable) ones; the latter only allow
changing different parameters of the internally defined algorithm which stays
the same.

Thus, the term network programmability means the ability to define the pro-
cessing algorithm executed in a network and specifically in individual processing
nodes, such as switches, routers, load balancers, etc. It is usually assumed that
no special processing happens in the links connecting network nodes. If nec-
essary, such processing can be described as if it takes place on the nodes that
are the endpoints of the links or by adding a "bump-in-the-wire" node with one
input and one output.

Traditionally, the algorithms, executed by telecommunication devices, are
split into three distinct classes: the data plane, the control plane, and the man-
agement plane. Out of these three classes, the management plane algorithms
have the smallest effect on both the overall packet processing and network be-
havior. Moreover, they have been programmable for decades, e.g., SNMPv1 was
standardized in 1988 and created even earlier than that. Therefore, management
plane algorithms will not be further discussed in this section.

True network programmability implies the ability to specify and change both
the control plane and data plane algorithms. In practice this means the ability
of network operators (users) to define both data and control plane algorithms
on their own, without the need to involve the original designers of the network
equipment. For the network equipment vendors (who typically design their own
control plane anyway), network programmability mostly means the ability to
define data plane algorithms without the need to involve the original designers
of the chosen packet processing application-specific integrated circuit (ASIC).

Network programmability is a powerful concept that allows both the network
equipment vendors and the users to build networks ideally suited to their needs.
In addition, they can do it much faster and often cheaper than ever before and
without compromising the performance or quality of the equipment.

For a variety of technical reasons, different layers became programmable at
different point in time. While the management plane became programmable in
the 1980s, control plane programmability was not achieved until late 2000s to
early 2010s and a programmable switching ASICs did not appear till the end of
2015.

Thus, despite the focus on data plane programmability, we will start by dis-
cussing control plane programmability and its most well-known embodiment,

7

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

called software-defined networking (SDN). This discussion will also better pre-
pare us to understand the significance of data plane programmability.

2.2. Control Plane Programmability and SDN
Traditional networking devices such as routers or switches have complex data

and control plane algorithms. They are built into them and generally cannot
be replaced by the users. Thus, the functionality of a device is defined by its
vendor who is the only one who can change it. In industry parlance, vendors
are often called original equipment manufacturers (OEMs).

Software-defined networking (SDN) was historically the first attempt to
make the devices, and specifically their control plane, programmable. On se-
lected systems, device manufacturers allowed users to bypass built-in control
plane algorithms so that the users can introduce their own. These algorithms
could then directly supply the necessary forwarding information to the data
plane which was still non-replaceable and remained under the control of the
device vendor or their chosen silicon provider.

For a variety of technical reasons, it was decided to provide an APIs that
could be called remotely and that is how SDN was born. Figure 2 depicts SDN
in comparison to traditional networking. Not only the control plane became
programmable, but it also became possible to implement network-wide control
plane algorithms in a centralized controller. In several important use cases,
such as tightly controlled, massive data centers, these centralized, network-wide
algorithms proved to be a lot simpler and more efficient, than the traditional
algorithms (e.g. Border Gateway Protocol (BGP)) designed for decentralized
control of many autonomous networks.

The effort to standardize this approach resulted in the development of Open-
Flow (OF) [22]. The hope was that once OF standardized the messaging API
to control the data plane functionality, SDN applications will be able to lever-
age the functions offered by this API to implement network control. There
is a huge body of literature giving an overview of OF [13, 14, 15] and SDN
[6, 7, 8, 9, 11, 10, 12].

However, it soon became apparent that OF assumed a specific data plane
functionality which was not formally specified. Moreover, the specific data
plane, that served as the basis for OF, could not be changed. It executed the
sole, although relatively flexible, algorithm defined by the OF specifications.

In part, it was this realization that led to the development of modern data
plane programming that we discuss in the following section.

2.3. Data Plane Programming
As mentioned above, data plane programmability means that the data plane

with its algorithms can be defined by the users, be they network operators or
equipment designers working with a packet processing ASIC. In fact, data plane
programmability existed during most of the networking industry history because
data plane algorithms were typically executed on general-purpose CPUs. It is

8

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Traditional
networking

Data plane

Control plane

API
Programmability

(a) With traditional networking, pro-
grammability is limited to configuration of
functionality via an API.

Control plane

SDN with fixed-
function data

plane

API

Agent

Data plane

Programmability

(b) SDN with fixed-function data planes
allows full programmability of the control
plane.

Figure 2: Distinction between traditional networking and SDN with fixed-function data planes.

only with the advent of high-speed links, exceeding the CPU processing capabil-
ities, and the subsequent introduction of packet processing (switching) ASICs
that data plane programmability (or lack thereof) became an issue.

The data plane algorithms are responsible for processing all the packets that
pass through a telecommunication system. Thus, they ultimately define the
functionality, performance, and the scalability of such systems. Any attempt
to implement data plane functionality in the control plane typically leads to
significant performance degradation. When data plane programming is provided
to users, it qualitatively changes their power. They can build custom network
equipment without any compromise in performance, scalability, speed, or energy
consumption.

For custom networks, new control planes and SDN applications can be de-
signed and for them users can design data plane algorithms that fit them ideally.
Data plane programming does not necessarily imply any provision of APIs for
users nor does it require support for outside control planes as in OF. Device
vendors might still decide to develop a proprietary control plane and use data
plane programming only for their own benefit without necessarily making their
systems more open (although many do open their systems now). Figure 3 visu-
alizes both options.

Four surveys from [10, 9, 16, 17] give an overview on data plane program-
ming, but do not set a particular focus to P4.

2.4. Data Plane Programming Models
Data plane algorithms can and often are expressed using standard program-

ming languages. However, they do not map very well onto specialized hardware
such as high-speed ASICs. Therefore, several data plane models have been pro-
posed as abstractions of the hardware. Data plane programming languages are
tailored to those data plane models and provide ways to express algorithms

9

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofControl plane

Data plane

Vendor-based creation of
network devices with

data plane programming

API

Programmability

(a) Vendors utilize data plane programma-
bility for more efficient development. Users
can utilize only provided APIs to control the
devices.

Control plane

Data plane

API
Programmability

Full network
programability with data

plane programming

(b) Data plane programming is available to
users. They can program the data plane and
define new APIs through which they can con-
trol their devices.

Figure 3: Different usages of data plane programmability.

for them in an abstract way. The resulting code is then compiled for execu-
tion on a specific packet processing node supporting the respective data plane
programming model.

Data flow graph abstractions and the Protocol Independent Switching Ar-
chitecture (PISA) are examples for data plane models. We give an overview
of the first and elaborate in-depths on the second as PISA is the data plane
programming model for P4.

2.4.1. Data Flow Graph Abstractions
In these data plane programming models, packet processing is described by

a directed graph. The nodes of the graph represent simple, reusable primitives
that can be applied to packets, e.g., packet header modifications. The directed
edges of the graph represent packet traversals where traversal decisions are per-
formed in nodes on a per-packet basis. Figure 4 shows an exemplary graph for
IPv4 and IPv6 packet forwarding.

Examples for programming languages that implement this data plane pro-
gramming model are Click [1], Vector Packet Processors (VPP) [2], and BESS
[23].

2.4.2. Protocol-Independent Switching Architecture (PISA)
Figure 5 depicts the PISA. It is based on the concept of a programmable

match-action pipeline that well matches modern switching hardware. It is a gen-
eralization of reconfigurable match-action tables (RMTs) [24] and disaggregated
reconfigurable match-action tables (dRMTs) [25].

PISA consists of a programmable parser, a programmable deparser, and a
programmable match-action pipeline in between consisting of multiple stages.

10

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofEthernet

inPacket

IPv6
input

IPv4
input

IPv6
lookup

IPv4
lookup

IPv6
out

IPv6
local

IPv4
out

IPv4
local

IPv6 forwarding

IPv4 forwarding

Figure 4: Example graph showing how data flow graph abstractions are applied to implement
IPv4 and IPv6 forwarding.

• The programmable parser allows programmers to declare arbitrary headers
together with a finite state machine that defines the order of the head-
ers within packets. It converts the serialized packet headers into a well-
structured form.

• The programmable match-action pipeline consists of multiple match-action
units. Each unit includes one or more match-action-tables (MATs) to
match packets and perform match-specific actions with supplied action
data. The bulk of a packet processing algorithm is defined in the form of
such MATs. Each MAT includes matching logic coupled with the mem-
ory (static random-access memory (SRAM) or ternary content-addressable
memory (TCAM)) to store lookup keys and the corresponding action data.
The action logic, e.g., arithmetic operations or header modifications, is im-
plemented by arithmetic logic units (ALUs). Additional action logic can
be implemented using stateful objects, e.g., counters, meters, or registers,
that are stored in the SRAM. A control plane manages the matching logic
by writing entries in the MATs to influence the runtime behavior.

• In the programmable deparser, programmers declare how packets are seri-
alized.

A packet, processed by a PISA pipeline, consists of packet payload and
packet metadata. PISA only processes packet metadata that travels from the
parser all the way to the deparser but not the packet payload that travels
separately.

Packet metadata can be divided into packet headers, user-defined and in-
trinsic metadata.

• Packet headers is metadata that corresponds to the network protocol head-
ers. They are usually extracted in the parser, emitted in the deparser or
both.

11

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofMatch

logic ...

Programmable
match-action pipelineProgrammable

parser
Programmable

deparser

Match-action
unit

Action
logic

Match
logic

Action
logic

Match
logic

Action
logic

Action
logic

Action
logic

Match
logic

Action
logic

Match
logic

Action
logic

Match
logic

Action
logic

Action
logic

Action
logic

Match-action
unit

M
et
ad

at
a

M
et
ad

at
a

M
et
ad

at
a

Figure 5: The Protocol-Independent Switch Architecture (PISA) contains a programmable
parser, a programmable match-action pipeline, and a programmable deparser.

• Intrinsic metadata is metadata that relates to the fixed-function compo-
nents. P4-programmable components may receive information from the
fixed-function components by reading the intrinsic metadata they produce
or control their behavior by setting the intrinsic metadata they consume.

• User-defined metadata (often referred as simply metadata) is a temporary
storage, similar to local variables in other programming languages. It
allows the developers to add information to packets that can be used
throughout the processing pipeline.

All metadata, be it packet headers, user-defined or intrinsic metadata is
transient, meaning that it is discarded when the corresponding packet leaves
the processing pipeline (e.g., is sent out of an egress port or dropped).

PISA provides an abstract model that is applied in various ways to create
concrete architectures. For example, it allows specifying pipelines containing
different combinations of programmable components, e.g., a pipeline with no
parser or deparser, a pipeline with two parsers and deparsers, and additional
match-action pipelines between them. PISA also allows for specialized com-
ponents that are required for advanced processing, e.g., hash/checksum calcu-
lations. Besides the programmable components of PISA, switch architectures
typically also include configurable fixed-function components. Examples are
ingress/egress port blocks that receive or send packets, packet replication en-
gines that implements multicasting or cloning/mirroring of packets, and traffic
managers, responsible for packet buffering, queuing, and scheduling.

The fixed-function components communicate with the programmable ones
by generating and/or consuming intrinsic metadata. For example, the ingress
port block generates ingress metadata that represents the ingress port number
that might be used within the match-action units. To output a packet, the

12

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

match-action units generates intrinsic metadata that represents an egress port
number; this intrinsic metadata is then consumed by the traffic manager and/or
egress port block.

Figure 6 depicts a typical switch architecture based on PISA. It comprises a
programmable ingress and egress pipeline and three fixed-function components:
an ingress block, an egress block, and a packet replication engine together with
a traffic manager between ingress and egress pipeline.

Programmable
ingress pipeline

Pa
ck

et
 re

pl
ic

at
io

n
en

gi
ne

+
tra

ffi
c

m
an

ag
er

In
gr
es
s

Eg
re
ss

Programmable
egress pipeline

Fixed-function components

Figure 6: Exemplary switch architecture based on PISA with the ingress and egress pipeline
as programmable parts. The ingress, the egress, the packet replication engine, and the traffic
manager are fixed-function components.

P4 (Programming Protocol-Independent Packet Processors) [5] is the most
widely used domain-specific programming language for describing data plane
algorithms for PISA. Its initial idea and name were introduced in 2013 [26]
and it was published as a research paper in 2014 [5]. Since then, P4 has been
further developed and standardized by the P4 Language Consortium [27] that is
part of the Open Networking Foundation (ONF) since 2019. The P4 Language
Consortium is managed by a technical steering committee and hosts five working
groups (WGs). P414 [28] was the first standardized version of the language. The
current specification is P416 [29] which was first introduced in 2016.

Other data plane programming languages for PISA are FAST [30], Open-
State [31], Domino [32], FlowBlaze [33], Protocol-Oblivious Forwarding [34],
and NetKAT [35]. In addition, Broadcom [3] and Xilinx [4] offer vendor-specific
programmable data planes based on match-action tables.

2.5. Benefits
Data plane programmability entails multiple benefits. In the following, we

summarize key benefits.
Data plane programming introduces full flexibility to network packet pro-

cessing, i.e., algorithms, protocols, features can be added, modified, or removed
by the user. In addition, programmable data planes can be equipped with a
user-defined API for control plane programmability and SDN. To keep com-
plexity low, only components needed for a particular use case might be included

13

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

in the code. This improves security and efficiency compared to multi-purpose
appliances.

In conjunction with suitable hardware platforms, data plane programming
allows network equipment designers and even users to experiment with new
protocols and design unique applications; both do no longer depend on vendors
of specialized packet-processing ASICs to implement custom algorithms. Com-
pared to long development circles of new silicon-based solutions, new algorithms
can be programmed and deployed in a matter of days.

Data plane programming is also beneficial for network equipment developers
that can easily create differentiated products despite using the same packet
processing ASIC. In addition, they can keep their know-how to themselves
without the need to share the details with the ASIC vendor and potentially
disclose it to their competitors that will use the same ASIC.

So far, modern data plane programs and programming languages have not
yet achieved the degree of portability attained by the general-purpose program-
ming languages. However, expressing data plane algorithms in a high-level lan-
guage has the potential to make telecommunication systems significantly more
target-independent. Also, data plane programming does not require but encour-
ages full transparency. If the source code is shared, all definitions for protocols
and behaviors can be viewed, analyzed, and reasoned about, so that data plane
programs benefit from community development and review. As a result, users
could choose cost-efficient hardware that is well suited for their purposes and
run their algorithms on top of it. This trend has been fueled by SDN and is
commonly known as network disaggregation.

2.6. Differences Between SDN and P4
SDN introduces programmability on the control plane. SDN-capable network

devices such as switches include an API allowing that the device-local control
plane can be substituted by an external, software-based control plane. This con-
trol plane comprises control plane algorithms managing the data plane. The cen-
tralized view of an external controller facilitates the implementation of simpler
algorithms that may replace complex distributed protocols from legacy network
devices. The control plane leverages an API offered by the data plane devices
for control. The data plane however merely features fixed functions that can be
used and configured by the control plane.

In contrast, P4 is a domain-specific language for data plane programming,
i.e., programmability is extended to the data plane. Instead of supporting fixed
functions only, the functionality of the data plane devices is described by a
P4 program that is compiled into target-specific code that can be executed by
the programmable network hardware. While the P4 language itself focuses on
data plane programmability, P4 targets typically offer APIs so that software-
based SDN control planes can manage the runtime behavior of those data plane
devices.

14

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

3. The P4 Programming Language

We give an overview of the P4 programming language. We briefly recap its
specification history and describe how P4 programs are deployed. We introduce
the P4 processing pipeline and data types. We discuss parsers, match-action
controls, and deparsers. Finally, we give an overview of tutorials and guides to
P4.

3.1. Specification History
The P4 Language Design Working Group (LDWG) of the P4 Language Con-

sortium has standardized so far two distinct standards of P4: P414 and P416.
Table 1 depicts their specification history.

Table 1: Specification history of P414 and P416.

P414
Version 1.0.2 03/2015
Version 1.1.0 01/2016
Version 1.0.3 11/2016
Version 1.0.4 05/2017
Version 1.0.5 11/2018

P416
Version 1.0.0 05/2017
Version 1.1.0 11/2018
Version 1.2.0 11/2018
Version 1.2.1 06/2020

The P414 programming language dialect allows the programmers to describe
data plane algorithms using a combination of familiar, general-purpose imper-
ative constructs and more specialized declarative ones that provide support for
the typical data-plane-specific functionality, e.g., counters, meters, checksum
calculations, etc. As a result, the P414 language core includes more than 70
keywords. It further assumed a specific pipeline architecture based on PISA.

Table 2: Core differences between P414 and P416.

P414 P416
Modularity - X
Pipeline architectures single multiple
Target-specific functions - X
of language keywords >70 <40
Strict typing - X
Nested data structures - X
Declarative constructs X -

P416 has been introduced to address several P414 limitations that became
apparent in the course of its use. Those include the lack of means to describe
various targets and architectures, weak typing and generally loose semantics
(caused, in part, by the above-mentioned mix of imperative and declarative
programming constructs), relatively low-level constructs, and weak support for
program modularity. The core differences between P414 and P416 are summa-
rized in Table 2.

15

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Support for multiple different targets and pipeline architecture is the ma-
jor contribution of the P416 standard and is achieved by separating the core
language from the specifics of a given architecture, thus making it architecture-
agnostic. The structure, capabilities and interfaces of a specific pipeline are
now encapsulated into an architecture description, while the architecture- or
target-specific functions are accessible through an architecture library, typically
provided by the target vendor. The core components are further structured into
a small set of language constructs and a core library that is useful for most P4
programs. Compared to P414, P416 introduced strict typing, expressions, nested
data structures, several modularity mechanisms, and also removed declarative
constructs, making it possible to better reason about the programs, written in
the language. Figure 7 illustrates the concept which is subdivided into core
components and architecture components.

P414
language

P416 language

Core library

Core
components

Architecture
components

Architecture description

Architecture library

Figure 7: Evolvement from the P414 programming language to the P416 language (similar
to [29]). P414 comprised all components as part of the programming language. In P416, the
different parts of the programming language are split into core components and architecture
components.

Due to the obvious advantages of P416, P414 development has been discon-
tinued, although it is still supported on a number of targets. Therefore, we focus
on P416 in the remainder of this paper where P4 implicitly stands for P416.

3.2. Development and Deployment Process
Figure 8 illustrates the development and deployment process of P4 programs.
P4-programmable nodes, so-called P4 targets, are available as software or

specialized hardware (see Section 5). They feature packet processing pipelines
consisting of both P4-programmable and fixed-function components. The exact
structure of these pipelines is target-specific and is described by a corresponding
P4 architecture model (see Section 4) which is provided by the manufacturer of
the target.

P4 programs are supplied by the user and are implemented for a particular
P4 architecture model. They define algorithms that will be executed by the
P4-programmable components and their interaction with the ones implemented
in the fixed-function logic. The composition of the P4 programs and the fixed-
function logic constitutes the full data plane algorithm.

16

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

P4 compilers (see Section 4) are also provided by the manufacturers. They
translate P4 programs into target-specific code which is loaded and executed by
the P4 target.

The P4 compiler also generates a data plane API that can be used by a
user-supplied control plane (see Section 6) to manage the runtime behavior of
the P4 target.

P4 program
(data plane)

Control plane

P4 architecture
model

P4 targetSupplied by the manufacturer

Supplied by the user

Data plane API
CodeP4 compiler

Figure 8: P4 deployment process (similar to [29]): A P4 compiler transforms a P4 program
formulated for a particular P4 architecture model into code which is executed by a P4 target.
The code provides a data plane API which can be leveraged by a user-supplied control plane.

3.3. Information Flow
P416 adopts PISA’s concept of packet metadata. Figure 9 illustrates the

information flow in the P4 processing pipeline. It comprises different blocks,
where packet metadata (be it headers, user-defined or intrinsic metadata) is
used to pass the information between them, therefore representing a uniform
interface.

The parser splits up the received packet into individual headers and the
remaining payload. Intrinsic metadata from the ingress block, e.g., the ingress
port number or the ingress timestamp, is often provided by the hardware and can
be made available for further processing. Many targets allow the user metadata
to be initialized in the parser as well. Then, the headers and metadata are
passed to the match-action pipeline that consists of one or more match-action
units. The remaining payload travels separately and cannot be directly affected
by the match-action pipeline processing.

While traversing the individual match-action pipeline units, the headers can
be added, modified, or removed and additional metadata can be generated.

The deparser assembles the packet back by emitting the specified headers
followed by the original packet payload. Packet output is configured with in-
trinsic metadata that includes information such as a drop flag, desired egress
port, queue number, etc.

3.4. Data Types
P416 is a statically typed language that supports a rich set of data types for

data plane programming.

17

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Text

Parser Deparser

Intrinsic
metad.

Headers

Payload

Intrinsic
metad.

Intrinsic
md.

Headers

P4 block w/
interface

Match-
action unit

Match-
action unit

P4 block w/
interface

P4 block w/
interface

P4 block w/
interface

Headers

User
metad.

User
metad.

User
metad.

Figure 9: Information flow in the P4 processing pipeline. Metadata (headers, user metadata,
intrinsic metadata) transport information between the different P4 blocks of the processing
pipeline.

3.4.1. Basic Data Types
P416 includes common basic types such as Boolean (bool), signed (int),

and unsigned (bit) integers which are also known as bit strings. Unlike many
common programming languages, the size of these integers is specified at bit
granularity, with a wide range of supported widths. For example, types such as
bit<1>, int<3>, bit<128> and wider are allowed.

In addition, P4 supports bit strings of variable width, represented by a spe-
cial varbit type. For example, IPv4 options can be represented as varbit<320>
since the size of IPv4 options ranges from zero to 10 32-bit words.

P416 also supports enumeration types that can be serializable (with the
actual representation specified as bit<N> or int<N> during the type definition)
or non-serializable, where the type representation is chosen by the compiler and
hidden from the user.

3.4.2. Derived Data Types
Basic data types can be composed to construct derived data types. The

most common derived data types are header, header stack, and struct.
The header data type facilitates the definition of packet protocol headers,

e.g., IPv4 or TCP. A header consists of one more fields of the serializable types
described above, typically bit<N>, serializable enum, or varbit. A header also
has an implicit validity field indicating whether the header is part of a packet.
The field is accessible through standard methods such as setvalid(), setInvalid(),
and isValid(). Packet parsing starts with all headers being invalid. If the parser
determines that a header is present in the packet, the header fields are extracted
and the header’s validity field is set valid. The standard packet emit() method
used by a deparser equips packets only with valid headers. Thus, P4 programs
can easily add and remove headers by manipulating their validity bits. A sample
header declaration is shown in Figure 10.

18

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

A header stack is used to define repeating headers, e.g., VLAN tags or
MPLS labels. It supports special operations allowing headers to be “pushed”
onto the stack or “popped” from it.

Struct in P4 is a composed data type similar to structs in programming
languages like C. Unlike the header data type, they can contain fields of any
type including other structs, headers, and others.

typedef bit <48> macAddr_t;

header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit <16> etherType;

}

Figure 10: Sample declaration of the Ethernet header with the help of a type definition for
the MAC addresses used in the header.

3.5. Parsers
Parsers extract header fields from ingress packets into header data and meta-

data. P4 does not include predefined packet formats, i.e., all required header for-
mats including parsing mechanisms need to be part of the P4 program. Parsers
are defined as finite state machine (FSM) with an explicit Start state, two ending
states (Accept and Reject), and custom states in between.

Figure 11 depicts the structure of a typical P4 parser for Ethernet, MPLS,
IPv4, TCP, and UDP headers. Figure 12 shows the source code fragment of the
example parser in a P416 program. The process starts in the Start state and
switches to the Ethernet state. In this state and the following states, information
from the packet headers is extracted according to the defined header structure.

State transitions may be either conditional or unconditional. In the given
example, the transition from the Start state to the Ethernet state is uncondi-
tional while in the Ethernet state the transition to the MPLS, IPv4, or Reject
state depends on the value of the EtherType field of the extracted Ethernet
header. Based on previously parsed header information, any number of further
headers can be extracted from the packet. If the header order does not comply
with the expected order, a packet can be discarded by switching to the Reject
state. The parser can also implicitly transition into the Reject state in case of
a parser exception, e.g., if a packet is too short.

3.6. Match-Action Controls
Match-action controls express the bulk of the packet processing algorithm

and resemble traditional imperative programs. They are executed after success-
ful parsing of a packet. In some architectures they are also called match-action
pipeline units. In the following, we give an overview of control blocks, actions,
and match-action tables.

19

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Start

Ethernet

MPLS

ethertype=
0x8847

UDPTCP

protocol=6

IPv4

ethertype=
0x0800

default

Custom States

Accept

Reject
default

protocol=17

Figure 11: Example for the FSM of a P4 parser that parses packets with Ethernet, MPLS,
IPv4, TCP, and UDP headers.

3.6.1. Control Blocks
Control blocks, or just controls, are similar to functions in general-purpose

languages. They are called by an apply() method. They have parameters and
can call also other control blocks. The body of a control block contains the
definition of resources, such as tables, actions, and externs that will be used for
processing. Furthermore, a single apply() method is defined that expresses the
processing algorithm.

P4 offers statements to express the program flow within a control block.
Unlike common programming languages, P4 does not provide any statements
that would allow the programmer to create loops. This ensures that all the
algorithms that can be coded in P4 can be expressed as directed acyclic graphs
(DAGs) and thus are guaranteed to complete within a predictable time interval.
Specific control statements include:

• a block statement {} that expresses sequential execution of instructions.

• an if() statement that expresses an execution predicated on a Boolean
condition

• a switch() statement that expresses a choice from multiple alternatives

• an exit() statement that ends the control flow within a control block and
passes the control to the end of the top-level control

Transformations are performed by several constructs, such as

• An assignment statement which evaluates the expression on its right-hand-
side and assigns the result to a header or a metadata fields

20

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

parser SampleParser(packet_in p, out headers h) {

state start {
transition parse_ethernet;

}

state parse_ethernet {
p.extract(h.ethernet);
transition select(h.ethernet.etherType) {

0x8847: parse_mpls;
0x0800: parse_ipv4;

default: reject;
};

}

state parse_ipv4 {
p.extract(h.ipv4);
transition select(h.ipv4.protocol) {

6: parse_tcp;
17: parse_udp;

default: accept;
}

}

state parse_udp {
p.extract(h.udp);
transition accept;

}
/* Other states follow */

}

Figure 12: Sample parser implementation of the FSM in Figure 11.

• A match-action operation on a table expressed as the table’s apply()
method

• An invocation of an action or a function that encapsulate a sequence of
statements

• An invocation of an extern method that represents special, target- and
architecture-specific processing, often involving additional state, preserved
between packets

A sample implementation of basic L2 forwarding is provided in Figure 13.

3.6.2. Actions
Actions are code fragments that can read and write packet headers and

metadata. They work similarly to functions in other programming languages
but have no return value. Actions are typically invoked from MATs. They can
receive parameters that are supplied by the control plane as action data in MAT
entries.

21

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

control SampleControl(inout headers h, inout standard_metadata_t
standard_metadata) {

action l2_forward(egressSpec_t port) {
standard_metadata.egress_spec = port;

}

table l2 {
key = {

h.ethernet.dstAddr: exact;
}
actions = {

l2_forward; drop;
}
size = 1024;
default_action = drop();

}

apply {
if (h.ethernet.isValid ()) {

l2.apply ();
}

}
}

Figure 13: Sample control block implementing basic L2 forwarding.

As in most general-purpose programming languages, the operations are writ-
ten using expressions and the results are then assigned to the desired header
or metadata fields. The operations available in P4 expressions include stan-
dard arithmetic and logical operations as well as more specialized ones such
as bit slicing (field[high:low]), bit concatenation (field1 ++ field2), and
saturated arithmetic (|+| and |-|).

Actions can also invoke methods of other objects, such as headers and
architecture-specific externs, e.g., counters and meters. Other actions can also
be called, similar to nested function calls in traditional programming languages.

Action code is executed sequentially, although many hardware targets sup-
port parallel execution. In this case, the compiler can optimize the action code
for parallel execution as long as its effects are the same as in case of the sequen-
tial execution.

3.6.3. Match-Action Tables (MATs)
MATs are defined within control blocks and invoke actions depending on

header and metadata fields of a packet. The structure of a MAT is declared
in the P4 program and its table entries are populated by the control plane at
runtime. A packet is processed by selecting a matching table entry and invoking
the corresponding action with appropriate parameters.

The declaration of a MAT includes the match key, a list of possible actions,
and additional attributes.

22

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

The match key consists of one or more header or metadata fields (variables),
each with the assigned match type. The P4 core library defines three standard
match types: exact, ternary, and longest prefix matching (LPM). P4 archi-
tectures may define additional match types, e.g., the v1model P4 architecture
extends the set of standard match types with the range and selector match.

The list of possible actions includes the names of all actions that can be
executed by the table. These actions can have additional, directional parameters
which are provided as action data in table entries.

Additional attributes may include the size of the MAT, e.g., the maximum
number of entries that can be stored in a table, a default action for a miss, or
static table entries.

Lookup
key

Key ID Data

Action

Default Action

ID Data

Action

H
it / m

iss selector

M
atching

H
it

Data

Match-action table

ID

Control plane

Headers

Metadata

Headers

Metadata

Figure 14: Structure of MATs in P4. Lookup keys are constructed based on packet metadata
and used for row matching in the MAT. In case of a hit, the defined action is applied with
the specified action data. In case of a miss, the default action is applied.

Figure 14 illustrates the principle of MAT operation. The MAT contains
entries with values for match keys, the ID of the corresponding action to be
invoked, and action data that serve as parameters for action invocation. For
each packet, a lookup key is constructed from the set of header and metadata
fields specified in the table definition. It is matched against all entries of the
MAT using the rules associated with the individual field’s match type. When
the first match in the table is found, the corresponding action is called and the
action data are passed to the action as directionless parameters. If no match is
found in the table, a default action is applied.

As a special case, tables without a specified key always invoke the default
action.

3.7. Deparser
The deparser is also defined as a control block. When packet processing

by match-action control blocks is finished, the deparser serializes the packet.
It reassembles the packet header and payload back into a byte stream so that

23

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

the packet can be sent out via an egress port or stored in a buffer. Only valid
headers are emitted, i.e., added to the packet. Thus, match-action control blocks
can easily add and remove headers by manipulating their validity. Figure 15
provides a sample implementation.

control SampleDeparser(packet_out p, in headers h) {
apply {

p.emit(h.ethernet);
p.emit(h.mpls);
p.emit(h.ipv4);
/* Normally , a packet can contain either
* a TCP or a UDP header (or none at all),
* but should never contain both
*/

p.emit(h.tcp);
p.emit(h.udp);

}
}

Figure 15: Sample deparser implementation.

3.8. P4 Tutorials
The P4 Language Consortium provides a GitHub repository with simple

programming exercises and a development VM containing all required software
[36]. A guide on GitHub lists useful information for P4 newcomers, e.g. demo
programs, information about other GitHub repositories, and an overview of
P4 [37]. The Networked Systems Group at ETH Zürich provides resources for
people who want to learn programming in P4, including lecture slides, references
to useful documentation, examples and exercises [38].

4. P4 Architectures & Compilers

We present P416 architectures and introduce P4 compilers.

4.1. P416 Architectures
We summarize the concept of P416 architectures, describe externs, and give

an overview of the most common P416 architectures.

4.1.1. Concept
As described before, P416 introduces the concept of P4 architectures as an

intermediate layer between the core P4 language and the targets. A P4 archi-
tecture serves as programming models that represents the capabilities and the
logical view of a target’s P4 processing pipeline. P4 programs are developed for
a specific P4 architecture. Such programs can be deployed on all targets that
implement the same P4 architecture. The manufacturers of P4 targets provide
P4 compilers that compile architecture-specific P4 programs into target-specific
configuration binaries.

24

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

4.1.2. Externs
P4 architectures may provide additional functionalities that are not part

of the P4 language core. Examples are checksum or hash computation units,
random number generators, packet and byte counters, meters, registers, and
many others. To make such extern functionalities usable, P416 introduces so-
called externs.

Most of the externs have to be explicitly instantiated in P4 programs using
their constructor method. The other methods provided by these externs can
then be invoked on the given extern instance. Other externs (extern functions)
do not require explicit instantiating.

Along with tables and value sets, P4 externs are allowed to preserve addi-
tional state between packets. That state may be accessible by the control plane,
the data plane, or both. For example, the counter extern would preserve the
number of packets or bytes that has been counted so that each new packet can
properly increment it. The specifics of the state depend on the nature of the
extern and cannot be specified in the language; this is done inside the vendor-
specific API definitions.

While the P4 processing pipeline only allows packet header manipulation,
extern functions may operate on packet payload as well.

4.1.3. Overview of Common P416 Architectures
We describe the four most common P416 architectures.

v1model. The v1model mimics the processing pipeline of P414. As depicted
in Figure 16, it consists of a programmable parser, an ingress match action
pipeline, a traffic manager, an egress match-action pipeline, and a deparser. It
enables developers to convert P414 programs into P416 programs. Additional
functionalities tracking the development of the reference P4 software switch
Behavioral Model version 2 (bmv2) (see Section 5) are continuously added. All
P4 examples in this paper are written using v1model.

In
gr

es
s

Eg
re

ss

Tr
af

fic
 m

an
ag

er

Parser
Ingress

match-action
pipeline

Egress
match-action

pipeline
Deparser

Figure 16: v1model architecture with a programmable parser, programmable ingress and
egress match-action pipelines with a traffic manager in between, and a programmable parser.

25

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Portable Switch Architecture (PSA). The PSA is a P4 architecture created and
further developed by the Architecture WG [39] in the P4 Language Consortium.
Besides, the WG also discusses standard functionalities, APIs, and externs that
every target mapping the PSA should support. Its last specification is Version
1.1 [40] from November 2018. Figure 17 illustrates the P4 processing pipeline
of the PSA. It is divided into an ingress and egress pipeline. Each pipeline
consists of the three programmable parts: parser, multiple control blocks, and
deparser. The architecture also defines configurable fixed-function components.

PSA specifies several packet processing primitives, such as:

• Sending a packet to an unicast port

• Dropping a packet

• Sending the packet to a multicast group

• Resubmitting a packet, which moves the currently processed packet from
the end of the ingress pipeline to the beginning of the ingress pipeline for
the purpose of packet re-parsing

• Recirculating a packet, which moves the currently processed packet from
the end of the egress pipeline to the beginning of the ingress pipeline for
the purposes of recursive processing, e.g., tunneling

• Cloning a packet, which duplicates the currently processed packet. Clone
ingress to egress (CI2E) creates a duplicate of the ingress packet at the end
of the ingress pipeline. Clone egress to egress (CE2E) creates a duplicate of
the deparsed packet at the end of the egress pipeline. In both cases, cloned
instances start processing at the beginning of the egress pipeline. Cloning
can be helpful to implement powerful applications such as mirroring and
telemetry.

SimpleSumeArchitecture. The SimpleSumeArchitecture is a simplified P4 ar-
chitecture that is implemented by FPGA-based P4 targets. As depicted in
Figure 18, it features a parser, a programmable match-and-action pipeline, and
a deparser.

Tofino Native Architecture (TNA). TNA is a proprietary P416 architecture de-
signed for Intel Tofino switching ASICs (see Section 5.3). Intel has published
the architecture definitions and allows developers to publish programs written
by using it.

The architecture describes a very high-performance, “industry-strength” de-
vice that is relatively complex. The basic programming unit is a so-called
Pipeline() package that resembles an extended version of the Portable Switch
Architecture (PSA) pipeline and consists of 6 top-level programmable compo-
nents: the ingress parser, ingress match-action control, ingress deparser, and
their egress counterparts. Since Tofino devices can have two or four processing

26

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

In
gr

es
s

Eg
re

ss

Tr
af

fic
 m

an
ag

er

Parser
Match-action

units DeparserDeparser Parser

Resubmit

Recirculate

CE2E
C

I2
E

Match-action
units

Ingress pipeline Egress pipeline

Figure 17: Portable Switch Architecture (PSA) with an ingress and egress pipeline and a traffic
manager in between. Both include a programmable parser, programmable match-action units,
a programmable deparser, fixed-function parts, and special packet processing primitives.

In
gr

es
s

Eg
re

ss

Tr
af

fic
 m

an
ag

er

Parser Match-action
pipeline Deparser

Figure 18: SimpleSumeArchitecture with a programmable parser, a programmable match-
action pipeline, and a programmable parser followed by a traffic manager.

pipelines, the final switch package can be formed anywhere from one to four
distinct pipeline packages. More complex versions of the Pipeline() package
allow the programmer to specify different parsers for different ports.

TNA also provides a richer set of externs compared to most other archi-
tectures. Most notable is TNA RegisterAction() which represents a small
code fragment that can be executed on the register instead of simple read/write
operations provided in other architectures. TNA provides a clear and consis-
tent interface for mirroring and resubmit with additional metadata being passed
via the packet byte stream. The same technique is also used to pass intrinsic
metadata which greatly simplifies the design.

Additional externs that are not present in other architectures include low-
pass filters, weighted random early discard externs, powerful hash externs that
can compute CRC based on user-defined polynomials, ParserCounter, and oth-

27

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

ers.
The set of intrinsic metadata in Tofino is also larger than in most other P4

architectures as presented before. Notable is support for two-level multicasting
with additional source pruning, copy-to-cpu functionality, and support for IEEE
1588.

4.2. P4 Compiler
P4 compilers translate P4 programs into target-specific configuration bina-

ries that can be executed on P4 targets. We first explain compilers based on the
two-layer model which are most widely in use. Then we mention other compilers
in less detail.

4.2.1. Two-Layer Compiler Model
Most P4 compilers use the two-layer model, consisting of a common frontend

and a target-specific backend.
The frontend is common for all the targets and is responsible for parsing,

syntactic and target-independent semantic analysis of the program. The pro-
gram is finally transformed into an intermediate representation (IR) that is then
consumed by the target-specific backend which performs target-specific trans-
formations.

The first-generation P4 compiler for P414 was written in Python and used
the so-called high-level intermediate representation (HLIR) [41] that represented
P414 program as a tree of Python objects. The compiler is referred to as p4-hlir.

P4 program
(.p4) ...

Back-end
compiler A

Front-end
compiler

Back-end
compiler Z

Target A

Target Z

Intermediate
representation

Figure 19: Structure and operation principle of P4 compilers using the two-layer model. The
front-end compiler translates the given P4 program into an intermediate representation that
is then compiled into target-specific code by back-end compilers.

The new P4 compiler (p4c) [42] is written in C++ and uses C++-object-
based IR. As an additional benefit, the IR can be output as a P416 program or a
JSON file. The latter allows the developers and users to build powerful tools for
program analysis without the need to augment the compiler. Figure 19 visualizes
its structure and operating principle. The compiler consists of a generic frontend
that accepts both P414 and P416 code which may be written for any architecture.
It furthermore has several reference backends for the bmv2, eBPF, and uBPF
P4 targets as well as a backend for testing purposes and a backend that can
generate graphs of control flows of P4 programs. In addition, p4c provides the
so-called “mid-end” which is a library of generic transformation passes that are

28

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

used by the reference backends and can also be used by vendor-specific backends.
The compiler is developed and maintained by P4.org.

P4 target vendors design and maintain their own compilers that include the
common frontend. This ensures the uniformity of the language which is accepted
by different compilers.

4.2.2. Other Compilers
MACSAD [43] is a compiler that translates P4 programs into Open Data

Plane (ODP) [44] programs. Jose et al. [45] introduce a compiler that maps
P4 programs to FlexPipe and RMT, two common software switch architectures.
P4GPU [46] is a multistage framework that translates a P4 program into inter-
mediate representations and other languages to eventually generate GPU code.

5. P4 Targets

We describe P4 targets based on software, FPGA, ASIC, and NPU. Ta-
ble 3 compiles an overview of the targets, their supported architectures, and the
current state of development.

5.1. Software-Based P4 Targets
Software-based P4 targets are packet forwarding programs that run on a

standard CPU. We describe the 9 software-based P4 targets mentioned in Ta-
ble 3.

5.1.1. p4c-behavioural
p4c-behavioral [47] is a combined P4 compiler and P4 software target. It

was introduced with the first public release of P4. p4c-behavioral translates the
given P414 program into an executable C program.

5.1.2. Behavioral Model version 2 (bmv2)
The second version of the P4 software switch Behavioral Model (bmv2) [48]

was introduced to address the limitations of p4c-behavioural (see also [49]). In
contrast to p4c-behavioral, the source code of bmv2 is static and independent
of P4 programs. P4 programs are compiled to a JSON representation that is
loaded onto the bmv2 during runtime. External functions and other extensions
can be added by extending bmv2’s C++ source code. bmv2 is not a single
target, but a collection of targets [50]:

• simple_switch is the bmv2 target with the largest range of features. It con-
tains all features from the P414 specification and supports the v1model ar-
chitecture of P416. simple_switch includes a program-independent Thrift
API for runtime control.

• simple_switch_grpc extends simple_switch by the P4Runtime API that
is based on gRPC (see Section 6.3.1).

29

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Table 3: Overview of P4 targets.

Target P4 Version P416
Architecture

Active
Development

Software
p4c-behavioral P414 n.a. X
bmv2 P414, P416 v1model, psa X
eBPF P416 ebpf_model.p4 X
uBPF P416 ubpf_model.p4 X
XDP P416 xdp_model.p4 X
T4P4S P414, P416 v1model, psa X
Ripple n.a n.a n.a
PISCES P414 n.a. X
PVPP n.a. n.a. X
ZodiacFX P416 zodiacfx_model.p4 n.a.

FPGA
P4→NetFPGA P416 SimpleSumeSwitch X
Netcope P4 n.a. n.a. X
P4FPGA P414, P416 n.a. X

ASIC
Barefoot Tofi-
no/Tofino 2

P414, P416 v1model, psa,
TNA

X

Pensando Capri P416 n.a X
NPU
Netronome P414, P416 v1model X

• psa_switch is similar to simple_switch, but supports PSA instead of
v1model.

• simple_router and l2_switch support only parts of the standard meta-
data and do not support P416. They are intended to show how different
architectures can be implemented with bmv2.

Although bmv2 is intended for testing purposes only, throughput rates up
to 1Gbit/s for a P4 program with IPv4 LPM routing have been reported [51].
bmv2 is under active development, i.e., new functionality is added frequently.

5.1.3. BPF-based Targets
Berkeley Packet Filters (BPFs) add an interface on a UNIX system that

allows sending and receiving raw packets via the data link layer. User space
programs may rely on BPFs to filter packets that are sent to it. BPF-based P4
targets are mostly intended for programming packet filters or basic forwarding
in P4.

30

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

eBPF. Extended Berkeley Packet Filters (eBPFs) are an extension of BPFs for
the Linux kernel. eBPF programs are dynamically loaded into the Linux kernel
and executed in a virtual machine (VM). They can be linked to functions
in the kernel, inserted into the network data path via iproute2, or bound to
sockets or network interfaces. eBPF programs are always verified by the kernel
before execution, e.g., programs with loops or backward pointers would not be
executed. Due to their execution in a VM, eBPF programs can only access
certain regions in memory besides the local stack. Accessing kernel resources is
protected by a white list. eBPF programs may not block and sleep, and usage
of locks is limited to prevent deadlocks. The p4c compiler features the p4c-ebpf
back-end to compile P416 programs to eBPF [52].

uBPF. user-space BPFs (uBPFs) relocate the eBPF VM from the kernel space
to the user space. p4c-ubpf [53] is a backend for p4c that compiles P4 HLIR for
uBPF. In contrast to p4c-ebpf, it also supports packet modification, checksum
calculation, and registers, but no counters.

XDP. eXpress Data Path (XDP) is based on eBPF and allows to load an eBPF
program into the RX queue of a device driver. p4c-xdp [54] is a backend for
p4c that compiles P4 HLIR for XDP. Similar to p4c-ubpf, it supports packet
modification and checksum calculation. In contrast to p4c-ebpf, it supports
counters instead of registers.

5.1.4. T4P4S
T4P4S (pronounced "tapas") [55, 56] is a software P4 target that relies on

interfaces for accelerated packet processing such as Data Plane Development Kit
(DPDK) [57] or Open Data Plane (ODP) [44]. T4P4S provides a compiler that
translates P4 programs into target-independent C code that interfaces a network
hardware abstraction library. Hardware-dependent and hardware-independent
functionalities are separated from each other. Its source code is available on
GitHub [58]. Bhardwaj et al. [59] describe optimizations for improving T4P4S
performance by up to 15%.

5.1.5. Ripple
Ripple [60] is a P4 target based on DPDK. It uses a static universal binary

that is independent of the P4 program. The data plane of the static binary is
configured at runtime based on P4 HLIR. This results in a shorter downtime
when updating a P4 program in contrast to targets like T4P4S. Ripple uses
vectorization to increase the performance of packet processing.

5.1.6. PISCES
PISCES [61] transforms the Open vSwitch (OVS) [62] into a software P4 tar-

get. OVS is a popular SDN software switch that is designed for high throughput
on virtualization platforms for flexible networking between VMs. The PISCES
compiler translates P4 programs into C code that replace parts of the source
code of OVS. This makes OVS dependent on the P4 program, i.e., OVS must

31

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

be recompiled with every modification of the P4 program. PISCES does not
support stateful components such as registers, counters, or meters. The devel-
opers claim that PISCES does not add performance overhead to OVS. As the
last commit in the public repository [63] is from 2016, PISCES seems not to be
under active development.

5.1.7. PVPP
PVPP [64, 65] integrates P4 programs into plugins for Vector Packet Proces-

sors (VPP) (see Section 2.4.1). The P4-to-PVPP compiler comprises two stages.
First, a modified p4c compiler translates P4 programs into target-dependent
JSON code. Then, a Python compiler translates the JSON code into a VPP
plugin in C source code. According to the authors, performance decreases by 5-
17% compared to VPP but is still significantly better than OVS. Unfortunately,
the source code and further information are not available for the public.

5.1.8. ZodiacFX
The ZodiacFX is a lightweight development and experimentation board orig-

inally designed as OF switch featuring four Fast Ethernet ports. It is based on
an Atmel processor and an Ethernet switching chip [66]. The authors provided
an extension [67, 68] to run P4 programs on the board. P4 programs are com-
piled using an extended version of p4c and the p4c-zodiacfx backend compiler.
Then, the result of this compilation is used to generate a firmware image. Zanna
et al. [69] compare the performance of P4 and OF on that target, and find out
that differences among all test cases are small.

5.2. FPGA-Based P4 Targets
Several tool chains translate P4 programs into implementations for field

programmable gate arrays (FPGAs). The process includes logic synthesis, ver-
ification, validation, and placement/routing of the logic circuit for the FPGA.
We describe the P4→NetFPGA, Netcope P4, and P4FPGA tool chain. Finally,
we mention research results for FPGA-based P4 targets.

5.2.1. P4→NetFPGA
The P4→NetFPGA workflow [70, 71] provides a development environment

for compiling and running P4 programs on the NetFPGA SUME board that
provides four SFP+ ports [72]. The development environment is built around
the P4-SDnet compiler and the SDnet data plane builder from Xilinx, i.e., a full
license for the Xilinx Vivado design suite is needed. Custom external functions
can be implemented in a hardware description language (HDL) such as Verilog
and included in the final FPGA program. This also allows external IP cores
to be integrated as P4 externs in P4 programs. The P4→NetFPGA tool chain
supports P416 based on the P4 architecture SimpleSumeSwitch (see Section 4.1).

32

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

5.2.2. Netcope P4
Netcope P4 [73] is a commercial cloud service that creates FPGA firmware

from P4 programs. Knowledge of HDL development is not needed and all nec-
essary IP cores are provided by Netcope. The cloud service can be used in
conjunction with the Netcope software development kit (SDK). This combi-
nation allows developers to combine the VHDL code of the cloud service with
custom HDL code, e.g., from an external function. As target platform, Netcope
P4 supports FPGA boards from Netcope, Silicom, and Intel that are based on
Xilinx or Intel FPGAs.

5.2.3. P4FPGA
P4FPGA [74] is a P414 and P416 compiler and runtime for the Bluespec

programming language that can generate code for Xilinx and Altera FPGAs.
The last commit in the archived public repository [75] is from 2017.

5.2.4. Research Results
Benácek and Kubátová [76, 77] present how P4 parse graph descriptions

can be converted to optimized VHDL code for FPGAs. The authors demon-
strate how a complex parser for several header fields achieves a throughput
of 100Gbit/s on a Xilinx Virtex-7 FPGA while using 2.78% slice look up ta-
bles (LUTs) and 0.76% slice registers (REGs). In a follow-up work [78], the
optimized parser architecture supports a throughput of 1Tbit/s on Xilinx Ul-
traScale+ FPGAs and 800Gbit/s on Xilinx Virtex-7 FPGAs. Da Silva et al.
[79] also investigate the high-level synthesis of packet parsers in FPGAs. Kekely
and Korenek [80] describe how MATs can be mapped to FPGAs. Iša et al. [81]
describe a system for automated verification of register-transfer level (RTL)
generated from P4 source code. Cao et al. [82, 83] propose a template-based
process to convert P4 programs to VHDL. They use a standard P4 frontend
compiler to compile the P4 program into an intermediate representation. From
this representation, a custom compiler maps the different elements of the P4
program to VHDL templates which are used to generate the FPGA code.

5.3. ASIC-Based P4 Targets
5.3.1. Intel Tofino

Intel Tofino is the world’s first user programmable Ethernet switch ASIC.
It is designed for very high throughput of 6.5Tbit/s (4.88 B pps) with 65 ports
running at 100Gbit/s. Its successor, the Tofino 2 ASIC, supports throughput
rates of up to 12.8Tbit/s with ports running at up to 400Gbit/s. Tofino has
been built by Barefoot Networks, a former startup company that was acquired
by Intel in 2019.

The Tofino ASIC implements the TNA, a custom P4 architecture that signif-
icantly extends PSA (see Section 4.1). It provides support for advanced device
capabilities which are required to implement complex, industrial-strength data
plane programs. The device comes with 2 or 4 independent packet processing
pipelines (pipes), each capable of serving 16 100Gbit/s ports. All pipes can

33

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

run the same P4 program or each pipe can run its own program independently.
Pipes can also be connected together, allowing the programmers to build pro-
grams requiring longer processing pipelines.

The Tofino ASIC processes packets at line rate irrespective of the complex-
ity of the executed P4 program. This is achieved by a high degree of pipelining
(each pipe is capable of processing hundreds of packets simultaneously) and par-
allelization. In addition to standard arithmetic and logical operations, Tofino
provides specialized capabilities, often required by data plane programs, such as
hash computation units and random number generators. For stateful processing
Tofino offers counters, meters, and registers, as well as more specialized process-
ing units. Some of them support specialized operations, such as approximate
non-linear computations required to implement state-of-the-art data plane algo-
rithms. Built-in packet generators allow the data plane designers to implement
protocols, such as BFD, without using externally running control plane pro-
cesses. These and other components are exposed through TNA which is openly
published by Intel [84].

Tofino fixed-function components offer plenty of advanced functionality. The
buffering engine has a unified 22MB buffer, shared by all the pipes, that can
be subdivided into several pools. Tofino Traffic Manager supports both store-
and-forward as well as the cut-through mode, up to 32 queues per port, precise
traffic shaping and multiple scheduling disciplines. Tofino provides nanosecond-
precision timestamping that facilitates both the implementation of time synchro-
nization protocols, such as IEEE 1588, as well as precise delay measurements.
Additional intrinsic metadata support a variety of telemetry applications, such
as INT.

The development is conducted using Intel P4 Studio which is a software
development environment containing the P4 compiler, the driver, and other
software necessary to program and manage the Tofino. A special interactive vi-
sualization tool (P4i) allows the developers to see the P4 program being mapped
onto the specific hardware resources further assisting them in fitting and opti-
mizing their programs. Intel P4 compiler for Tofino has special capabilities,
allowing it to parallelize the code thereby taking advantage of the highly paral-
lel nature of Tofino hardware.

A number of original design manufacturers (ODMs) produce open systems
(white boxes) with the Tofino ASIC that are used for research, development,
and production of custom systems. Examples include the EdgeCore Wedge
100BF-32X [85], APS Networks BF2556-1T-A1F [86] and BF6064-T-A2F [87],
NetBerg Aurora 610 [88], and others.

Most white box systems follow a modern, server-like design with a separate
board management controller, responsible for handling power supplies, fans,
LEDs, etc., and a main CPU, typically x86_64, running a Linux operating sys-
tem. The main CPU is connected to the Tofino ASIC via a PCIe interface. Some
boards also provide one or more high-speed on-board Ethernet connections for
faster packet interface. External Ethernet ports support speeds from 10Gbit/s
to 100Gbit/s using standard QSFP28 cages although some systems offer lower-
speed (1Gbit/s) ports as well. Most of these systems are also powerful enough

34

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

to support running development tools natively, e.g., a P4 compiler, even though
this is not necessarily required.

Tofino ASICs are also used in proprietary network switches, e.g., by Arista
[89] and Cisco [90]. Some Tofino-based switches are supported by Microsoft
SONiC [91].

5.3.2. Pensando Capri
The Capri P4 Programmable Processor [92, 93] is an ASIC that powers

network interface cards (NICs) by Pensando Systems aimed for cloud providers.
It is coupled with fixed function components for cryptography operations like
AES or compression algorithms and features multiple ARM cores.

5.4. NPU-Based P4 Targets
Network processing units (NPUs) are software-programmable ASICs that

are optimized for networking applications. They are part of standalone network
devices or device boards, e.g., PCI cards.

Netronome network flow processing (NFP) silicons can be programmed with
P4 [94] or C [95]. A C-based programming model is available that supports
program functions to access payloads and allows developing P4 externs. The
Agilio P4C SDK consists of a tool chain including a backend compiler, host
software, and a full-featured integrated development environment (IDE). All
current Agilio SmartNICs based on NFP-4000, NFP-5000, and NFP-6480 are
supported. Harkous et al. [96] investigate the impact of basic P4 constructs on
packet latency on Agilio SmartNICs.

6. P4 Data Plane APIs

We introduce data plane APIs for P4, present a characterization, describe the
three most commonly used P4 data plane APIs, and compare different control
plane use cases.

6.1. Definition & Functionality
Control planes manage the runtime behavior of P4 targets via data plane

APIs. Alternative terms are control plane APIs and runtime APIs. The data
plane API is provided by a device driver or an equivalent software component.
It exposes data plane features to the control plane in a well-defined way. Figure
20 shows the main control plane operations. Most important, data plane APIs
facilitate runtime control of P4 entities (MATs and externs). They typically
also comprise a packet I/O mechanism to stream packets to/from the control
plane. They also include reconfiguration mechanisms to load P4 programs onto
the P4 target. Control planes can control data planes only through data plane
APIs, i.e., if a data plane feature is not exposed via a corresponding API, it
cannot be used by the control plane.

It is important to note that P4 does not require a data plane APIs. P4 targets
may also be used as a packet processor with a fixed behavior that is defined by
the P4 program where static MAT entries are part of the P4 program itself.

35

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofControl plane

Runtime
control

Packet
I/O

Load
P4 program

P4 target

Data plane
API

MAT Extern
CPU port

Figure 20: Runtime management of a P4 target by the control plane through the data plane
API. The figure depicts the four most central operations: Runtime control of MATs and
extern objects, packet-in/out, and loading of P4 programs.

6.2. Characterization of Data Plane APIs
Data plane APIs in P4 can be characterized by their level of abstraction,

their dependency on the P4 program, and the location of the control plane.

6.2.1. Level of Abstraction
Data plane APIs can be characterized by their level of abstraction.

• Device access APIs provide direct access to hardware functionalities like
device registers or memories. They typically use low-level mechanisms like
DMA transactions. While this results in very low overhead, this type of
API can be neither vendor- nor device-independent.

• Data plane specific APIs are APIs with a higher level of abstraction. They
provide access to objects defined by the P4 program instead of hardware-
specific parts. In contrast to device access APIs, vendor- and device-
independence is possible for this type of API.

6.2.2. Dependency on the P4 Program
Data plane APIs can be characterized by their dependency on the P4 pro-

gram.

• Program-dependent APIs have a set of functions, data structures, and
other names that are derived from the P4 program itself. Therefore, they
depend on the P4 program and are applicable to this P4 program only.
If the corresponding P4 program is changed, function names, data struc-
tures, etc., might change, which requires a recompilation or modification
of the control plane program.

• Program-independent APIs consist of a fixed set of functions that receives
a list of P4 objects that are defined in the P4 program. Thus, the names
of the API functions, data structures, etc., do not depend on the program
and are universally applicable. If the corresponding P4 program changes,
neither the names, nor the definitions of the API functions will change

36

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

as long as the control plane “knows” the names of the right tables, fields
and other object that need to be operated on. Program-independent APIs
model configurable objects either with the object-based or the table-based
approach. As known from object-oriented programming, the object-based
approach relies on methods that are defined for each class of data plane
objects. In contrast, the table-based approach treats every class of data
plane object as a variation of a table. This reduces the number of API
methods as only table manipulations need to be provided as methods.

6.2.3. Control Plane Location
Data plane APIs can be characterized by the location of the control plane.

• APIs for local control are implemented by the device driver and are exe-
cuted on the local CPU of the device that hosts the programmable data
plane. Usually, the APIs are presented as set of C function calls just like
for other devices that operating system are accessing.

• APIs for remote control add the ability to invoke API calls from a separate
system. This increases system stability and modularity, and is essential
for SDN and other systems with centralized control. Remote control APIs
follow the base methodology of remote procedure calls (RPCs) but rely
on modern message-based frameworks that allow asynchronous commu-
nication and concurrent calls to the API. Examples are Thrift [97] or
gRPC [98]. For example, gRPC uses HTTP/2 for transport and includes
many functionalities ranging from access authentication, streaming, and
flow control. The protocol’s data structures, services, and serialization
schemes are described with protocol buffers (protobuf) [99].

6.3. Data Plane API Implementations
We introduce the three most common data plane APIs: P4Runtime, Bare-

foot Runtime Interface (BRI), and BM Runtime. All of them are data-plane
specific and program-independent. Table 4 lists their properties that have been
introduced before.

6.3.1. P4Runtime API
P4Runtime is one of the most commonly used data plane APIs that is stan-

dardized in the API WG [100] of the P4 Language Consortium. For implement-
ing the RPC mechanisms, it relies on the gRPC framework with protobuf. Its
most recent specification v1.3.0 [101] was published in December 2020.

Operating Principle. Figure 21 depicts the operating principle of P4Runtime.
P4 targets include a gRPC server, controllers implement a gRPC client. To
protect the gRPC connection, TLS with optional mutual certificate authenti-
cation can be enabled. The API structure of P4Runtime is described within
the p4runtime.proto definition. The gRPC server on P4 targets interacts
with the P4-programmable components via platform drivers. It has access to

37

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

P4 entities (MATs or externs) and can load target-specific configuration bina-
ries. The structure of the API calls to access P4 entities are described in the
p4info.proto. It is part of the P4Runtime but developers can extend it to
use custom data structures, e.g., to implement interaction with target-specific
externs. P4Runtime provides support for multiple controllers. For every P4
entity, read access is provided to all controllers whereas write access is only
provided to one controller. To manage this access, P4 entities can be arranged
in groups where each group is assigned to one primary controller with write ac-
cess and arbitrary, secondary controllers with read access. Interaction between
controllers and P4 targets works as follows. P4 compilers (see Section 4.2)
with support for P4Runtime generate a P4Runtime configuration. It consists
of the target-specific configuration binaries and P4Info metadata. P4Info de-
scribes all P4 entities (MATs and externs) that can be accessed by controllers
via P4Runtime. Then, the controllers establish a gRPC connection to the gRPC
server on the P4 target. The target-specific configuration is loaded onto the P4
target and P4 entities can be accessed.

P4 entities
Target-specific
configuration

binaries

Controller
(optional)

P4Runtime
configuration

P4Info
Target-specific
configuration

binaries

P4
program

p4info.proto

gRPC client

Controller
(primary)

P4Runtime interface

gRPC client

gRPC server

P4Runtime API
specification

Declaration of
P4 entities

Platform drivers

P4
compiler

p4runtime.proto

P4 target

Figure 21: P4Runtime architecture (similar to [101]). P4 targets can be managed by a primary
controller and multiple, optional controllers. The P4 entities and P4Runtime API specification
is part of protocol definitions.

Implementations. gRPC and protobuf libraries are available for many high-
level programming languages such as C++, Java, Go, or Python. Thereby,
P4Runtime can be implemented easily on both controllers and P4 targets.

• Controllers: P4Runtime is supported by most common SDN controllers.
P4 brigade [102] introduces support for P4Runtime on the Open Network

38

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Operating System (ONOS). OpenDaylight (ODL) introduces support for
P4Runtime via a plugin [103]. Stratum [104] is an open-source network
operating system that includes an implementation of the P4Runtime and
OpenConfig interfaces. Custom controllers, e.g., for P4 prototypes, can
be implemented in Python with the help of the p4runtime_lib [105].

• Targets: The PI Library [106] is the open-source reference implementa-
tion of a P4Runtime gRPC server in C. It implements functionality for
accessing MATs and supports extensions for target-specific configuration
objects, e.g., registers of a hardware P4 target. The PI Library is used by
many P4 targets including bmv2 [107] and the Tofino.

6.3.2. Barefoot Runtime Interface (BRI)
The BRI consists of two independent APIs that are available on Tofino-based

P4 hardware targets. The BfRt API is an API for local control. It includes C,
C++ and Python bindings that can be used to implement control plane pro-
grams. The BF Runtime is an API for remote control. As for P4Runtime, it
is based on the gRPC RPC framework and protobuf, i.e., bindings for different
languages are available. An additional Python library implements a simpler,
BfRt-like interface for cases where simplicity is more essential than the perfor-
mance of BF Runtime.

6.3.3. BM Runtime API
BM Runtime API is a program-independent data plane API for the bmv2

software target. It relies on the Thrift RPC framework. bmv2 includes a com-
mand line interface (CLI) program [108] to manipulate MATs and configure the
multicast engine of the bmv2 P4 software target via this API.

Table 4: Characterization of data plane specific APIs.

API Program
independence

Control plane location

P4Runtime X Remote (gRPC)
BF Runtime X Remote (gRPC)
BfRt API X Local (C, C++ and Python bindings)
BM Runtime X Remote (Thrift RPC)

6.4. Controller Use Case Patterns
We present three use case patterns which are abstractions of the controller

use cases introduced in the P4Runtime specification [101]. However, these are
neither conclusive nor complete as derivations or extensions are possible.

39

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

6.4.1. Embedded/Local Controller
P4 hardware targets (see Section 5) comprise or are attached to a com-

puting platform. This facilitates running controllers directly on the P4 target.
Figure 22 depicts this setup. The controller application may either use a local
API, e.g., C calls, or just execute a controller application that interfaces the
data plane via an RPC channel.

Programmable
data plane

Embedded
controller

Local/
remote

API

P4 target

Figure 22: Embedded/local controller use case pattern. The P4 target comprises an embedded
controller that is running a control plane program.

6.4.2. Remote Controllers
Remote controllers resemble the typical SDN setup where data plane devices

are managed by a centralized control plane with an overall view on the network.
Controllers need to be protected against outages and capacity overload, i.e.,
they need to be replicated for fail-safety and scalability. Figure 23 depicts two
possible use cases. In the first shown use case (a), the programmable data plane
on the P4 target is managed by remote controllers. In the second shown use
case (b), the P4 target is managed by both, the embedded controller and remote
controllers. Remote controllers might be interfaced using the remote API of the
programmable data plane or an arbitrary API that is provided by the embedded
controller. This option is often used for the implementation of so-called hierar-
chical control plane structures where control plane functionality is distributed
among different layers. Control plane functions that do not require a global view
of the network, e.g., link discovery, MAC learning for L2 forwarding, or port
status monitoring, can be solely performed by the embedded/local controller.
Other control plane functions that require an overall view of the network, e.g.,
routing applications, can be performed by the remote controller, possibly in
cooperation with the embedded/local controller where the local controller acts
as proxy, i.e., it relays control plane messages between the P4 target and the
global controller. Hierarchical control planes improve load distribution as many
tasks can be performed locally, which reduces load on the remote controllers.
In particular, time-critical operations may benefit from local controllers as ad-
ditional delays caused by the communication between a P4 target and a global
controller are avoided.

40

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Remote API

Programmable
data plane

Remote
controller

...

P4 target

Programmable
data plane

Embedded
controller

Local/
remote

API

P4 target

Remote API

Remote
controller

...

(a) Remote
controllers

(b) Local/embedded controller +
remote controllers

Remote API

Remote
controller

...

Figure 23: Two use case patterns for remote controllers: The P4 target may be solely managed
by remote controllers or it may be managed by an embedded controller and remote controllers.

7. Advances in P4 Data Plane Programming

We give an overview on research to improve P4 data plane programming.
Figure 24 depicts the structure of this section. We describe related work on
optimization of development and deployment, testing and debugging, research
on P4 targets, and research on control plane operation.

7.1. Optimization of Development and Deployment
We describe research work on optimizing the development & deployment

process of P4.

7.1.1. Program Development
Graph-to-P4 [109] generates P4 program code for given parse graphs. This

introduces a higher abstraction layer that is particularly helpful for beginners.
Zhou et al. [110] introduce a module system for P4 to improve source code
organization. DaPIPE [111] enables incremental deployment of P4 program
code on P4 targets. SafeP4 [112] adds type safety to P4. P4I/O [113] presents
a framework for intent-based networking with P4. Network operator describe
their network functions with an Intent Definition Language (IDL) and P4I/O
generates a complete P4 program accordingly. To that end, P4I/O provides a
P4 action repository with various network functions. During reconfiguration,
table and register state are preserved by applying backup mechanisms. P4I/O is
implemented for a custom bmv2. Mantis [114] is a framework to implement fast
reactions to changing network conditions in the data plane without controller
interaction. To that end, annotations in the P4 code specify dynamic compo-
nents and a quick control loop of those components ensure timely adjustments

41

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Research &
development

on P4

Testing &
debugging

Optimization of
development &

deployment
Program development
Compiler optimization

Simulation
Program verification
Testing
Benchmarking
Debugging

Research on P4
targets

Virtualization of P4 data planes
Composite P4 targets
P4 externs
Secure behavior of targets
Testbeds

Research on
control plane

operation

Figure 24: Organization of Section 7.

if necessary. Lyra [115] is a pipeline abstraction that allows developers to use
simple statements to describe their desired data plane without low-level target-
specific knowledge. Lyra then compiles that description to target-specific code
for execution. GP4P4 [116] is a programming framework for self-driven net-
works. It generates P4 code from behavioral rules defined by the developer. To
that end, GP4P4 evaluates the quality of the automatically generated programs
and improves them based on genetic algorithms. FlowBlaze.p4 [117, 118, 119]
implements an executor for FlowBlaze, an abstraction based on an extended fi-
nite state machine for building stateful packet processing functions, in P4. This
library maps FlowBlaze elements to P4 components for execution on the bmv2.
It also provides a GUI for defining the extended finite state machine. Flight-
plan [120] is a programming tool chain that disaggregates a P4 program into
multiple P4 programs so that they can be executed on different targets. The
authors state that this improves performance, resource utilization, and cost.

7.1.2. Compiler Optimization
pcube [121] is a preprocessor for P4 that translates primitive annotations in

P4 programs into P4 code for common operations such as loops. CacheP4 [122]
introduces a behavior-level cache in front of the P4 pipeline. It identifies flows
and performs a compound of actions to avoid unnecessary table matches. The
cache is filled during runtime by a controller that receives notifications from
the switch. P5 [123] optimizes the P4 pipeline by removing inter-feature de-
pendencies. dRMT [25] is a new architecture for programmable switches that
introduces deterministic throughput and latency guarantees. Therefore, it gen-

42

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

erates schedules for CPU and memory resources from a P4 program. P2GO [124]
leverages monitored traffic information to optimize resource allocation during
compilation. It adjusts table and register size to reduce the pipeline length, and
offloads rarely used parts of the program to the control plane. Yang et al. [125]
propose a compiler module that optimizes lookup speed by reorganizing flow
tables and prioritization of popular forwarding rules. Vass et al. [126] analyze
and discuss algorithmic aspects of P4 compilation.

7.2. Testing and Debugging
We describe research work on simulation, program verification, testing, bench-

marking, and debugging.

7.2.1. Simulation
PFPSim [127] is a simulator for validation of packet processing in P4. NS4

[128, 129] is a network simulator for P4 programs that is based on the network
simulator NS3.

7.2.2. Program Verification
McKeown et al. [130] introduce a tool to translate P4 to the Datalog declar-

ative programming language. Then, the Datalog representation of the P4 pro-
gram can be analyzed for well-formedness. Kheradmand et al. [131] introduce
a tool for static analysis of P4 programs that is based on formal semantics. P4v
[132] adapts common verification methods for P4 that are based on annota-
tions in the P4 program code. Freire et al. [133, 134] introduce assertion-based
verification with symbolic execution. Stoenescu et al. [135] propose program
verification based on symbolic execution in combination with a novel description
language designed for the properties of P4. P4AIG [136] proposes to use hard-
ware verification techniques where developers have to annotate their code with
First Order Logic (FOL) specifications. P4AIG then encodes the P4 program
as an Advanced-Inverter-Graph (AIG) which can be verified by hardware verifi-
cation techniques such as circuit SAT solvers and bounded model checkers. bf4
[137] leverages static code verification and runtime checks of rules that are in-
stalled by the controller to confirm that the P4 program is running as intended.
netdiff [138] uses symbolic execution to check if two data planes are equivalent.
This can be useful to verify if a data plane behaves correctly by comparing it
with a similar one, or to verify that optimizations of a data plane do not change
its behavior. Yousefi et al. [139] present an abstraction for liveness verification
of stateful network functions (NFs). The abstraction is based on boolean for-
mulae. Further, they provide a compiler that translates these formulae into P4
programs.

7.2.3. Testing
P4pktgen [140] generates test cases for P4 programs by creating test packets

and table entries. P4Tester [141] implements a detection scheme for runtime

43

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

faults in P4 programs based on probe packets. P4app [142] is a partially auto-
mated open source tool for building, running, debugging, and testing P4 pro-
grams with the help of Docker images. P4RL [143] is a reinforcement learning
based system for testing P4 programs and P4 targets at runtime. The correct
behavior is described in a simple query language so that a reinforcement agent
based on Double DQN can learn how to manipulate and generate packets that
contradict the expected behavior. P4TrafficTool [144] analyzes P4 programs
to produce plugin code for common traffic analyzers and generators such as
Wireshark.

7.2.4. Benchmarking
Whippersnapper [145] is a benchmark suite for P4 that differentiates between

platform-independent and platform-specific tests. BB-Gen [146] is a system to
evaluate P4 programs with existing benchmark tools by translating P4 code into
other formats. P8 [147] estimates the average packet latency at compilation time
by analyzing the data path program.

7.2.5. Debugging
Kodeswaran et al. [148] propose to use Ball-Larus encoding to track the

packet execution path through a P4 program for more precise debugging ca-
pabilities. p4-data-flow [149] detects bugs by creating a control flow graph of
a P4 program and then identifies incorrect behavior. P4box [150] extends the
P416 reference compiler by so-called monitors that insert code before and after
programmable blocks, e.g., control blocks, for runtime verification. P4DB [151]
[152] introduces a runtime debugging system for P4 that leverages additional de-
bugging snippets in the P4 program to generate reports during runtime. Neves
et al. [153] propose a sandbox for P4 data plane programs for diagnosis and
tracing. P4Consist [154] verifies the consistency between control and data plane.
Therefore, it generates active probe-based traffic for which the control and data
plane generate independent reports that can be compared later. KeySight [155]
is a troubleshooting platform that analyzes network telemetry data for detecting
runtime faults. Gauntlet [156] finds both crash bugs, i.e., abnormal termination
of compilation operation, and semantic bugs, i.e., miscompilation, in compilers
for programmable packet processors.

7.3. Research on P4 Targets
We describe research work on virtualization of P4 data planes, composite

targets, P4 externs, secure behavior of targets, and testbeds.

7.3.1. Virtualization of P4 Data Planes
P4 targets are designed to execute one P4 program at any given time. Virtu-

alization aims at sharing the resources of P4 targets for multiple P4 programs.
Krude et al. [157] provide theoretical discussions on how ASIC- and FPGA-
based P4 targets can be shared between different tenants and how P4 programs
can be made hot-pluggable.

44

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

HyPer4 [158] introduces virtualization for P4 data planes. It supports sce-
narios such as network slicing, network snapshotting, and virtual networking.
To that end, a compiler translates P4 programs into table entries that configure
the HyPer4 persona, a P4 program that contains implementations of basic prim-
itives. However, HyPer4 does not support stateful memory (registers, counters,
meters), LPM, range match types, and arbitrary checksums. The authors de-
scribe an implementation for bmv2 and perform experiments that reveal 80 to
90% lower performance in comparison to native execution.

HyperV [159, 160, 161] is a hypervisor for P4 data planes with modular
programmability. It allows isolation and dynamic management of network func-
tions. The authors implemented a prototype for the bmv2 P4 target. In com-
parison to Hyper4, HyperV achieves a 2.5x performance advantage in terms of
bandwidth and latency while reducing required resources by a factor of 4. Hy-
perVDP [162] extends HyperV by an implementation of a dynamic controller
that supports instantiating network functions in virtual data planes.

P4VBox [163], also published as VirtP4 [164], is a virtualization framework
for the NetFPGA SUME P4 target. It allows executing virtual switch instances
in parallel and also to hot-swap them. In contrast to HyPer4, HyperV and Hy-
perVDP, P4VBox achieves virtualization by partially re-configuring the hard-
ware.

P4Visor [165] merges multiple P4 programs. This is done by program over-
lap analysis and compiler optimization. Programming In-Network Modular Ex-
tensions (PRIME) [166] also allows combining several P4 programs to a single
program and to steer packets through the specific control flows.

P4click [167] does not only merge multiple P4 programs, but also combines
the corresponding control plane blocks. The purpose of P4click is to increase
the use of data plane programmability. P4click is currently in an early stage of
development.

The Multi Tenant Portable Switch Architecture (MTPSA) [168] is a P4
architecture that offers performance isolation, resource isolation, and security
isolation in a switch for multiple tenants. MTPSA is based on the PSA. It
combines a Superuser pipeline that acts as a hypervisor with multiple user
pipelines. User pipelines may only perform specific actions depending on their
privileges. MTPSA is implemented for bmv2 and NetFPGA-SUME [169].

Han et al. [170] provide an overview of virtualization in programmable data
planes with a focus on P4. They classify virtualization schemes into hypervisor
and compiler-based approaches, followed by a discussion of pros and cons of
the different schemes. The aforementioned works on virtualization of P4 data
planes are described and compared in detail.

7.3.2. Composite P4 Target
Da Silva et al. [171] introduce the idea of composite P4 targets. This tries

to solve the problem of target-dependent support of features. The composed
data plane appears as one P4 target; it is emulated by a P4 software target but
relies on an FPGA and ASIC for packet processing.

45

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

eXtra Large Table (XLT) [172] introduces gigabyte-scale MATs by leveraging
FPGA and DRAM capabilities. It comprises a P4-capable ASIC and multiple
FPGAs with DDR4 DRAM. The P4-capable ASIC pre-constructs the match
key field and sends it with the full packet to the FPGA. The FPGA sends back
the original packet with the search results of the MAT lookup. The authors
implement a DPDK based prototype for the T4P4S P4 software target.

HyMoS [173] is a hybrid software and hardware switch to support NFV
applications. The authors create a switch by using P4-enabled Smart NICs as
line cards and the PCIe interface of a computer as the switch fabric. P4 is used
for packet switching between the NICs. Additional processing may be done
using DPDK or applications running on a GPU.

7.3.3. P4 Externs
Laki et al. [174, 175] investigate asynchronous execution of externs. In con-

trast to common synchronous execution, other packets may be processed by the
pipeline while the extern function is running. The authors implement and eval-
uate a prototype for T4P4S. Scholz et al. [176] propose that P4 targets should
be extended by cryptographic hash functions that are required to build secure
applications and protocols. The authors propose an extension of the PSA and
discuss the PoC implementation for a CPU-, network processing unit (NPU)-,
and FPGA-based P4 target. Da Silva et al. [177] investigate the implementation
of complex operations as extensions to P4. The authors perform a case study
on integrating the Robust Header Compression (ROHC) scheme and conclude
that an implementation as extern function is superior to an implementation as
a new native primitive.

7.3.4. Secure Behaviour of Targets
Gray et al. [178] demonstrate that hardware details of P4 targets influence

their packet processing behavior. The authors demonstrate this by sending a
special traffic pattern to a P4 firewall. It fills the cache of this target and results
in a blocking behavior although the overall data rate is far below the capacity
of the used P4 target. Dumitru et al. [179] investigate the exploitation of pro-
gramming bugs in bmv2, P4-NetFPGA, and Tofino. The authors demonstrate
attack scenarios by header field access on invalid headers, the creation of infinite
loops and unintentionally processing of dropped packets in the P4 targets.

7.3.5. Testbeds
Large testbeds facilitate research and development on P4 programs. The

i-4PEN (International P4 Experimental Networks) [180] is an international P4
testbed operated by a collaboration of network research institutions from the
USA, Canada, and Taiwan. Chung et al.[181] describe how multi-tenancy is
achieved in this testbed. The 2STiC testbed [182], a national testbed in the
Netherlands comprising six sites with at least one Tofino-based P4 target, is
connected to i-4PEN.

46

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

7.4. Research on Control Plane Operation
When new forwarding entries are computed by the controller, the data plane

has to be updated. However, updating the targets has to be performed in a
manner that prevents negative side effects. For example, microloops may occur
if packets are forwarded according to new rules at some targets while at other
devices old rules are used because updates have to arrive yet.

Sukapuram et al. [183, 184] introduce a timestamp in the packet header that
contains the sending time of a packet. When switches receive a packet during an
update period, they compare the timestamp of both the packet and the update
to determine whether a packet has been sent before the update, and thus, old
rules should be used for forwarding.

Liu et al. [185] introduce a mechanism where once a packet is matched
against a specific forwarding rule, it cannot be matched downstream on a rule
that is older. To that end, the packet header contains a timestamp field that
records when the last applied forwarding rule has been updated. If the packet is
matched against an older rule, the packet is dropped, otherwise the timestamp
is updated and the packet is forwarded.

Ez-Segway [186] facilitates updating by including data plane devices in the
update process. When a data plane device receives an update, it determines
which of its neighbors is affected by the update as well, and forwards the update
to that neighbor. This prevents loops and black holes.

TableVisor [187] is a transparent proxy-layer between the control plane and
data plane. It provides an abstraction from heterogeneous data plane devices.
This facilitates the configuration of data plane switches with different properties,
e.g., forwarding table size.

Molero et al. [188] propose to offload tasks from the control plane to the
data plane. They show that programmable data planes are able to run typical
control plane operations like failure detection and notification, and connectivity
retrieval. They discuss trade-offs, limitations and future research opportunities.

8. Applied Research Domains: Classification & Overview

In the following sections, we give an overview of applied research conducted
with P4. In this section, we classify P4’s core features that make it attractive
for the implementation of data plane algorithms. We define research domains,
visualize them in a compact way, and explain our method to review correspond-
ing research papers in the subsequent sections. Finally, we delimit the scope of
the surveyed literature.

8.1. Classification of P4’s Core Features
We identify P4’s core features for the implementation of prototypes. We

classify them in the following to effectively reason about P4’s usefulness for the
surveyed research works.

47

Journal Pre-proof

Active Que

ms

TSN)
on (NFV)

FC)

(IDS)

I
DSL-

t

Jo
ur

na
l P

re
-p

ro
of

Applied
Research
Domains

Routing and
Forwarding
Section XI

Source Routing
Multicast

Publish/Subscribe Systems
Named Data Networks
Data Plane Resilience

Traffic Management and
Congestion Control

Section X

Data Center Switching

ue Management (AQM)

Traffic Scheduling

Load Balancing
Congestion Notification

Traffic Offloading

Traffic Aggregation

Miscellaneous Applied
Research Domains

Section XIV

Network Coding
Distributed Algorith
State Migration

Monitoring
Section IX

Network
Security

Section XIII

Advanced
Networking
Section XII

Cellular Networks (4G/5G)
Internet of Things (IoT)
Industrial Networking
Time-Sensitive Networking (
Network Function Virtualizati

Service Function Chaining (S

Firewalls

DDoS Attack Mitigation
Intrusion Detection Systems

Detection of Heavy Hitters
Flow Monitoring

Sketches
n-Band Network Telemetry
based Monitoring Systems

Other Fields of Application
Path Tracking

Port Knocking

Connection Security
Other Fields of Applications

Application Suppor

Other Fields of Applications

Figure 25: Categorization of the surveyed works into applied research domains and subdomains
– they correspond to sections and subsections in the remainder of this paper.

8.1.1. Definition and Usage of Custom Packet Headers
P4 requires the definition of packet headers (Section 3.5). These may be

headers of standard protocols, e.g., TCP, use-case-specific protocols, e.g., GTP
in 5G, or new protocols. As P4 supports the definition of custom headers, it is
suitable for the implementation of data plane algorithms using new protocols
or extensions of existing protocols, e.g., for in-band signalling.

8.1.2. Flexible Packet Header Processing
Control blocks with MATs (Section 3.6) comprise the packet processing logic.

Packet processing includes default actions, e.g., forwarding and header field
modifications, or custom, user-defined actions. Both may be parameterized
via MATs or metadata. Entries in the MATs are maintained by a data plane
API (Section 6). The flexible use of actions, the definition of new actions, and
their parameterization offer high flexibility for header processing, which is often
needed for research prototypes.

8.1.3. Target-Specific Packet Header Processing Functions
While the above-mentioned features are part of the P4 core language and

supported by any P4-capable platform, devices may offer additional architecture-
or target-specific functionality which is made available as P4 extern (Section 4).
Typical externs include components for stateful processing, e.g., registers or

48

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

counters, operations to resubmit/recirculate the packet in the data plane, mul-
ticast operations, or more complex operations, e.g., hashing and encryption/de-
cryption. P4 software targets allow users to integrate custom externs and use
them within P4 programs. While this is also possible to some extent on some
P4 hardware targets, e.g., the NetFPGA SUME board, high-throughput P4 tar-
gets based on the Tofino ASIC have only a fixed set of externs (Section 5.3).
Depending on the use case, the availability of externs may be essential for the
implementation of prototypes. Thus, externs facilitate the implementation of
more complex algorithms but make implementations platform-dependent.

8.1.4. Packet Processing on the Control Plane
Similar to control plane SDN (e.g., OF), more complex, and optionally cen-

tralized packet processing can be outsourced to an SDN control plane; packet
exchange and data plane control is performed via a data plane API (Section 6).
While OF only allows the exchange of complete packets, P4 enables the end-
users to define the packet formats.

8.1.5. Flexible Development and Deployment
Users are able to easily change the P4 programs on P4 targets that are

installed in a network. This facilitates agile development with frequent deploy-
ments and incremental functionality extensions by deploying new versions of a
P4 programs.

8.2. Categorization of Research Domains
To organize the survey in the following sections, we define research domains

and structure them in a two-level hierarchy as depicted in Figure 25. This
categorization helps the reader to get a quick overview in certain applied areas
and improves the readability of this survey. The choice of the research domains
is dominated by the fields of applications, but the summaries of the sections will
show that the prototypes in these areas benefit from different core features of
P4.

For each research domain, we provide a table that lists the publications with
publication year, P4 target platforms, and source code availability. This sup-
ports efficient browsing of the content and backs our conclusions in the section-
specific summaries.

8.3. Scope of the Surveyed Literature
We consider the literature until the end of 2020 and selected papers from

2021, including journal papers, conference papers, workshop papers, and preprints.
Out of the 377 scientific publications we surveyed in this work (see Section 1),
245 fall in the area of applied research. 68 of those research papers were pub-
lished in 2018 or before, 80 were published in 2019, 93 were published in 2020,
and 4 were published in 2021. 60 out of all 245 research publications released
the source code of their prototype implementations.

49

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Table 5 depicts a statistic on major publication venues for the papers of
applied research domains. It helps the reader to identify potential venues for
prospective own publications based on P4 technology.

9. Applied Research Domains: Monitoring

We describe applied research on detection of heavy hitters, flow monitoring,
sketches, in-band network telemetry, and other areas of application. Table 6
shows an overview of all the work described. At the end of the section, we
summarize the work and analyze it with regard to P4’s core features described
in Section 8.1.

9.1. Detection of Heavy Hitters
Heavy hitters [269] (or "elephant flows") are large traffic flows that are the

major source of network congestion. Detection mechanisms aim at identifying
heavy hitters to perform extra processing, e.g., queuing, flow rate control, and
traffic engineering.

HashPipe [189] integrates a heavy hitter detection algorithm entirely on the
P4 data plane. A pipeline of hash tables acts as a counter for detected flows.
To fulfill memory constraints, the number of flows that can be stored is limited.
When a new flow is detected, it replaces the flow with the lowest count. Thus,
light flows are replaced, and heavy flows can be detected by a high count. Lin
et al. [191] describe an enhanced version of the algorithm.

Popescu et al. [192] introduce a heavy hitter detection mechanism. The
controller installs TCAM entries for specific source IP prefixes on the switch. If
one of these entries matches more often than a threshold during a given time
frame, the entry is split into two entries with a larger prefix size. This procedure
is repeated until the configured granularity is reached.

Harrison et al. [193] presents a controller-based and distributed detection
scheme for heavy hitters. The authors make use of counters for the match key
values, e.g., source and destination IP pair or 5-tuple, that are maintained by
P4 switches. If a counter exceeds a certain threshold, the P4 switch sends a
notification to the controller. The controller generates more accurate status
reports by combining the notifications received from the switches.

Kucera et al. [194] describe a system for detecting traffic aggregates. The
authors propose a novel algorithm that supports hierarchical heavy hitter detec-
tion, change detection, and super-spreader detection. The complete mechanism
is implemented on the P4 data plane and uses push notifications to a controller.

IDEAFIX [195] is a system that detects elephant flows at edge switches of
Internet exchange point networks. The proposed system analyzes flow features,
stores them with hash keys as indices in P4 registers, and compares them to
thresholds for classification.

Turkovic et al. [196] propose a streaming approach for detecting heavy hit-
ters via sliding windows that are implemented in P4. According to the authors,
interval methods that are typically used to detect heavy hitters are not suitable

50

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 5: Statistics of scientific publications regarding applied research conducted with P4.

Venue #Publications

Journals 41

IEEE ACCESS 9
IEEE/ACM ToN 7
IEEE TNSM 6
JNCA 4
Miscellaneous 15

Conferences 168

ACM SOSR 14
IEEE NFV-SDN 12
IEEE ICNP 12
IEEE ICC 10
ACM SIGCOMM 10
IEEE/IFIP NOMS 8
ACM CoNEXT 7
IEEE NetSoft 7
USENIX NSDI 6
IEEE INFOCOM 6
ACM/IEEE ANCS 5
IFIP Networking 5
IEEE GLOBECOM 4
CNSM 4
IEEE CloudNet 3
APNOMS 3
IFIP/IEEE IM 3
Miscellaneous 49

Workshops 36

EuroP4 11
Morning Workshop on In-Network Computing 5
SPIN 3
ACM HotNets 3
INFOCOM Workshops 3
Miscellaneous 11

51

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 6: Overview of applied research on monitoring (Section 9).

Research work Year Targets Code

Detection of Heavy Hitters (Section 9.1)

HashPipe [189] 2017 bmv2 [190]
Lin et al. [191] 2019 Tofino
Popescu et al. [192] 2017 -
Harrison et al. [193] 2018 Tofino
Kucera et al. [194] 2020 bmv2
IDEAFIX [195] 2018 -
Turkovic et al. [196] 2019 Netronome
Ding et al. [197] 2020 bmv2 [198]

Flow Monitoring (Section 9.2)

TurboFlow [199] 2018 Tofino, Netronome [200]
∗Flow [201] 2018 Tofino [202]
Hill et al. [203] 2018 bmv2
FlowStalker [204] 2019 bmv2
ShadowFS [205] 2020 bmv2
FlowLens [206] 2021 bmv2, Tofino [207]
SpiderMon [208] 2020 bmv2
ConQuest [209] 2019 Tofino
Zhao et al. [210] 2019 bmv2, Tofino

Sketches (Section 9.3)

SketchLearn [211] 2018 Tofino [212]
MV-Sketch [213] 2020 bmv2, Tofino [214]
Hang et al. [215] 2019 Tofino
UnivMon [216] 2016 p4c-behavioural
Yang et al. [217, 218] 2018/19 Tofino [219]
Pereira et al. [220] 2017 bmv2
Martins et al. [221] 2018 bmv2
Lai et al. [222] 2019 Tofino
Liu et al. [223] 2020 Tofino
SpreadSketch [224] 2020 Tofino [225]

52

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofResearch work Year Targets Code

In-Band Network Telemetry (Section 9.4)

Vestin et al. [226] 2019 Netronome
Wang et al. [227] 2019 Tofino
IntOpt [228] 2019 P4FPGA
Jia et al. [229] 2020 bmv2 [230]
Niu et al. [231] 2019 Tofino, Netronome
CAPEST [232] 2020 bmv2 [233]
Choi et al. [234] 2019 bmv2
Sgambelluri et al. [235] 2020 bmv2
Feng et al. [236] 2020 Netronome
IntSight [237] 2020 bmv2, NetFPGA-SUME [238]
Suh et al. [239] 2020 -

DSL-Based Monitoring Systems (Section 9.5)

Marple [240, 241] 2017 bmv2 [242]
MAFIA [243] 2019 bmv2 [244]
Sonata [245] 2018 bmv2, Tofino [246]
Teixeira et al. [247] 2020 bmv2, Tofino

Path Tracking (Section 9.6)

UniRope [248] 2018 bmv2, PISCES
Knossen et al. [249] 2019 Netronome
Basuki et al. [250] 2020 bmv2

Other Areas of Application (Section 9.7)

BurstRadar [251] 2018 Tofino [252]
Dapper [253] 2017 -
He et al. [254] 2018 Tofino
Riesenberg et al. [255] 2019 bmv2 [256]
Wang et al. [257] 2020 Tofino
P4STA [258] 2020 bmv2, Netronome [259]
Hark et al. [260] 2019 -
P4Entropy [261] 2020 bmv2 [262]
Taffet et al. [263] 2019 bmv2
NetView [264] 2020 bmv2, Tofino
FastFE [265] 2020 Tofino
Unroller [266] 2020 bmv2, Netcope P4-to-VHDL
Hang et al. [267] 2019 Tofino
FlowSpy [268] 2019 bmv2

53

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

for programmable data planes because of high hardware resources, bad accuracy,
or a need for too much intervention by the control plane.

Ding et al. [197] propose an architecture for network-wide heavy hitter
detection. The authors’ main focuses are hybrid SDN/non-SDN networks where
programmable devices are deployed only partially. To that end, they also present
an algorithm for an incremental deployment of programmable devices with the
goal of maximizing the number of network flows that can be monitored.

9.2. Flow Monitoring
In flow monitoring, traffic is analyzed on a per-flow level. Network devices

are configured to export per-flow information, e.g., packet counters, source and
target IP addresses, ports, or protocol types, as flow records to a flow collector.
These flow records are often duplicates of network packets without payload data.
The flow collector then performs centralized analysis on this data. The three
most widely deployed protocols are Netflow [270], sFlow [271], and IPFIX [272].

TurboFlow [199] is a flow record generator designed for P4 switches that
does not have to make use of sampling or mirroring. The data plane generates
micro-flow records with information about the most recent packets of a flow.
On the CPU module of the switch, those micro-flow records are aggregated and
processed into full flow records.

“∗Flow” [201] partitions measurement queries between the data plane and a
software component. A switching ASIC computes grouped packet vectors that
contain a flow identifier and a variable set of packet features, e.g. packet size
and timestamps, while the software component performs aggregation. “∗Flow”
supports dynamic and concurrent measurement applications, i.e., measurement
applications that operate on the same flows without impacting each other.

Hill et al. [203] implement Bloom filters on P4 switches to prevent sending
duplicate flow samples. Bloom filters are a probabilistic data structure that can
be used to check whether an entry is present in a set or not. It is possible to
add elements to that set, but it is not possible to remove entries from it. For
flow tracking, Bloom filters test if a flow has been seen before without control
plane interaction. Thereby, only flow data is forwarded to the collector from
flows that were not seen before.

FlowStalker [204] is a flow monitoring system running on the P4 data plane.
The monitoring operations on a packet are divided in two phases, a proactive
phase that identifies a flow and keeps a per-flow packet counter and a reactive
phase that runs for large flows only and gathers metrics of the flow, e.g., byte
counts and packet sizes. The controller gathers information from a cluster of
switches by injecting a crawler packet that travels through the cluster at one
switch. ShadowFS [205] extends FlowStalker with a mechanism to increase the
throughput of the monitored flows. It achieves this by dividing forwarding tables
into two tables, a faster and a slower one. The most utilized flows are moved to
the faster table if necessary.

FlowLens [206] is a system for traffic classification to support security net-
work applications based on machine learning algorithms. The authors propose

54

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

a novel memory-efficient representation for features of flows called flow marker.
A profiler running in the control plane automatically generates an application-
specific flow marker that optimizes the trade-off between resource consumption
and classification accuracy, according to a given criterion selected by the oper-
ator.

SpiderMon [208] monitors network performance and debugs performance fail-
ures inside the network with little overhead. To that end, SpiderMon monitors
every flow in the data plane and recognizes if the accumulated latency exceeds
a certain threshold. Furthermore, SpiderMon is able to trace back the path of
interfering flows, allowing to analyze the cause of the performance degradation.

ConQuest [209] is a data plane mechanism to identify flows that occupy
large portions of buffers. Switches maintain snapshots of queues in registers to
determine the contribution to queue occupancy of the flow of a received packet.

Zhao et al. [210] implement flow monitoring using hash tables. Using a
novel strategy for collision resolution and record promotion, accurate records
for elephant flows and summarized records for other flows are stored.

9.3. Sketches
Flow monitoring as described in Section 9.2 requires high sampling rates to

produce sufficiently detailed data. As an alternative, streaming algorithms pro-
cess sequential data streams and are subject to different constraints like limited
memory or processing time per item. They approximate the current network
status based on concluded summaries of the data stream. The streaming al-
gorithms output so-called sketches that contain summarized information about
selected properties of the last n packets of a flow.

SketchLearn [211] is a sketch-based approach to track the frequency of flow
records. It features multilevel sketches that aim for small memory usage, fast
per-packet processing, and real-time response. Rather than finding the perfect
resource configuration for measurement traffic and regular traffic, SketchLearn
characterizes the statistical error of resource conflicts based on Gaussian distri-
butions. The learned properties are then used to increase the accuracy of the
approximated measurements.

Tang et al. [213] present MV-Sketch, a fast and compact invertible sketch.
MV-Sketch leverages the idea of majority voting to decide whether a flow is a
heavy hitter or heavy changer. Evaluations show that MV-Sketch achieves a
3.38 times higher throughput than existing invertible sketches.

Hang et al. [215] try to solve the problem of inconsistency when a controller
needs to collect the data from sketches on one or more switches. As accessing
and clearing the sketches on the switches is always subject to latency, not all
sketches are reset at the same time, and there might be some delay between
accessing and clearing the sketches. The authors propose to use two asymmetric
sketches on the switches that are used in an interleaved way. Furthermore, the
authors propose to use a distributed control plane to keep latency low.

UnivMon [216] is a flow monitoring system based on sketches. After sampling
the traffic, the data plane produces sketches and determines the top-k heaviest

55

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

flows by comparing the number of sketches for each flow. Those flows are passed
to the control plane which processes the data for the specific application.

Yang et al. [217, 218] propose to adapt sketches according to certain traffic
characteristics to increase data accuracy, e.g., during congestion or distributed
denial of service (DDoS) attacks. The mechanism is based on compressing and
merging sketches when resources in the network are limited due to high traffic
volume. During periods with high packet rates, only the information of elephant
flows is recorded to trade accuracy for higher processing speed.

Pereira et al. [220] propose a secured version of the Count-Min sketch. They
replace the function with a cryptographic hash function and provide a way for
secret key renewal.

Martins et al. [221] introduce sketches for multi-tenant environments. The
authors implement bitmap and counter-array sketches using a new probabilistic
data structure called BitMatrix that consists of multiple bitmaps that are stored
in a single P4 register.

Lai et al. [222] use a sketch-based approach to estimate the entropy of
network traffic. The authors use CRC32 hashes of header fields as match keys
for match-action tables and subsequently update k-dimensional data sketches
in registers. The content of the registers is then processed by the control plane
CPU which calculates the entropy value.

Liu et al. [223] use sketches for performance monitoring. They introduce
lean algorithms to measure metrics like loss or out-of-order packets.

SpreadSketch [224] is a sketch data structure to detect superspreaders. The
sketch data structure is invertible, i.e., it is possible to extract the identification
of superspreaders from the sketch at the end of an epoch.

9.4. In-Band Network Telemetry
Barefoot Networks, Arista, Dell, Intel and VMware specified in-band net-

work telemetry (INT) specifically for P4 [273]. It uses a pure data plane imple-
mentation to collect telemetry data from the network without any intervention
by the control plane. It was specified by INT is the main focus of the Applica-
tions WG [274] of the P4 Language Consortium. Instructions for INT-enabled
devices that serve as traffic sources are embedded as header fields either into
normal packets or into dedicated probe packets. Traffic sinks retrieve the results
of instructions to traffic sources. In this way, traffic sinks have access to infor-
mation about the data plane state of the INT-enabled devices that forwarded
the packets containing the instructions for traffic sources. The authors of the
INT specification name network troubleshooting, advanced congestion control,
advanced routing, and network data plane verification as examples for high-level
use cases.

In two demos, INT was used for diagnosing the cause of latency spikes during
HTTP transfers [275] and for enforcing QoS policies on a per-packet basis across
a metro network [276].

Vestin et al. [226] enhance INT traffic sinks by event detection. Instead of
exporting telemetry items of all packets to a stream processor, exporting has to

56

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

be triggered by an event. Furthermore, they implement an INT report collector
for Linux that can stream telemetry data to a Kafka cluster.

Wang et al. [227] design an INT system that can track which rules in MATs
matched on a packet. The resulting data is stored in a database to facilitate
visualization in a web UI.

IntOpt [228] uses INT to monitor service function chains. The system com-
putes minimal monitoring flows that cover all desired telemetry demands, i.e.,
the number of INT-sources, sinks, and forwarding nodes that are covered by
this flow is minimal. IntOpt uses active probing, i.e., monitoring probes for the
monitoring flows are periodically inserted into the network.

Jia et al. [229] use INT to detect gray failures in data center networks
using probe packets. Gray failures are failures that happen silently and without
notification.

Niu et al. [231] design a multilevel INT system for IP-over-optical networks.
Their goal is to monitor both the IP network and the optical network at the
same time. To that end, they implement optical performance monitors for
bandwidth-variable wavelength selective switches. Their measurements can be
queried by a P4 switch that is connected directly to it.

CAPEST [232] leverages P4-enabled switches to estimate the network ca-
pacity and available bandwidth of network links. The approach is passive, i.e.,
it does not disturb the network. A controller sends INT probe packets to trigger
statistical analysis and export results.

Choi et al. [234] leverage INT for run-time performance monitoring, veri-
fication, and healing of end-to-end services. P4-capable switches monitor the
network based on INT information and the distributed control plane verifies
that SLAs and other metrics are fulfilled. They leverage metric dynamic logic
(MDL) to specify formal assertions for SLAs.

Sgambelluri et at. [235] propose a multi-layer monitoring system that uses
an OpenConfig NETCONF agent for the optical layer an P4-based INT for the
packet layer. In their prototype, they use INT to measure the delay of packets
by computing the processing time at each switch.

Feng et al. [236] implement an INT sink for Netronome Smart NICs. After
parsing the INT headers using P4, they use algorithms written in C to perform
INT tasks like aggregation and notification. Compared to a pure P4 implemen-
tation, this increases the performance.

IntSight [237] is a system for detecting and analyzing violations of service-
level objects (SLOs). SLOs are performance guarantees towards a network, e.g.,
concerning bandwidth and latency. IntSight uses INT to monitor the perfor-
mance of the network during a specific period of time. Egress devices gather
this information and produce a report at the end of the period if an SLO has
been violated.

Suh et al. [239] explore how a sampling mechanism can be added to INT.
Their solution supports rate-based and event-based sampling. Based on these
sampling strategies, INT headers are only added to a fraction of the packets to
reduce overhead.

57

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

9.5. DSL-Based Monitoring Systems
Monitoring tasks can often be broken down in a set of several basic opera-

tions, e.g., map, filter, or groupby. A domain-specific language (DSL) allows to
combine these basic operations in more complex tasks.

Marple [240, 241] is a performance query language that supports existing
constructs like map, filter, groupby, and zip. A query compiler translates the
queries either to P4 or to a simulator for programmable switch hardware. State-
less constructs of the query language, e.g., filters, are executed on the data plane.
Stateful constructs, e.g., groupby, use a programmable key-value store that is
split between a fast on-chip SRAM cache and a large off-chip DRAM backing
store. The results are streamed from the switch to a collection server.

MAFIA [243] is a DSL to describe network measurement tasks. They identify
several fundamental primitive operations, examples are match, tag, timestamp,
sketch, or counter. MAFIA is a high-level language to describe more com-
plex measurement tasks composed of those primitives. The authors provide a
Python-based compiler that translates MAFIA code into a P4 program in P414
or P416 for a PISA-based P4 target.

Sonata [245] is a query-driven telemetry system. It provides a query interface
that provides common operators like map and reduce that can be applied on
arbitrary packet fields. Sonata combines the capabilities of both programmable
switches and stream processors. The queries are partitioned between the pro-
grammable switches and the stream processors to reduce the load on the stream
processors. Teixeira et al. [247] extend the Sonata prototype by functionalities
to monitor the properties of packet processing inside switches, e.g., delay.

9.6. Path Tracking
In path tracking, or packet trajectory tracing, information about the path a

packet has taken in a network is gathered.
UniRope [248] consists of two different algorithms for packet trajectory trac-

ing that can be selected dynamically to be able to choose the trade-off between
accuracy and efficiency. These two algorithms are compact hash matching and
consecutive bits filling. With compact hash matching, the forwarding switch
calculates a hash value and stores it in the packet. With consecutive bits filling,
the packet trajectory is recorded in the packet hop by hop and reconstructed at
the controller.

Knossen et al. [249] present two different approaches for path tracking in P4.
In hop recording, all forwarding P4 nodes record their ID in the header of the
target packet. The last node can then reconstruct the path. In forwarding state
logging, the first P4 node records the current version of the global forwarding
state of the network and its node identifier in a header of the target packet. If
the version of the global forwarding state does not change while the packet flows
through the network, the last P4 node in the network can reconstruct the path
using the information in the header.

Basuki et al. [250] propose a privacy-aware path-tracking mechanism. Their
goal is that the trajectory information in the packets cannot be used to draw

58

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

conclusions about the network topology or routing information. They achieve
this by recording the information in an in-packet bloom filter.

9.7. Other Fields of Application
BurstRadar [251] is a system for microburst detection for data center net-

works that runs directly on P4 switches. If queue-induced delay is above a
certain threshold, BurstRadar reports a microburst and creates a snapshot of
the telemetry information of involved packets. This telemetry information is
then forwarded to a monitoring server. As it is not possible to gather telemetry
information of packets that are already part of the egress queue, the telemetry
information of all packets and their corresponding egress port are temporarily
stored in a ring buffer that is implemented using P4 registers.

Dapper [253] is a P4 tool to evaluate TCP. It implements TCP in P4 and
analyzes header fields, packets sizes, and timestamps of data and ACK packets
to detect congestion. Then, flow-dependent information are stored in registers.

He et al. [254] propose an adaptive expiration timeout mechanism for flow
entries in P4 switches. The switches implement a mechanism to detect the last
packet of a TCP flow. In case of a match, it notifies the controller to delete the
corresponding flow entries.

Riesenberg et al. [255] implement alternate marking performance measure-
ment (AM-PM) for P4. AM-PM measures delay and packet loss in-band in a
network using only one or two bit overhead per packet. These bits are used for
coordination and signalling between measurement points (MPs).

Wang et al. [257] describe how TCP-friendly meters can be designed and
implemented for P4-based switches. According to their findings, meters in com-
mercial switches interact with TCP streams in such a way that these streams
can only reach about 10% of the target rate. The experimental evaluation of
their TCP-friendly meters shows achieved rates of up to 85% of the target rate.

P4STA [258] is an open-source framework that combines software-based traf-
fic load generation with accurate hardware packet timestamps. Thereby, P4STA
aggregates multiple traffic flows to generate high traffic load and leverage pro-
grammable platforms.

Hark et al. [260] use P4 to filter data plane measurements. To save re-
sources, only relevant measurements are sent to the controller. The authors
implement a prototype and demonstrate the system by filtering measurements
for a bandwidth forecast application.

P4Entropy [261] presents an algorithm to estimate the entropy of network
traffic within the P4 data plane. To that end, they also developed two new
algorithms, P4Log and P4Exp, to estimate logarithms and exponential functions
within the data plane as well.

Taffet et al. [263] describe a P4-based implementation of an in-band moni-
toring system that collects information about the path of a packet and whether
it encountered congestion. For this purpose, the authors repurpose previously
unused fields of the IP header.

NetView [264] is a network telemetry framework that uses proactive probe
packets to monitor devices. Telemetry targets, frequency, and characteristics

59

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

can be configured on demand by administrators. The probe packets traverse
arbitrary paths by using source routing.

FastFE [265] is a system for offloading feature extraction, i.e., deriving cer-
tain information from network traffic, for machine learning (ML)-based traffic
analysis applications. Policies for feature extraction are defined as sequential
programs. A policy enforcement engine translates these policies into primitives
for either a programmable switch or a program running on a commodity server.

Unroller [266] detects routing loops in the data plane in real-time. It achieves
this by encoding a subset of the path that a packet takes into the packet.

Hang et al. [267] use a time-based sliding window approach to measure
packet rates. The goal is to record statistics entirely inside the data plane
without having to use the CPU of a switch. Their approach is able to measure
traffic size without sampling.

FlowSpy [268] is a network monitoring framework that uses load balancing.
Different monitoring tasks are distributed among all available switches by an ILP
solver. This reduces the workload on single switches in contrast to monitoring
frameworks that perform all monitoring tasks on ingress or egress switches only.

9.8. Summary and Analysis
This research domain greatly benefits from all five core features described in

Section 8.1. Definition and usage of custom packet headers enables new monitor-
ing schemes where relevant information can be added to packets while it travels
through a P4-enabled network. One example is In-band Network Telemetry
(INT) (Section 9.4) that has been specified specifically for P4. Another ex-
ample are path tracking mechanisms (Section 9.6) where the path of a packet
is recorded in a dedicated header of the packet. In the case of INT, this goes
hand in hand with flexible packet header processing as INT headers may contain
instructions that other INT-enabled switches need to execute. Target-specific
packet header processing functions in the form of stateful packet processing us-
ing, e.g., registers, is used by all areas of monitoring as it is necessary to gather
data over a certain time frame instead of just looking at a single packet. Because
the register space is severely limited on most hardware targets, an efficient usage
of the available resources is of great importance. Sketches (Section 9.3) is one
approach to solve this. After monitoring data is gathered on the control plane,
the result is often processed on the control plane. This can range from simple
notifications to splitting operations between data plane and control plane where
the resources on the data plane are not sufficient. Some DSL-based monitor-
ing approaches (Section 9.5) make use of flexible development and deployment.
With these approaches, a P4 program is generated automatically on the basis
of a monitoring workflow defined by an administrator.

10. Applied Research Domains: Traffic Management and Congestion
Control

We describe applied research on data center switching, load balancing, con-
gestion notification, traffic scheduling, traffic aggregation, active queue manage-

60

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

ment (AQM), and traffic offloading. Table 7 shows an overview of all the work
described. At the end of the section, we summarize the work and analyze it
with regard to P4’s core features described in Section 8.1.

10.1. Data Center Switching
Trellis [277, 278] is an open-source multipurpose L2/L3 spine-leaf switch

fabric for data center networks. It is designed to run on white box switches
in conjunction with the ONOS controller where its main functionality is im-
plemented. It supports typical data center functionality such as bridging using
VLANs, routing (IPv4/IPv6 unicast/multicast routing, MPLS segment rout-
ing), and vRouter functionality (BGBv4/v6, static routes, route black-holing).
Trellis is part of the CORD platform that leverages SDN, network function vir-
tualization (NFV), and Cloud technologies for building agile data centers for
the network edge.

DC.p4 [280] implements typical features of data center switches in P4. The
list of features includes support for VLAN, NVGRE, VXLAN, ECMP, IP for-
warding, access control lists (ACLs), packet mirroring, MAC learning, and
packet-in/-out messages to the control plane.

Fabric.p4 is [282, 278] the underlying reference data plane pipeline imple-
mented in P4. By introducing support for P4 switches, the authors aim at in-
creasing the platform heterogeneity for the CORD fabric. Fabric.p4 is currently
based on the V1Model switch architecture, but support for PSA is planned. It
is inspired by the OpenFlow data plane abstraction (OF-DPA) and currently
supports L2 bridging, IPv4/IPv6 unicast/multicast routing, and MPLS segment
routing. Fabric.p4 comes with capability profiles such as fabric (basic profile),
spgw (S/PGW), and INT. For control plane interaction, ONOS is extended by
the P4Runtime.

RARE [284] (Router for Academia, Research & Education) is developed in
the GÉANT project GN4-3 and implements a P4 data plane for the FreeRouter
open-source control plane. Its feature list includes routing, bridging, ACLs,
VLAN, VXLAN, MPLS, GRE, MLDP, and BIER among others.

10.2. Load Balancing
SHELL [286] implements stateless application-aware load balancing in P4. A

load balancer forwards new connections to a set of randomly chosen application
instances by adding a segment routing (SR) header. Each application instance
makes a local decision to either decline or accept the connection attempt. After
connection initiation, the client includes a previously negotiated identifier in
all subsequent packets. In the prototypical implementation, the authors use
TCP time stamps for communicating the identifier, alternatives are identifiers
of QUIC or TCP sequence numbers.

SilkRoad [287] implements stateful load balancing on P4 switches. SilkRoad
implements two tables for stateful processing. One table maps virtual IP ad-
dresses of services to server instances, another table records active connections
identified by hashes of 5-tuples to forward subsequent flows. It applies a Bloom

61

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Table 7: Overview of applied research on traffic management and congestion control (Sec-
tion 10).

Research work Year Targets Code

Data Center Switching (Section 10.1)

Trellis [277, 278] 2019 bmv2 [279]
DC.p4 [280] 2015 bmv2 [281]
Fabric.p4 [282] 2018 bmv2 [283]
RARE [284] 2019 bmv2, Tofino [285]

Load Balancing (Section 10.2)

SHELL [286] 2018 NetFPGA-SUME
SilkRoad [287] 2017 Tofino
HULA [288] 2016 -
MP-HULA [289] 2018 -
Chiang et al. [290] 2019 bmv2
W-ECMP [291] 2018 bmv2
DASH [292] 2020 bmv2
Pizzutti et al. [293, 294] 2018/20 bmv2
LBAS [295] 2020 Tofino
DPRO [296] 2020 bmv2
Kawaguchi et al. [297] 2019 bmv2
AppSwitch [298] 2017 PISCES
Beamer [299] 2018 bmv2, NetFPGA-SUME [300]

Congestion Notification (Section 10.3)

P4QCN [301] 2019 bmv2
Jiang et al. [302] 2019 -
EECN [303] 2020 bmv2
Chen et al. [304] 2020 bmv2
Laraba et al. [305] 2020 bmv2

Traffic Scheduling (Section 10.4)

Sharma et al. [306] 2018 bmv2
Cascone et al. [307] 2017 -
Bhat et al. [308] 2019 bmv2
Kfoury et al. [309] 2019 bmv2
Chen et al. [310] 2019 Tofino
Lee et al. [311] 2019 bmv2

Traffic Aggregation (Section 10.5)

Wang et al. [312] 2020 Tofino
RL-SP-DRR [313] 2019 bmv2

62

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Research work Year Targets Code

Active Queue Management (AQM) (Section 10.6)

Turkovic et al. [314] 2018 bmv2, Netronome
P4-Codel [315] 2018 bmv2 [316]
P4-ABC [317] 2019 bmv2
P4air [318] 2020 bmv2, Tofino
Fernandes et al. [319] 2020 bmv2
Wang et al. [320] 2018 bmv2, Tofino
SP-PIFO [321] 2020 Tofino
Kunze et al. [322] 2021 Tofino [323]
Harkous et al. [324] 2021 bmv2, Netronome

Traffic Offloading (Section 10.7)

Andrus et al. [325] 2019 -
Ibanez et al. [326] 2019 NetFPGA-SUME
Kfoury et al. [327] 2020 Tofino
Falcon [328] 2020 Tofino
Osiński et al. [329] 2020 Tofino

filter to identify new connection attempts and to record those requests in reg-
isters to remember client requests that arrive while the pool of server instances
changes. In [330], the accompanying demo is described.

HULA [288] implements a link load-based distance vector routing mecha-
nism. Switches in HULA do not maintain the state for every path but the next
hops. They send out probes to gather link utilization information. Probe pack-
ets are distributed throughout the network on node-specific multicast trees. The
probes have a header that contains a destination field and the currently best
path utilization to that destination. When a node receives a probe, it updates
the best path utilization if necessary, sends one packet clone upstream back to
the origin, and forwards copies along the multicast tree further downstream.
This way the origin will receive multiple probe packets with different path uti-
lization to a specific destination. Then, flowlets are forwarded onto the best
currently available path to its destination.

MP-HULA [289] extends HULA by using load information for n best next
hops and compatibility with multipath TCP (MP-TCP). It tracks subflows of
MP-TCP with individual flowlets per sub-flow. MP-HULA aims at distributing
those subflows on different paths to aggregate bandwidth. To that end, it is
necessary to keep track of the best n next-hops which is done with additional
registers and forwarding rules.

Chiang et al. [290] propose a cost-effective congestion-aware load balancing
scheme (CCLB). In contrast to HULA, CCLB replaces only the leaf switches
with programmable switches, and thus is more cost-effective. They leverage Ex-
plicit Congestion Notification (ECN) information in probe packets to recognize

63

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

congestion in the network and to adapt the load balancing. CCLB further uses
flowlet forwarding and is implemented for the bmv2.

W-ECMP [291] is an ECMP-based load balancing mechanism for data cen-
ters implemented for P4 switches. Weighted probabilities based on path utiliza-
tion, are used to randomly choose the best path to avoid congestion. A local
agent on each switch computes link utilization for the ports. Regular traffic
carries an additional custom packet header that keeps track of the current max-
imum link utilization on a path. Based on the maximum link utilization, the
switches update port weights if necessary.

DASH [292] is an adaptive weighted traffic splitting mechanism that works
entirely in the data plane. In contrast to popular weighted traffic splitting
strategies such as WCMP, DASH does not require multiple hash table entries.
DASH splits traffic based on link weights by portioning the hash space into
unique regions.

Pizzutti et al. [293, 294] implement congestion-aware load balancing for
flowlets on P4 switches. Flowlets are bursts of packets that are separated by a
time gap, e.g., as caused by factors such as TCP dynamics, buffer availability,
or link congestion. For distributing subflows on different paths, the congestion
state of the last route is stored in a register.

LBAS [295] implements a load balancer to minimize the processing latency
at both load balancers and application servers. LBAS does not only reduce the
processing latency at load balancers but also takes the application servers’ state
into account. It is implemented for the Tofino and its average response time is
evaluated.

DPRO [296] combines INT with traffic engineering (TE) and reinforcement
learning (RL). Network statistics, such as link utilization and switch load, are
gathered using an adapted INT approach. An RL-agent inside the controller
adapts the link weights based on the minimization of a max-link-utilization
objective.

Kawaguchi et al. [297] implement Unsplittable flow Edge Load factor Bal-
ancing (UELB). A controller application monitors the link utilization and com-
putes new optimal paths upon congestion. The path computation is based on
the UELB problem. The forwarding is implemented in P4 for the bmv2.

AppSwitch [298] implements a load balancer for key-value storage systems.
However, the focus lies on a local agent and the control plane communication
with the storage server.

Beamer [299] operates in data centers and prevents interruption of connec-
tions when they are load-balanced to a different server. To that end, the Beamer
controller instructs the new target server to forward packets of the load-balanced
connection to the old target server until the migration phase is over.

10.3. Congestion Notification
P4QCN [301] proposes a congestion feedback mechanism where network

nodes check the egress ports for congestion before forwarding packets. If a
node detects congestion, it calculates a feedback value that is propagated up-
stream. The mechanism clones the packet that caused the congestion, updates

64

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

the feedback value in the header, changes the origin of the flow, and forwards
it as a feedback packet to the sender. The sender adjusts its sending rate to
reduce congestion downstream. The authors describe an implementation where
bmv2 is extended by P4 externs for floating-point calculations.

Jiang et al. [302] introduce a novel adjusting advertised windows (AWW)
mechanism for TCP. The authors argue that the current calculation of the
advertised window in the TCP header is inaccurate because the source node does
not know the actual capacity of the network. AWW dynamically updates the
advertised window of ACK packets to feedback the network capacity indirectly
to the source nodes. Each P4 switch calculates the new AWW value and writes
it into the packet header.

EECN [303] presents an enhanced ECNmechanism which piggybacks conges-
tion information if the switch notices congestion. To that end, the ECN-Echo
bit is set for traversing ACKs as soon as congestion occurs for a given flow.
This enables fast congestion notification without the need for additional control
traffic.

Chen et al. [304] present QoSTCP, a TCP version with adapted congestion
window growth that enables rate limiting. QoSTCP is based on a marking ap-
proach similar to ECN. When a flow exceeds a certain rate, the packet gets
marked with a so-called Rate-Limiting Notification (RLN) and the congestion
window growth is adapted proportional to the RLN-marked packet rate. Me-
tering and marking is done using P4.

Laraba et al. [305] detect ECN misbehavior with the help of P4 switches.
They model ECN as extended finite state machine (EFSM) and store states and
variables in registers. If end hosts do not conform to the specified ECN state
machine, packets are either dropped or, if possible, the misbehavior is corrected.

10.4. Traffic Scheduling
Sharma et al. [306] introduce a mechanism for per flow fairness scheduling in

P4. The concept is based on round-robin scheduling where each flow may send
a certain number of bytes in each round. The switch assigns a round number
for each arriving packet that depends on the number of sent bytes of flow in the
past.

Cascone et al. [307] introduce bandwidth sharing based on sending rates
between TCP senders. P4 switches use statistical byte counters to store the
sending rate of each user. Depending on the recorded sending rate of the user,
arriving packets are pushed into different priority queues.

Bhat et al. [308] leverage P4 switches to translate application layer header
information into link-layer headers for better QoS routing. They use Q-in-Q
tunneling at the edge to forward packets to the core network and present a
bmv2 implementation for HTTP/2 applications, as HTTP/2 explicitly defines
a Stream ID that can directly be translated in Q-in-Q tags.

Kfoury et al. [309] present a method to support dynamic TCP pacing with
the aid of network state information. A P4 switch monitors the number of
active TCP flows, i.e., they monitor the SYN, SYN-ACK, and ACK flags and

65

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

notify senders about the current network state if a new flow starts or another
terminates. To that end, they introduce a new header and show by simulations
that the overall throughput increases.

Chen et al. [310] present a design for bandwidth management for QoS with
SDN and P4-programmable switches. Their design classifies packets based on
a two-rate three-color marker and assigns corresponding priorities to guarantee
certain per flow bandwidth. To that end, they leverage the priority queuing
capabilities of P4-switches based on the assigned color. Guaranteed traffic goes
to a high-priority queue, best-effort traffic goes to a low-priority queue, and
traffic that exceeds its bandwidth is simply dropped.

Lee et al. [311] implement a multi-color marker for bandwidth guarantees in
virtual networks. Their objective is to isolate bandwidth consumption of virtual
networks and provide QoS for its serving flows.

10.5. Traffic Aggregation
Wang et al. [312] introduce aggregation and dis-aggregation capabilities for

P4 switches. To reduce the header overhead in the network, multiple small pack-
ets are thereby aggregated to a single packet. They leverage multiple register
arrays to store incoming small packets in 32 bit chunks. If enough small packets
are stored, a larger packet gets assembled with the aid of multiple recirculations;
each recirculation step appends a small packet to the aggregated large packet.

RL-SP-DRR [313] is a combination of strict priority scheduling with rate
limitation (RL-SP) and deficit round-robin (DRR). RL-SP ensures prioritiza-
tion of high-priority traffic while DRR enables fair scheduling among different
priority classes. They extend bmv2 to support RL-SP-DRR and evaluate it
against strict priority queuing and no active queuing mechanism.

10.6. Active Queue Management (AQM)
Turkovic et al. [314] develop an active queue management (AQM) mecha-

nism for programmable data planes. The switches are programmed to collect
metadata associated with packet processing, e.g., queue size and load, that are
used to prevent, detect, and dissolve congestion by forwarding affected flows
on an alternate path. Two possible mechanisms for rerouting in P4 are de-
scribed. In the first mechanism, primary and backup entries are installed in the
forwarding tables and according to the gathered metadata, the suitable action
is selected. The second mechanism leverages a local controller on each switch
that monitors flows and installs updated forwarding rules when congestion is
noticed.

P4-CoDel [315] implements the CoDel AQM mechanism specified in RFC
8289 [331]. CoDel leverages a target and an interval parameter. As long as the
queuing delay is shorter than the target parameter, no packets are dropped.
If the queuing delay exceeds the target by a value that is at least as large as
the interval, a packet is dropped, and the interval parameter is decreased. This
procedure is repeated until the queuing delay is under the target threshold again.
The interval is then reset to the initial value. To avoid P4 externs, the authors
use approximated calculations for floating-point operations.

66

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

P4-ABC [317] implements activity-based congestion management (ABC) for
P4. ABC is a domain concept where edge nodes measure the activity, i.e., the
sending rate, of each user and annotate the value in the packet header. Core
nodes measure the average activity of all packets. Depending on the current
queue status, the average activity, and activity value in the packet header, a
drop decision is made for each packet to prevent congestion. The P416 imple-
mentation for the bmv2 requires externs for floating-point calculations.

P4air [318] attempts to provide more fairness for TCP flows with different
congestion control algorithms. To that end, P4air groups flows into different
categories based on their congestion control algorithm, e.g., loss-, delay- and
loss-delay-based. Afterwards, the most aggressive flows are punished based on
the previous categorization with packet drops, delay increase, or adjusted receive
windows. P4air leverages switch metrics and flow reactions, such as queuing
delay and sending rate, to determine the congestion control algorithm used by
the flows.

Fernandes et al. [319] propose a bandwidth throttling solution in P4. Incom-
ing packets are dropped with a certain probability depending on the incoming
rate of the flow and the defined maximum bandwidth. Rates are measured us-
ing time windows and byte counters. Fernandes et al. extend the bmv2 for this
purpose.

Wang et al. [320] present an AQM mechanism for video streaming. Data
packets are classified as base packets (basic image information) or enhancement
packets (additional information to improve the image quality). When the queue
size exceeds a certain threshold, enhancement packets are preferably dropped.

SP-PIFO [321] features an approximation of Push-In First-Out (PIFO) queues
which enables programmable packet scheduling at line rate. SP-PIFO dynam-
ically adapts the mapping between packet ranks and available strict-priority
queues.

Kunze et al. [322] analyze the design of three popular AQM algorithms
(RED, CoDel, PIE). They implement PIE in three different variants for Tofino-
based P4 hardware targets and show that implementation trade-offs have sig-
nificant performance impacts.

Harkous et al. [324] use virtual queues implemented in P4 for traffic man-
agement. A traffic classifier in the form of MATs assigns a data plane slice
identifier to traffic flows. P4 registers are used to implement virtual queues for
each data plane slice for traffic management.

10.7. Traffic Offloading
Andrus et al. [325] propose to offload video stream processing of surveillance

cameras to P4 switches. The authors propose to offload stream processing for
storage to P4 switches. In case the analytics software detected an event, it
enables a multistage pipeline on the P4 switch. In the first step, video stream
data is replicated. One stream is further sent to the analytics software, the
other stream is dedicated to the video storage. The P4 switch filters out control
packets and rewrites the destination IP address of all video packets to the video
storage.

67

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Ibanez et al. [326] try to tackle the problem of P4’s packet-by-packet
programming model. Many tasks, such as periodic updates, require either
hardware-specific capabilities or control-plane interaction. Processing capabili-
ties are limited to enqueue events, i.e., data plane actions are only triggered if
packets arrive. To eliminate this problem, the authors propose a new mechanism
for event processing using the P4 language.

Kfoury et al. [327] propose to offload media traffic to P4 switches which act
as relay servers. A SIP server receives the connection request, replaces IP and
port information with the relay server IP and port, and forwards the request to
the receiver. Afterwards, the media traffic is routed through the relay server.

Falcon [328] offloads task scheduling to programmable switches. Job requests
are sent to the switch and the switch assigns a task in first-come-first-serve
order to the next executor in a pool of computation nodes. Falcon reduces the
scheduling overhead by a factor of 26 and increase scheduling throughput by a
factor of 25 compared to state-of-the-art schedulers.

Osinski et al. [329] present vBNG, a virtual Broadband Network Gateway
(BNG). Some components, such as PPPoE session handling, are offloaded to
programmable switches.

10.8. Summary and Analysis
The research domain of traffic management and congestion control benefits

from three core properties of P4: custom packet headers, flexible header process-
ing and target-specific packet header processing functions. Data center switching
mainly relies on packet header parsing of well-known protocols, such as IPv4/v6
or MPLS. More advanced protocol solutions, such as VXLAN and BIER, can be
implemented by leveraging the flexible packet header processing property of P4.
The presented efforts on load balancing (Section 10.2) also use this property
of P4 to implement novel approaches. Target-specific packet header processing
functions such as externs are widely used in Section 10.3. Most works lever-
age externs such as metering and marking which may not be supported on all
hardware targets. A similar phenomenon appears in Section 10.4. Here, many
papers are based on priority queues. The approaches on AQM in Section 10.6
encounter similar limitations. Floating-point operations are not part of the P4
core. Some targets may provide an extern for this functionality. Multiple works
avoid this problem by either using approximations or by relying on self-defined
externs in software.

11. Applied Research Domains: Routing and Forwarding

We describe applied research on source routing, multicast, publish-subscribe-
systems, named data networking, data plane resilience, and other fields of appli-
cation. Table 8 shows an overview of all the work described. At the end of the
section, we summarize the work and analyze it with regard to P4’s core features
described in Section 8.1.

68

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Table 8: Overview of applied research on routing and forwarding (Section 11).

Research work Year Targets Code

Source Routing (11.1)

Lewis et al. [332] 2018 bmv2 [333]
Luo et al. [334] 2019 bmv2 [335]
Kushwaha et al. [336] 2020 Xilinx

Virtex-7
Abdelsalam et al. [337] 2020 bmv2

Multicast (11.2)

Braun et al. [338] 2017 bmv2 [339]
Merling et al. [340, 341] 2020/21 bmv2,

Tofino
[342, 343]

Elmo [344] 2019 - [345]
PAM [346] 2020 bmv2

Publish/Subscribe Systems (11.3)

Wernecke et al. [347, 348, 349, 350] 2018/19 bmv2
Jepsen et al. [351] 2018 Tofino
Kundel et al. [352] 2020 bmv2 [353]
FastReact-PS [354] 2020 -

Named Data Networks (11.4)

NDN.p4 [355, 356] 2016/18 bmv2 [357, 358]
ENDN [359] 2020 bmv2

Data Plane Resilience (11.5)

Sedar et al. [360] 2018 bmv2 [361]
Giesen et al. [362] 2018 Tofino, Xil-

inx SDNet
SQR [363] 2019 bmv2,

Tofino
[364]

P4-Protect [365] 2020 bmv2,
Tofino

[366, 367]

Hirata et al. [368] 2019 -
Lindner et al. [369] 2020 bmv2,

Tofino
[370, 371]

D2R [372] 2019 bmv2
PURR [373] 2019 bmv2,

Tofino
Blink [374] 2019 bmv2,

Tofino
[375]

69

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Research work Year Targets Code

Other Fields of Applications (11.6)

Contra [376] 2019 -
Michel et al. [377] 2016 bmv2
Baktir et al. [378] 2018 bmv2
Froes et al. [379] 2020 bmv2
QROUTE [380] 2020 bmv2
Gimenez et al. [381] 2020 bmv2
Feng et al. [382] 2019 bmv2
PFCA [383] 2020 bmv2
McAuley et al. [384] 2019 bmv2
R2P2 [385] 2019 Tofino [386]

11.1. Source Routing
With source routing, the source node defines the processing of the packet

throughout the network. To that end, a header stack is often added to the
packet to specify the operations the other network devices should execute.

Lewis et al. [332] implement a simple source routing mechanism with P4
for the bmv2. The authors introduce a header stack to specify the processing
of the packet towards its destination. That header stack is constructed and
pushed onto the packet by the source node. Network devices match the header
segments to determine how the packet should be processed.

Luo et al. [334] implement segment routing with P4. They introduce a
header which contains segments that identify certain operations, e.g., forwarding
the packet towards a specific destination or over a specific link, updating header
fields, etc. Network nodes process packets according to the topmost segment in
the segment routing header and remove it after successful execution.

Kushwaha et al. [336] implement bitstream, a minimalistic programmable
data plane for carrier-class networks, in P4 for FPGAs. The focus of bitstream
is to provide a programmable data plane while ensuring several carrier-grade
properties, like deterministic latencies, short restoration time, and per-service
measurements. To that end, the authors implement a source routing approach
in P4 which leaves the configuration of the header stack to the control plane.

The authors of [337] show a demo of segment routing over IPv6 data plane
(SRv6) implementation in P4. It leverages the novel uSID instruction set for
SRv6 to improve scalability and MTU efficiency.

11.2. Multicast
Multicast efficiently distributes one-to-many traffic from the source to all

subscribers. Instead of sending individual packets to each destination, multicast
packets are distributed in tree-like structures throughout the network.

Bit Index Explicit Replication (BIER) [387] is an efficient transport mecha-
nism for IP multicast traffic. In contrast to traditional IP multicast, it prevents

70

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

subscriber-dependent forwarding entries in the core network by leveraging a
BIER header that contains all destinations of the BIER packet. To that end,
the BIER header contains a bit string where each bit corresponds to a spe-
cific destination. If a destination should receive a copy of the BIER packet, its
corresponding bit is activated in the bit string in BIER header of the packet.
Braun et al. [338] present a demo implementation of BIER-based multicast in
P4. Merling et al. [340] implement BIER-based multicast with fast reroute
capabilities in P4 for the bmv2 and for the Tofino [341].

Elmo [344] is a system for scalable multicast in multi-tenant datacenters.
Traditional IP multicast maintains subscriber dependent state in core devices
to forward multicast traffic. This limits scalability, since the state in the core
network has to be updated every time subscribers change. Elmo increases scal-
ability of IP multicast by moving a certain subscriber-dependent state from the
core devices to the packet header.

Priority-based adaptive multicast (PAM) [346] is a control protocol for data
center multicast which is implemented by the authors in P4. Network adminis-
trators define different policies regarding priority, latency, completion time, etc.,
which are installed on the core switches. The network devices than monitor link
loads and adjust their forwarding to fulfill the policies.

11.3. Publish/Subscribe Systems
Publish/subscribe systems are used for data distribution. Subscribers are

able to subscribe to announced topics. Based on the subscriptions, the data
packets are distributed from the source to all subscribers.

Wernecke et al. [347, 348, 349, 350] implement a content-based publish/sub-
scribe mechanism with P4. The distribution tree to all subscribers is encoded
directly in the header of the data packets. To that end, the authors introduce
a header stack which is pushed onto the packet by the source. Each element
in the stack consists of an ID and a value. When a node receives a packet, it
checks whether the header stack contains an element with its own ID. If so, the
value determines to which neighbors the packet has to be forwarded.

Jepsen et al. [351] introduce a description language to implement pub-
lish/subscriber systems. The data plane description is translated into a static
pipeline and dynamic filters. The static pipeline is a P4 program that describes
a packet processing pipeline for P4 switches, the dynamic filters are the for-
warding rules of the match-action tables that may change during operation,
e.g., when subscriptions change.

Kundel et al. [352] propose two approaches for attribute/value encoding
in packet headers for P4-based publish/subscribe systems. This reduces the
header overhead and facilitates adding new attributes which can be used for
subscription by hosts.

FastReact-PS [354] is a P4-based framework for event-based publish/sub-
scribe in industrial IoT networks. It supports stateful and stateless processing
of complex events entirely in the data plane. Thereby, the forwarding logic can
be dynamically adjusted by the control plane without the need for recompila-
tion.

71

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

11.4. Named Data Networking
Named data networking (NDN) is a content-centric paradigm where infor-

mation is requested with resource identifiers instead of destinations, e.g., IP
addresses. Network devices cache recently requested resources. If a requested
resource is not available, network devices forward the request to other nodes.

NDN.p4 [355] implements NDN without caching for P4. However, the imple-
mentation cannot cache requests because of P4-related limitations with stateful
storage. Miguel et al. [356] leverage the new functionalities of P416 to extend
NDN.p4 by a caching mechanism for requests and optimize its operation. The
caching mechanism is implemented with P4 externs.

Enhanced NDN (ENDN) [359] is an advanced NDN architecture. It offers a
larger catalog of content delivery features like adaptive forwarding, customized
monitoring, in-network caching control, and publish/subscribe forwarding.

11.5. Data Plane Resilience
Sedar et al. [360] implement a fast failover mechanism without control plane

interaction for P4 switches. The mechanism uses P4 registers or metadata fields
for bit strings that indicate if a particular port is considered up or down. In
a match-action table, the port bit string provides an additional match field to
determine whether a particular port is up or down. Depending on the port
status, default or backup actions are executed. The authors rely on a local P4
agent to populate the port bit strings.

Giesen et al. [362] introduce a forward error correction (FEC) mechanism
for P4. Commonly, unreliable but not completely broken links are avoided. As
this happens at the cost of throughput, the proposed FEC mechanism facilitates
the usage of unreliable links. The concept features a link monitoring agent that
polls ports to detect unreliable connections. When a packet should be forwarded
over such a port, the P4 switch calculates a resilient encoding for the packet
which is then decoded by the receiving P4 switch.

Shared Queue Ring (SQR) [363] introduces an in-network packet loss recov-
ery mechanism for link failures. SQR caches recent traffic inside a queue with
slow processing speed. If a link failure is detected, the cached packets can be
sent over an alternative path. While P4 does not offer the possibility to store
packets for a certain amount of time, the authors leverage the cloning operation
of P4 to keep packets inside the buffer. If a cached packet has not yet met
its delay, it gets cloned to another egress port which takes some time. This
procedure is repeated until the packet has been stored for a given time span.

P4-Protect [365] implements 1+1 protection for IP networks. Incoming pack-
ets are equipped with a sequence number, duplicated, and sent over two disjoint
paths. At an egress point, the first version of each packet is accepted and
forwarded. As a result, a failure of a single path can be compensated without
additional signaling or reconfiguration. P4-Protect is implemented for the bmv2
and the Tofino. Evaluations show that line-rate processing with 100 Gbit/s can
be achieved with P4-Protect at the Tofino.

Hirata et al. [368] implement a data plane resilience scheme based on multi-
ple routing configurations. Multiple routing configurations with disjoint paths

72

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

are deployed, and a header field identifies the routing configuration according to
which packets are forwarded. In the event of a failure, a routing configuration
is chosen that avoids the failure.

Lindner et al. [369] present a novel prototype for in-network source pro-
tection in P4. A P4-capable switch receives sensor data from a primary and
secondary sensor, but forwards only the data from the primary sensor if avail-
able. It detects the failure of the primary sensor and then transparently forwards
data from a secondary sensor to the application. Two different mechanisms are
presented. The counter-based approach stores the number of packets received
from the secondary sensor since the last packet from the primary sensor has
been received. The timer-based approach stores the time of the last arrival of
a packet from the primary sensor and considers the time since then. If certain
thresholds are exceeded, the P4-switch forwards the data from the secondary
sensor.

D2R [372] is a data-plane-only resilience mechanism. Upon a link failure,
the data plane calculates a new path to the destination using algorithms like
breadth-first search and iterative deepening depth-first search. As one pipeline
iteration has not enough processing stages to compute the path, recirculation is
leveraged. In addition, Failure Carrying Packets (FCP) is used to propagate the
link failure inside the network. While the authors claim that their architecture
works with hardware switches, e.g., the Tofino, they only present and evaluate
a bmv2 implementation.

Chiesa et al. [373] propose a primitive for reconfigurable fast ReRoute
(PURR) which is a FRR primitive for programmable data planes, in partic-
ular for P4. For each destination, suitable egress ports are stored in bit strings.
During packet processing, the first working suitable egress port is determined by
a set of forwarding rules. Encoding based on Shortest Common Supersequence
guarantees that only few additional forwarding rules are required.

Blink [374] detects failures without controller interaction by analyzing TCP
signals. The core concept is that the behavior of a TCP flow is predictable when
it is disrupted, i.e., the same packet is retransmitted multiple times. When this
information is aggregated over multiple flows, it creates a characteristic failure
signal that is leveraged by data plane switches to trigger packet rerouting to
another neighbor.

11.6. Other Fields of Applications
Contra [376] introduces performance-aware routing with P4. Network paths

are ranked according to policies that are defined by administrators. Contra
applies those policies and topology information to generate P4 programs that
define the behavior of forwarding devices. During runtime, probe packets are
used to determine the current network state and update forwarding entries for
best compliance with the defined policies.

Michel et al. [377] introduce identifier-based routing with P4. The authors
argue that IP addresses are not fine-granular enough to enable adequate for-
warding, e.g., in terms of security policies. The authors introduce a new header

73

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

that contains an identifier token. Before sending packets, applications transmit
information on the process and user to a controller that returns an identifier
that is inserted into the packet header. P4 switches are programmed to forward
packets based on that identifier.

Baktir et al. [378] propose a service-centric forwarding mechanism for P4.
Instead of addressing locations, e.g., by IP addresses, the authors propose to
use location-independent service identifiers. Network hosts write the identifier
of the desired service into the appropriate header field, the switches then make
forwarding decisions based on the identifier in the packet header. With this
approach, the location of the service becomes less important since the controller
simply updates the forwarding rules when a service is migrated or load balancing
is desired.

Froes et al. [379] classify different traffic classes which are identified by a
label. Packet forwarding is based on that controller-generated label instead of
IP addresses. The traffic classes have different QoS properties, i.e., prioritization
of specific classes is possible. To that end, switches leverage multiple queues to
process traffic of different traffic classes.

QROUTE [380] is a quality of service (QoS) oriented forwarding scheme
in P4. Network devices monitor their links and annotate values, e.g., jitter or
delay, in the packet header so that downstream nodes can update their statistics.
Furthermore, packet headers contain constraints like maximum jitter or delay.
According to those values, forwarding decisions are made by the network devices.

Gimenez et al. [381] implement the recursive internet-work architecture
(RINA) in P4 for the bmv2. RINA is a networking architecture which sees
computer networking as a type of inter-process communication where layering
should be based on scope/scale instead of function. In general, efficient imple-
mentations require hardware support. However, up to date only software-based
implementations are available. The authors hope that with the advance of pro-
grammable hardware in the form of P4, hardware-based RINA will soon be
possible.

Feng et al. [382] implement information-centric network (ICN) based for-
warding for HTTP. To that end, they propose mechanisms to convert packets
from ICN to HTTP packets and vice-versa.

PFCA [383] implements a forwarding information base (FIB) caching ar-
chitecture in the data plane. To that end, the P4 program contains multiple
MATs that are mapped to different memory, i.e., TCAM, SRAM, dynamic ran-
dom access memory (DRAM), with different properties regarding lookup speed.
Counters keep track of cache hits to move (un)popular rules to other tables.

McAuley et al. [384] present a hybrid error control booster (HEC) that can
be deployed in wireless, mobile, or hostile networks that are prone to link or
transport layer failures. HECs increase the reliability by applying a modified
Reed-Solomon code that adds parity packets or additional packet block acknowl-
edgments. P4 targets include an error control processor that implements this
functionality. It is integrated into the P4 program as P4 extern so that the
data plane can exchange HEC packets with it. A remote control plane includes
the booster manager that controls HEC operations and parameters on the P4

74

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

targets via a data plane API.
R2P2 [385] is a transport protocol based on UDP for latency-critical RPCs

optimized for datacenters or other distributed infrastructure. A router module
implemented in P4 or DPDK is used to relay requests to suitable servers and
perform load balancing. It may also perform queuing if no suitable server is
available. The goal of R2P2 is to overcome problems that typically come with
TCP-based RPC systems, e.g., problems with load distribution and head-of-
line-blocking.

11.7. Summary and Analysis
The research domain of routing and forwarding greatly benefits from P4’s

core features. First, the definition and usage of custom packet headers enables
administrators to tailor the packet header to the specific use case. Two exam-
ples are source routing (Section 11.1) and multicast (Section 11.2). Both areas
leverage custom headers to define lightweight mechanisms based on additional
information in the packet header which are not part of any standard protocol.
Although most of the projects were developed only for the bmv2, they should
be easily portable to hardware platforms as more complex, target specific oper-
ations are not required. Second, users are able to define flexible packet header
processing depending on the information in the packet header, e.g., publish/-
subscribe systems (Section 11.3), named data networks (Section 11.4), and data
plane resilience (Section 11.5). Parametrized custom actions and (conditional)
application of multiple MATs allow for adaptable packet processing for many
specific use cases. Similar to the previous P4 core feature, most projects were
developed for the bmv2 but they should be easy to transfer if no target-specific
actions are used. Third, we found that many papers in the area of data plane
resilience (Section 11.5) leverage target-specific packet header processing func-
tions. Often registers are used to store information whether egress ports are
up or down to execute backup actions if necessary. Most projects were imple-
mented for the hardware platform Tofino. As a result, the implementations are
highly target-specific and transferring them to other hardware platforms highly
depends on the capabilities of the target platform and the used externs.

12. Applied Research Domains: Advanced Networking

We describe applied research on cellular networks (4G/5G), Internet of
things (IoT), industrial networking, Time-Sensitive Networking (TSN), network
function virtualization (NFV), and service function chains (SFCs). Table 9
shows an overview of all the work described. At the end of the section, we
summarize the work and analyze it with regard to P4’s core features described
in Section 8.1.

12.1. Cellular Networks (4G/5G)
P4EC [388] builds a local exit for LTE deployments with cloud-based EPC

services. A programmable switch distinguishes traffic and reroutes traffic for
edge computing. Non-critical traffic is forwarded to the cloud-based EPC.

75

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 9: Overview of applied research on advanced networking (Section 12).

Research work Year Targets Code

Cellular Networks (4G/5G) (12.1)

P4EC [388] 2020 Tofino
Trellis [282] - - [389]
SMARTHO [390] 2018 bmv2
Aghdai et al. [391, 392] 2018/19 Netronome
GRED [393] 2019 bmv2
HDS [394] 2020 -
Shen et al. [395] 2019 Xilinx SDNet
Lee et al. [396] 2019 Tofino
Ricart-Sanchez et al. [397] 2019 NetFPGA-SUME
Singh et al. [398] 2019 Tofino
TurboEPC [399] 2020 Netronome
Vörös et al. [400] 20200 Tofino
Lin et al. [401] 2019 Tofino

Internet of Things (12.2)

BLESS [402] 2017 PISCES
Muppet [403] 2018 PISCES
Wang et al. [404] 2019 Tofino
Madureira et al. [405] 2020 bmv2
Engelhard et al. [406] 2019 bmv2

Industrial Networking (12.3)

FastReact [407] 2018 bmv2
Cesen et al. [408] 2020 bmv2
Kunze et al. [409] 2020 Tofino, Netronome

Time-Sensitive Networking (TSN) (12.4)

Rüth et al. [410] 2018 Netronome
Kannan et al. [411] 2019 Tofino
Kundel et al. [412] 2019 Tofino

76

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Research work Year Targets Code

Network Function Virtualization (NFV) (12.5)

Kathará [413] 2018 -
P4NFV [414] 2018 bmv2
Osiński et al. [415] 2019 -
Moro et al. [416] 2020 -
DPPx [417] 2020 bmv2
Mohammadkhan et al. [418] 2019 Netronome
FOP4 [419, 420] 2019 bmv2, eBPF
PlaFFE [421] 2020 Netronome

Service Function Chains (SFCs) (12.6)

P4SC [422, 423] 2019 bmv2, Tofino [424]
Re-SFC [425] 2019 bmv2
FlexMesh [426] 2020 bmv2
P4-SFC [427] 2019 bmv2, Tofino [428]

The Trellis switch fabric (introduced in Section 10.1) features the spgw.p4
profile [282, 278], an implementation of a Serving and PDN Gateway (SPGW)
for 5G networking. ONOS runs an SPGW-u application that implements the
3GPP control and user plane separation (CUPS) protocol to create, modify, and
delete GPRS tunneling protocol (GTP) sessions. It provides support for GTP
en- and decapsulation, filtering, and charging.

SMARTHO [390] proposes a handover framework for 5G. Distributed units
(DUs) include real-time functions for multiple 5G radio stations. Several DUs
are controlled by a central unit (CU) that includes non-real-time control func-
tions. P4 switches are part of the CU and all DU nodes. SMARTHO introduces
a P4-based mechanism for preparing handover sequences for user devices that
take a fixed path among 5G radio stations controlled by DUs. This decreases
the overall handover time, e.g., for users traveling in a train.

Aghdai et al. [391] propose a P4-based transparent edge gateway (EGW)
for mobile edge computing (MEC) in LTE or 5G networks. Delay-sensitive and
bandwidth-intense applications need to be moved from data centers in the core
network to the edge of the radio access network (RAN). 5G networks rely on
GTP-U for encapsulating IP packets from the mobile user to the core network.
IP routers in between forward packets based on the outer IP address of GTP-
U frames. The authors deploy EGWs as P4 switches at the edge of the IP
transport network where service operators can deploy scalable network functions
or services. Each MEC service gets a virtual IP address, the P4-based EGWs
parse the inner IP destination address of GTP-U. If it sees traffic targeting a
virtual IP address of a MEC service, it forwards it to the IP address of one of
the serving instances of the MEC application. In their follow-up work [392], the

77

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

authors extend EGWs by a handover mechanism for migrating network state.
GRED [393] is an efficient data placement and retrieval service for edge

computing. It tries to improve routing path lengths and forwarding table sizes.
They follow a greedy forwarding approach based on DT graphs, where the for-
warding table size is independent of the network size and the number of flows
in the network. GRED is implemented in P4, but the authors do not specify on
which target.

HDS [394] is a low-latency, hybrid, data sharing framework for hierarchical
mobile edge computing. The data location service is divided into two parts:
intra-region and inter-region. The authors present a data sharing protocol called
Cuckoo Summary for fast data localization for the intra-region part. Further,
they developed a geographic routing scheme to achieve efficient data location
with only one overlay hop in the inter-region part.

Shen et al. [395] present an FGPA-based GTP engine for mobile edge com-
puting in 5G networks. Communication between the 5G back-haul and the
conventional Ethernet requires de- and encapsulation of traffic with GTP. As
most network entities do not have the capability to process GTP, the authors
leverage P4-programmable hardware for this purpose.

Lee et al. [396] evaluate the performance of GTP-U and SRv6 stateless
translation as GPT-U cannot be replaced by SRv6 without a transition period.
To that end, they implement GTP and SRv6 on P4-programmable hardware.
They found that there are no performance drops if stateless translation is used
and that SRv6 stateless translation is acceptable for the 5G user plane.

Ricart-Sanchez et al. [397] propose an extension for the P4-NetFPGA frame-
work for network slicing between different 5G users. The authors extend the
capabilities of the P4 pipeline and implement their mechanism on the NetFPGA-
SUME. However, the authors do not provide any details about their implemen-
tation.

Singh et al. [398] present an implementation for the Evolved Packet Gateway
(EPG) in the Mobile Packet Core of 5G. They show that they can offload the
functionality to programmable switching ASICs and achieve line rate with low
latency and jitter while scaling up to 1.7 million active users.

TurboEPC [399] presents a redesign of the mobile packet core where parts
of the control plane state is offloaded to programmable switches. State is stored
in MATs. The switches then process a subset of signaling messages within the
data plane itself, which leads to higher throughput and reduced latency.

Vörös et al. [400] propose a hybrid approach for the next generation NodeB
(gNB) where the majority of packet processing is done by a high-speed P4-
programmable switch. Additional functions, such as ARQ or ciphering, are
offloaded to external services such as DPDK implementations.

Lin et al. [401] enhance the Content Permutation Algorithm (eCPA) for
secret permutation in 5G. Packet payloads are split into code words and shuffled
according to a secret cipher. They implement eCPA for switches of the Inventec
D5264 series.

78

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

12.2. Internet of Things (IoT)
BLESS [402] implements a Bluetooth low energy (BLE) service switch based

on P4 that acts as a proxy enabling flexible, policy-based switching and in-
network operations of IoT devices. BLE devices are strictly bound to a central
device such as a smartphone or tablet. IoT usage requires cloud-based solutions
where central devices connect to an IoT infrastructure. The authors propose a
BLE service switch (BLESS) that is transparently inserted between peripheral
and central devices and acts like a transparent proxy breaking up the peer-to-
peer model. It maintains BLE link layer connections to peripheral devices within
its range. A central controller implements functionalities such as service discov-
ery, access policy enforcement, and subscription management so that features
like service slicing, enrichment, and composition can be realized by BLESS.

Muppet [403] extends BLESS by supporting the Zigbee protocol in parallel
to BLE. In addition to the features of BLESS, inter-protocol services between
Zigbee and BLE and BLE/Zigbee and IP protocols are introduced. An example
for the latter are HTTP transactions that are automatically sent out by the
switch if it sees a specified set of BLE/Zigbee transactions. The data plane
implementation of BLESS is extended by protocol-dependent packet parsers and
processing and support for encrypted Zigbee packets via packet recirculation.

Wang et al. [404] implement aggregation and disaggregation of small IoT
packets on P4 switches. For a small IoT packet, the header holds a large propor-
tion of the packet’s total size. In large streams of IoT packets, this causes high
overhead. The current aggregation techniques for IoT packets are implemented
by external servers or on the control plane of switches, both resulting in low
throughput and added latency. Therefore, the authors propose an implemen-
tation directly on P4 switches where IoT packets are buffered, aggregated, and
encapsulated in UDP packets with a custom flag-header, type, and padding. In
disaggregation, the incoming packet is cloned to stripe out the single messages
until all messages are separated.

Madureira et al. [405] present the Internet of Things Protocol (IoTP), an
L2 communication protocol for IoT data planes. The main purpose of IoTP is
data aggregation at the network level. IoTP introduces a new, fixed header and
is compatible with any forwarding mechanism. The authors implemented IoTP
for the bmv2 and store single packets of a flow in registers until the data can be
aggregated.

Engelhard et al. [406] present a system for massive wireless sensor networks.
They implement a physically distributed, and logically centralized wireless ac-
cess systems to reduce the impairment by collisions. P4 is leveraged as connec-
tion between a physical access point and a virtual access point. To that end,
they extend the bmv2 to provide additional functionality. However, they give
information about their P4 program only in form of a decision flow graph.

12.3. Industrial Networking
FastReact [407] outsources sensor data packet processing from centralized

controllers to P4 switches. The sensor data is recorded in variable-length time

79

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

series data stores where an additional field holds the current moving average
calculated on the time series. Both data for all sensors can be polled by a cen-
tral controller. For controlling actuators directly on the data plane, FastReact
supports the formulation of control logic in conjunctive normal form (CNF).
It is mapped to actions to either forward signal data to the controller, discard
it, or directly send it to the actuator. FastReact also features failure recovery
directly on the switch. For every sensor and actuator, timestamps for the last
received packets along a timeout limit is recorded. If failures are detected, sensor
data are forwarded following failover rules with backup actuators for particular
sensors.

Cesen et al. [408] leverage P4-capable switches to move control logic to
the network. Control applications reside in controllers that are responsible for
emergency intervention, e.g., if a given threshold is exceeded. The connection
to the controller may be faulty and, therefore, controller intervention may not
be fast enough. In this work, the authors generate emergency packets, i.e., stop
commands, directly in the data plane. The action is triggered if the switch
receives a packet with a specific payload.

Kunze et al. [409] investigate the applicability of in-network computing to
industrial environments. They offload a simple task, i.e., coordinate transfor-
mation, to different programmable P4 targets. They come to the conclusion,
that, while in general possible, even simple task have heavy demands on pro-
grammable network devices and that offloading may lead to inaccurate results.

12.4. Time-Sensitive Networking (TSN)
Rüth et al. [410] introduce a scheme for implementing in-network control

mechanisms for linear quadratic regulators (LQR). LQRs can be described by
a multiplication of a matrix and a vector. The vector describes the control
of the actuator, the matrix describes the current system state. The result of
the multiplication is a control command. The destination of a switch describes
a specific actuator. When a switch receives a control packet, it matches the
destination of the packet onto a match-and-action table. The lookup provides
the control vector for the actuator. The control vector from the lookup is then
multiplied with the system state matrix that is stored in a register to calculate
the control command for the actuator. The resulting control command is written
into the packet header and the packet is forwarded to the target actuator.

Kannan et al. [411] introduce the Data Plane Time synchronization Proto-
col (DPTP) for distributed applications with computations directly on the P4
data plane. DPTP follows a request-response model, i.e., all P4 switches re-
quest the global time from a designated master switch. Therefore, each switch
features a local control plane that generates time requests sent to the master
switch. Additionally, the control plane handles overflows in time calculation for
administration.

Kundel et al. [412] demonstrate timestamping with nanosecond accuracy.
They describe a simple setup with a Tofino-based switch and a breakout cable to
connect two ports of the switch. In the experiment, timestamps at the moment

80

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

of sending and reception are recorded in the packet header. The authors compare
those two timestamps to show that very fine-grained measurements are possible.

12.5. Network Function Virtualization (NFV)
Kathará [413] runs NFs as P4 programs either on software or hardware

targets. For software-based deployment, the framework leverages Docker con-
tainers that run NFs as container images or individual setups for Quagga, Open
vSwitch, or bmv2 container images. For hardware-based deployment on P4
switches, NFs are either replicated on every P4 switch or distributed on mul-
tiple P4 switches as needed. In both cases, a load balancer or service classifier
forwards flows to the appropriate P4 switch. As a main advantage, P4 programs
can be shifted between the bmv2-based P4 software targets and hardware tar-
gets depending on the required performance.

P4NFV [414] also deals with the idea of running NFs either on software-
or hardware-based P4 targets. The authors adopt the ETSI NFV architecture
with control and monitoring entities and add a layer that abstracts various
types of software- and hardware-based P4 targets as P4 nodes. For optimized
deployment, the targets performance characteristics are part of the P4 node de-
scription. For runtime reconfiguration, the authors propose two approaches. In
pipeline manipulation, the P4 program features multiple match-action pipelines
that can be enabled or disabled by setting register flags. In program reload, a
new P4 program is compiled and loaded to the P4 target. The authors propose
to perform state management and migration either directly on the data plane
or via a control plane.

Osiński et al. [415] use P4 to offload the data plane of virtual network
functions (VNFs) into a cloud infrastructure by allowing VNFs to inject small
P4 programs into P4 devices like SmartNICs or top-of-rack switches. This
results in better performance and a microservice-based approach for the data
plane. A new P4 architecture model that integrates abstractions used to develop
VNF data planes was developed.

Moro et al. [416] present a framework for NF decomposition and deployment.
They split NFs into components that can run on CPUs or that can be offloaded
to specific programmable hardware, e.g., P4 programmable switches. The pre-
sented orchestrator combines multiple functions into a single P4 program that
can be deployed to programmable switches.

DPPx [417] implements a framework for P4-based data plane programma-
bility and exposure which allows enhancing NFV services. They introduce data
plane modules written in P4 which can be leveraged by the application plane.
As an example, a dynamic optimization of packet flow routing (DOPFR) is
implemented using DPPx.

Mohammadkhan et al. [418] provide a unified P4 switch abstraction frame-
work where servers with software NFs and P4-capable SmartNICs are seen as
one logical entity by the SDN controller. They further leverage Mixed Integer
Linear Programming (MILP) to determine partitioning of P4 tables for optimal
placement of NFs.

81

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

FOP4 [419] [420] implements a rapid prototyping platform that supports
container-based, P4-switch-based, and SmartNIC-based NFs. They argue that
a prototyping platform is needed to quickly develop and evaluate new NFV use
cases.

PlaFFE [421] introduces NFV offloading where some features of VNFs or
embedded Network Functions (eNFs) are executed on SmartNICs using P4.
Additionally, P4 is used to steer traffic either through the eNFs or through
VNFs using SR-IOV.

12.6. Service Function Chains (SFCs)
P4SC [422] [423] implements a SFC framework for P4 targets. SFCs are

described as directed acyclic graph of service functions (SFs). In P4SC, SFs
are represented by blocks. Each block has a unique identifier, a P4 program for
ingress processing, and a P4 program for egress processing. P4SC includes 15
SF blocks, e.g., L2 forwarding, which are extracted from switch.p4. After the
user specified all SFCs for a particular P4 target, the P4SC converter merges
the directed acyclic graphs of all SFCs with an LCS-based algorithm into an
intermediate representation. Then, the P4SC generator creates the final P4
program based on the intermediate representation to be deployed onto the P4
target. P4 program generation includes runtime management, i.e., the gener-
ator creates one API per SFC while hiding SF-specific details, e.g., names of
particular match-and-action tables.

Re-SFC [425] improves P4SC’s resource usage by using resubmit operations.
If the specified order of SFs in an SFC does not match the pre-embedded SF of
the P4 switch, incoming flows cannot be processed. P4SC solves this problem by
permitting redundant NF embeds, i.e., if SFs of one SFC are required by another
SFCs, those SFs are just replicated. To reduce the costly usage of match-and-
action tables, Re-SFC introduces resubmit actions where packets are re-bounced
to the ingress.

FlexMesh [426] tackles the problem of fixed SFC flow control, i.e., when
the specified order of SFs does not match the pre-embedded SF, by leveraging
MATs. SFs can be dynamically bypassed, and recirculation is used to build any
desired SF chain.

P4-SFC [427] is an SFC framework based on MPLS segment routing and
NFV. P4 is used to implement a traffic classifier. A central orchestrator deploys
service functions as VNFs and configures the traffic classifier based on definitions
of SFCs.

12.7. Summary and Analysis
As the research domain of advanced networking covers different topics, al-

most all core properties of P4 are covered. The area of cellular networks (Section
12.1) greatly benefits from the definition and usage of custom packet headers as
many works are based on tunneling technologies, such as GTP. Further, flexible
packet header processing allows implementing new 5G concepts such as gNB
or EPG. Some use cases still require offloading tasks to specialized hardware

82

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

or software by leveraging the target-specific packet header processing function
property of P4, e.g., for ARQ or ciphering in the context of gNB. network func-
tion virtualization (NFV) (Section 12.5) benefits from flexible development and
deployment as single network functions (NFs) can be replaced or relocated dur-
ing operation. New protocols and extensions to existing protocols presented in
Section 12.6 rely on definition and usage of custom packet headers and flexible
packet header processing.

13. Applied Research Domains: Network Security

We describe applied research on firewalls, port knocking, DDoS attack mit-
igation, intrusion detection systems, connection security, and other fields of
application. Table 10 shows an overview of all the work described. At the end
of the section, we summarize the work and analyze it with regard to P4’s core
features described in Section 8.1.

13.1. Firewalls
Ricart-Sanchez et al. [429] present a 5G firewall that analyzes GTP data

transmitted between edge and core networks. P4 allows an implementation of
parsing and matching GTP header fields such as 5G user source IP, 5G user
destination IP, and identification number of the GTP tunnel. The P4 pipeline
implements an allow-by-default policy, DROP actions for specific sets of keys
can be installed via a data plane API. In a follow-up work [430], the authors
extend the 5G firewall by support for multi-tenancy with VXLAN.

CoFilter [431] implements an efficient flow identification scheme for stateful
firewalls in P4. To solve the problem of limited table sizes on SDN switches,
flow identifiers are calculated by applying a hashing function to the 5-tuple of
every packet directly on the switch. The proposed concept includes a novel
hash rewrite function that is implemented on the data plane. It resolves hash
commission and hash table optimization using an external server.

P4Guard [432] replaces software-based firewalls by P4-based virtual firewalls
in the VNGuard [480] system. VNGuard introduces controller-based deploy-
ment and management of virtual firewalls with the help of SDN and NFV. The
P4-based firewall comprises a single MAT that allows ALLOW/DROP decision
for Layer 3/4 header fields as match keys. The flow statistics are recorded with
the help of counters. Another MAT allows enabling/disabling the firewall at
runtime.

Vörös and Kiss [433] present a firewall implemented in P4. The parser sup-
ports Ethernet, IPv4/IPv6, UDP, and TCP headers. A ban list comprises MAC
address/IP address entries that represent network hosts. Packets matching this
ban list are directly dropped. To mitigate port scan or DDoS attacks, coun-
ters track packet rate and byte transfer statistics. Another MAT implements
whitelist filtering.

83

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 10: Overview of applied research on network security (Section 13).

Research work Year Targets Code

Firewalls (13.1)

Ricart-Sanchez et al. [429, 430] 2018/19 NetFPGA-SUME
CoFilter [431] 2018 Tofino
P4Guard [432] 2018 bmv2
Vörös and Kiss [433] 2016 p4c-behavioral

Port Knocking (13.2)

P4Knocking [434] 2020 bmv2
Almaini et al. [435] 2019 bmv2

DDoS Mitigation Mechanisms (13.3)

LAMP [436] 2018 bmv2
TDoSD@DP [437, 438] 2018/19 bmv2
Kuka et al. [439] 2019 Xilinx UltraScale+, Intel

Stratix 10
Paolucci et al. [440, 441] 2018/19 bmv2, NetFPGA-SUME
ML-Pushback [442] 2019 -
Afek et al. [443] 2017 p4c-behavioral
Cardoso Lapolli et al. [444] 2019 bmv2 [445]
Cai et al. [446] 2020 -
Lin et al. [447] 2020 bmv2
Musumeci et al. [448] 2020 bmv2
DIDA [449] 2020 bmv2
Dimolianis et al. [450] 2020 Netronome
Scholz et al. [451] 2020 bmv2, T4P4S,

Netronome, NetFPGA
SUME

[452]

Friday et al. [453] 2020 bmv2
NetHide [454] 2018 -

Intrusion Detection Systems & Deep Packet Inspection (13.4)

P4ID [455] 2019 bmv2
Kabasele and Sadre [456] 2018 bmv2
DeepMatch [457] 2020 Netronome [458]
Qin et al. [459] 2020 bmv2, Netronome [460]
SPID [461] 2020 bmv2

84

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Research work Year Targets Code

Other Fields of Application (13.6)

Chang et al. [462] 2019 bmv2
Clé [463] 2019 -
P4DAD [464] 2020 bmv2
Chen [465] 2020 Tofino [466]
Gondaliya et al. [467] 2020 NetFPGA SUME
Poise [468] 2020 Tofino [469]

Connection Security (13.5)

P4-MACsec [470] 2020 bmv2, NetFPGA-SUME [471]
P4-IPsec [472] 2020 bmv2, NetFPGA-SUME, Tofino [473]
SPINE [474] 2019 bmv2 [475]
Qin et al. [476] 2020 bmv2
P4NIS [477] 2020 bmv2 [478]
LANIM [479] 2020 bmv2

13.2. Port Knocking
Port knocking is a simple authentication mechanism for opening network

ports. Network hosts send TCP SYN packets in predefined sequences to certain
ports. If the sequence is completed correctly, the server opens up a desired port.
Typically, port knocking is implemented in software on servers.

P4Knocking [434] implements port knocking on P4 switches. The authors
propose four different implementations for P4. In the first implementation,
P4 switches track the state of knock sequences in registers where the source
IP address is used as an index. The second implementation uses a CRC-hash
of the source IP address as index for the knocking state registers. To resolve
the problem of hash collisions, the third implementation relies on identifiers
that are calculated and managed by the controller. The fourth implementation
solely relies on the controller, i.e., P4 switches forward all knocking packets to
the controller.

Almaini et al. [435] implement port knocking with a ticket mechanism on P4
switches. Traffic is only forwarded if the sender has a valid ticket. Predefined
trusted nodes have a ticket by default, untrustworthy nodes must obtain a ticket
by successful authentication via port knocking. The authors use the HIT/MISS
construct of P4 as well as stateful P4 components to implement the concept.
Port knocking sequences and trusted/untrusted hosts can be maintained by the
control plane.

13.3. DDoS Attack Mitigation
LAMP [436] presents a cooperative mitigation mechanism for DDoS attacks

that relies on information from the application layer. Ingress P4 switches add

85

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

a unique identifier to the IP options header field of any processed packet. The
last P4 switch ahead of the target host stores this mapping and empties the
IP options header field. If a network hosts, e.g., a database server, detects an
ongoing DDoS attack on the application layer, it adds an attack flag to the IP
options header field and sends it back to the switch. The switch forwards this
packet to the ingress switch to enable dropping of all further packets of this
flow.

TDoSD@DP [437] is a P4-based mitigation mechanism for DDoS attacks
targeting SIP proxies. Stateful P4 registers record the number of SIP INVITE
and SIP BYE messages. Then, a simple state machine monitors sequences of
INVITE and BYE messages. Many INVITES followed by zero BYE messages
lead to dropping SIP INVITE packets where valid sequences of INVITE and
BYE messages will keep the port open. In a follow-up work [438], the authors
present an alternative approach where P4 switches act as distributed sensors.
An SDN controller periodically collects data from counters of P4 switches to
perform centralized attack detection. Then, attack mitigation is performed by
installing DROP rules on the P4 switches.

Kuka et al. [439] present a DDoS mitigation system that targets volumet-
ric DDoS attacks called reflective amplification attacks. The authors port an
existing VHDL implementation into a P4 program that runs on FPGA targets.
The implementation selects the affected subset of the incoming traffic, extracts
packet data, and forwards it as a digest to an SDN controller. The SDN con-
troller continuously evaluates this information; a heuristic algorithm identifies
aggressive IP addresses by looking at the volumetric contribution of source IP
addresses to the attack. In case of a detected attack, the SDN controller installs
DROP rules.

Paolucci et al. [440, 441] present a stateful mitigation mechanism for TCP
SYN flood attacks. It is part of a P4-based edge packet-over-optical node that
also comprises traffic engineering functionality. P4 registers keep per-session
statistics to detect TCP SYN flood attacks. One register records the port num-
ber of the last TCP SYN packet, the another one records the number of at-
tempts matching the TCP SYN flood behavior. If the latter one exceeds a
defined threshold, the packets are dropped.

ML-Pushback [442] proposes an extension of the Pushback DDoS attack
mitigation mechanism by machine learning techniques. P4 switches implement
a data collector mechanism that collects dropped packets and forwards them
as digest messages to the control plane. On the control plane, a deep learning
module extracts signatures and classifies the collected digest with a decision
tree model. Attack mitigation is performed by throttling attacker traffic via
rate limits.

Afek et al. [443] implement known mitigation mechanisms for SYN and DNS
spoofing in DDoS attacks for OpenFlow and P4 targets. The OpenFlow imple-
mentation targets Open vSwitch and OpenFlow 1.5 where P4 implementations
are compiled for p4c-behavioral without control plane involvement. In addi-
tion, the authors implemented a set of algorithms and methods for dynamically
distributing the rule space over multiple switches.

86

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Cardoso Lapolli et al. [444] describe an algorithmic approach to detect and
stop DDoS attacks on P4 data planes. The algorithm was specifically created
under the functional constraints of P4 and is based on the calculation of the
Shannon entropy.

Cai et al. [446] propose a novel method for collecting traffic information to
detect TCP port scanning attacks. The authors propose the "0-replacement"
method as an efficient alternative to existing sampling and aggregation methods.
It introduces a pending request counter (PRcounter) and relies on registers to
bind hashing identifiers of the attackers’ IP addresses to PRcounter values. The
authors describe the concept as compliant to PSA, but only simulation results
are given.

Lin et al. [447] present a comparison of OF- and P4-based implementations
of basic mitigation mechanisms against SYN flooding and ARP spoofing attacks.

Musumeci et al. [448] present P4-assisted DDoS attack mitigation using an
ML classifier. An ML-based DDoS attack detection module with a classifier
is running on a controller. The P4 switch forwards traffic to the module; the
DDoS attack detection module responds with a decision. The authors consider
three use cases: packet mirroring + header mirroring + metadata extraction. In
metadata extraction, P4 switches implement counters that store occurrences of
IP, UDP, TCP, and SYN packets. In the case that one of the counters exceeds
a defined threshold, the P4 switch inserts a custom header with the counter
values and sends it to the DDoS attack detection module.

DIDA [449] presents a distributed mitigation mechanism against amplified
reflection DDoS attacks. In this type of DDoS attack, spoofed requests lead to
responses that are by magnitude larger. An example is a DNS ANY query. The
authors rely on count-min sketch data structures and monitoring intervals to
put the number of requests and responses into relation. In case of a detected
DDoS attack, ACLs are used to block the traffic near to the attacker.

Dimolianis et al. [450] introduce a multi-feature DDoS detection scheme
for TCP/UDP traffic. It considers the total number of incoming traffic for a
particular network, the significance of the network, and the symmetry ratio of
incoming and outgoing traffic for classifications. The feature analysis is time-
dependent and focuses on distinct time intervals.

Scholz et al. [451] propose a SYN proxy that relies on SYN cookies or
SYN authentication as protection against SYN flooding DDoS attacks. The
authors present a software implementation based on DPDK and compare it to a
bmv2-based P4 implementation that is ported to the T4P4S P4 software target,
Netronome P4 hardware target, and NetFPGA SUME P4 hardware target.
Evaluation results, benefits, and challenges for each platform are discussed.

Friday et al. [453] present a two-part DDoS detection and mitigation scheme.
In the first part, a P4 target applies a one-way traffic analysis using bloom
filters and time-dependent statistics such as moving averages. In the second
part, the P4 target analyzes the bandwidth and transport protocols used by
various applications to perform a volumetric analysis. The processing pipeline
then decides about malicious traffic to be dropped. Administrators may supply
custom network parameters used for dynamic threshold calculation that are

87

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

then installed via an API on the data plane. The authors demonstrate the
effectiveness of the proposed approach by three use cases: UDP amplification
DDoS attacks, SYN flooding DDoS attacks, and slow DDoS attacks.

NetHide [454] prevents link-flooding attacks by obfuscating the topology of
a network. It achieves this by modifying path tracing probes in the data plane
while preserving their usability.

13.4. Intrusion Detection Systems (IDS) & Deep Packet Inspection (DPI)
P4ID [455] reduces intrusion detection system (IDS) processing load by ap-

ply pre-filtering on P4 switches (IDS offloading/bypassing). P4ID features a
rule parser that translates Snort rules with a multistage mechanism into MAT
entries. The P4 processing pipeline implements a stateless and a stateful stage.
In the stateless stage, TCP/ICMP/UDP packets are matched against a MAT
to decide if traffic should be dropped, forwarded to the next hop, or forwarded
to the IDS. In the stateful stage, the first n packets of new flows are forwarded
to the IDS. This allows that traffic targeting well-known ports can be also ana-
lyzed. Combining the feedback of the IDS for packet samples with the stateless
stage is future work.

Kabasele and Sadre [456] present a two-level IDS for industrial control system
(ICS) networks. The IDS targets the Modbus protocol that runs on top of TCP
in SCADA networks. The first level comprises two whitelists: a flow whitelist
for filtering on the TCP layer and a Modbus whitelist. If no matching entry is
found for a given packet, it is forwarded to the second layer. This is in stark
contrast to legacy whitelisting where packets are just dropped. In the second
level, a Zeek network security analyzer acts as deep packet inspector running on
a dedicated host. It analyzes the given packet, makes a decision, and instructs
the controller to update filters on the switch.

DeepMatch [457] introduces deep packet inspection (DPI) for packet pay-
loads. The concept is implemented with the help of network processors; its
prototype is built with the Netronome NFP-6000 SmartNIC P4 target. The
authors present regex matching capabilities that are executed in 40Gbit/s (line
rate of the platform) for stateless intra-packet matching and about 20Gbit/s
for stateful inter-packet matching. The DeepMatch functionalities are natively
implemented in Micro-C for the Netronome platform and integrated into the P4
processing pipeline with the help of P4 externs.

Qin et al. [459] present an IDS based on binarized neural networks (BNN)
and federated learning. BNNs compress neural networks into a simplified form
that can be implemented on P4 data planes. Weights are compressed into single
bits and computations, e.g., activation functions, are converted into bit-wise
operations. P4 targets at the network edge then apply BNNs to classify incoming
packets. To continuously train the BNNs on the P4 targets, the authors propose
a federated learning scheme. Each P4 target is connected to a controller that
trains an equally structured neural network with samples received from the P4
target. A cloud service aggregates local updates received from the controllers
and responds with weight updates that are processed into the local model.

88

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

In the Switch-Powered Intrusion Detection (SPID) framework [461], switches
compute and store flow statistics, and perform traffic change detection. If a
relevant change in traffic is detected, measurement data is pushed to the control
plane. In the control plane, the measurement data is fed to a ML-based anomaly
detection pipeline to detect potential attacks.

13.5. Connection Security
P4-MACsec [470] presents an implementation of IEEE 802.1AE (MACsec)

for P4 switches. A two-tier control plane with local switch controllers and a cen-
tral controller monitor the network topology and automatically set up MACsec
on detected links between P4 switches. For link discovery and monitoring, the
authors implement a secured variant of LLDP that relies on encrypted payloads
and sequence numbers. MACsec is directly implemented on the P4 data plane;
encryption/decryption using AES-GCM is implemented on the P4 target and
integrated in the P4 processing pipeline as P4 externs.

P4-IPsec [472] presents an implementation of IPsec for P4 switches. IPsec
functionality is implemented in P4 and includes ESP in tunnel mode with sup-
port for different cipher suites. As in P4-MACsec, the cipher suites are imple-
mented on the P4 target and integrated as P4 externs. In contrast to standard
IPsec operation, IPsec tunnels are set up and renewed by an SDN controller
without IKE. Site-to-site operation mode supports IPsec tunnels between P4
switches. Host-to-site operation mode supports roadwarrior access to an inter-
nal network via a P4 switch. To make the roadwarrior host manageable by the
controller, the authors introduce a client agent tool for Linux hosts.

SPINE [474] introduces surveillance protection in the network elements by IP
address obfuscation against surveillance in intermediate networks. In contrast
to software-based approaches such as TOR, SPINE runs entirely on the data
plane of two nodes with intermediate networks in between. It applies a one-time-
pad-based encryption scheme with key rotation to encrypt IP addresses and, if
present, TCP sequence and acknowledgment numbers. The SPINE nodes add a
version number representing the encryption key index to each packet by which
the receiving switch can select the appropriate key for decryption. The key sets
required for the key rotation are maintained by a central controller.

Qin et al. [476] introduce encryption of TCP sequence numbers using
substitution-boxes to protect traffic between two P4 switches. An ONOS-based
controller receives the first packet of each new flow and applies security poli-
cies to decide whether the protection should be enabled. Then, it installs the
necessary data in registers and updates MATs to enable TCP sequence number
substitution.

P4NIS [477] proposes a scheme to protect against eavesdropping attacks. It
comprises three lines of defense. In the first line of defense, packets that belong
to one traffic flow are disorderly transmitted via various links. In the second line
of defense, source/destination ports and sequence/acknowledgment numbers are
substituted via s-boxes similar to the approach of Qin et al. [476]. The third
line of defense resembles existing encryption mechanisms that are not covered
by P4NIS.

89

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

LANIM [479] presents a learning-based adaptive network immune mecha-
nism to prevent against eavesdropping attacks. It targets the Smart Identifier
Network (SINET) [481], a novel, three-layer Internet architecture. LANIM ap-
plies the minimum risk ML algorithm to respond to irregular conditions and
applies a policy-based encryption strategy focusing on the intent and applica-
tion.

13.6. Other Fields of Application
Chang et al. [462] present IP source address encryption. It accomplishes

non-linkability of IP addresses as proactive defense mechanism. Network hosts
are connected to trusted P4 switches at the network edges. In between, packets
are exchanged via untrusted switches/routers. The P4 switch next to the sender
encrypts the sender IP address by applying an XOR operation with a hash
calculated by a random number and a shared key. The P4 switch next to the
receiver decrypts the original sender IP address. The mechanism includes a
dynamic key update mechanism so that transformations are random.

Clé [463] proposes to upgrade particular switches in a legacy network to P4
switches that implement security network functions (SNFs) such as rule-based
firewalls or IDS on P4 switches. Clé comprises a smart device upgrade selection
algorithm that selects switches to be upgraded and a controller that forwards
traffic streams to the P4 switches that implement SNFs.

P4DAD [464] presents a novel approach to secure duplicate address detec-
tion (DAD) against spoofing attacks. Duplicate address detection is part of
NDP in IPv6 where nodes check if an IPv6 address to be applied conflicts with
another node. As the messages exchanged in duplicate address detection are
not authenticated or encrypted, it is vulnerable to message spoofing. As simple
alternative to authentication or encryption, P4DAD introduces a mechanism
to filter spoofed NDP messages. The P4 switch maintains registers to create
bindings between IPv6 addresses, port numbers, and address states. Thereby,
it can detect and drop spoofed NDP messages.

Chen [465] shows how AES can be implemented on Tofino-based P4 targets
in P4 using MATs as lookup tables. Expansion of the AES key is performed in
the control plane. MAT entries specific to the encryption keys are generated by
a controller.

Gondaliya et al. [467] implement six known mechanisms against IP ad-
dress spoofing for the NetFPGA SUME P4 target. Those are Network Ingress
Filtering, Reverse Path Forwarding (Loose, Strict and Feasible), Spoofing Pre-
vention Method (SPM), and Source Address Validation Improvement (SAVI).
The authors compare the different mechanisms with regard to resource usage
on the FPGA and report that the implementations of all mechanisms achieve
a throughput of about 8.5Gbit/s and a processing latency of about 2µs per
packet.

Poise [468] introduces context-aware policies for securing P4-based networks
in BYOD scenarios. Instead of relying on a remote controller or software-based
solution, Poise implements context-aware policy enforcement directly on P4 tar-

90

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

gets. Network administrators define context-aware security policies in a declara-
tive language based on Pyretic NetCore that are then compiled into P4 programs
to be executed on P4 targets. BYOD clients run a context collection module
that adds context information headers to network packets. The P4 program gen-
erated by Poise then parses and uses this information to enforce ACLs based on
device runtime contexts. P4 targets in Poise are managed by a Poise controller
that compiles the P4 programs, installs them on the P4 targets, and provides
configuration data to the collection modules. The authors present a prototype
including PoiseDroid, an implementation of the context collection module for
Android devices.

13.7. Summary and Analysis
Several prototypes apply P4’s custom packet headers, e.g., for building a

GTP firewall for 5G networks, a DDoS attack mitigation mechanism for the
SIP, or an IDS for the Modbus protocol in industrial networks. It is also used
for in-band signaling, e.g., in cooperative DDoS attack detection. All prototypes
rely on flexible packet header processing ; outstanding for this section, many of
them also rely on target-specific packet header processing functions offered by
the P4 target. Some works require custom externs, e.g., for applying MACsec or
IPsec on P4 data planes. As for prototypes from the research area Monitoring
(Section 9), many prototypes rely on registers and counters for recording statis-
tics, e.g., for detecting attacks in DDoS mitigation or in IDSs. While custom
packet headers and basic packet header processing are supported by all P4 hard-
ware targets, the portability of prototypes using these specific functions is very
limited. Several prototypes also rely on packet processing on the control plane
where information (e.g., from blocking lists, IDS rules) is translated into MAT
rules for data plane control or data received from the data plane (e.g., statistical
data or packet digests) is used for runtime control. Flexible deployment allows
to re-deploy network security programs on P4 switches in large networks.

14. Miscellaneous Applied Research Domains

This section summarizes work that falls outside of the other application do-
mains. We describe applied research on network coding, distributed algorithms,
state migration, and application support. Table 11 shows an overview of all the
work described. At the end of the section, we summarize the work and analyze
it with regard to P4’s core features described in Section 8.1.

14.1. Network Coding
In Network Coding (NC) [521], linear encoding and decoding operations are

applied on packets to increase throughput, efficiency, scalability, and resilience.
Network nodes apply primitive operations, e.g., splitting, encoding, or decoding
packets, to implement NC mechanisms such as multicast, forward error correc-
tion, or rerouting (resilience).

91

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTable 11: Overview of applied research on miscellaneous research domains (Section 14).

Research work Year Targets Code

Network Coding (Section 14.1)

Kumar et al. [482] 2018 bmv2 [483]
Gonçalves et al. [484] 2019 bmv2

Distributed Algorithm (Section 14.2)

P4CEP [485] 2018 bmv2, Netronome
DAIET [486] 2017 -
Sankaran et al. [487] 2020 -
Zang et al. [488] 2017 bmv2
Dang et al. [489, 490] 2016/20 Tofino [491]
P4BFT [492, 493] 2019 bmv2, Netronome
SwiShmem [494] 2020 -
SC-BFT [495] 2020 bmv2 [496]
LODGE [497] 2018 bmv2
LOADER [498] 2020 [499]
FLAIR [500] 2020 Tofino

State Migration (Section 14.3)

Swing State [501] 2017 bmv2
P4Sync [502] 2020 bmv2 [503]
Xue et al. [504] 2020 bmv2
Kurzniar et al. [505] 2020 bmv2
Sankaran et al. [506] 2020 NetFPGA-SUME

Application Support (Section 14.4)

P4DNS [507] 2019 NetFPGA SUME [508]
P4-BNG [509] 2019 bmv2, Tofino, Netronome,

NetFPGA-SUME
[510]

ARP-P4 [511] 2018 bmv2
Glebke et al. [512] 2019 Netronome
COIN [513] 2019 -
Lu et al. [514] 2019 Tofino
Yazdinejad et al. [515] 2019 bmv2
P4rt-OVS [516] 2020 - [517]
SwitchML [518] 2021 Tofino [519]
SwitchAgg [520] 2019 NetFPGA-SUME

92

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Kumar et al. [482] implement primitive NC operations such as splitting, en-
coding, and decoding for a PSA software switch. This is the first introduction
of NC for SDN, as fixed-function data plane switches, e.g., as in OF, did not
support such operations. The authors describe details of their implementation.
The open-source implementation [483] relies on clone and recirculate operations
to generate additional packets for encoding and decoding operations and packet
processing loops. Temporary packet buffers for gathering operations are imple-
mented with P4 registers. However, P4 hardware targets are not considered.

Gonçalves et al. [484] implement NC operations that may use information
from multiple packets during processing. The authors implement their concept
for PISA in P416. It features multiple complex NC operations that focus on
multiplications in Galois fields used for encoding and decoding operations. NC
operations are implemented in P4 externs that extend the capabilities of the
software switch to store a specific amount of received packets. Again, hardware
targets are not considered.

14.2. Distributed Algorithms
We describe related work on event processing and in-network consensus.

14.2.1. Event Processing
Data with stream characteristics often require specific processing. For ex-

ample, sensor data may be analyzed to determine whether values are within
certain thresholds, or chunks of data are aggregated and preprocessed.

P4CEP [485] shifts complex event processing from servers to P4 switches
so that event stream data, e.g., from sensors, is directly processed on the data
plane. The solution requires several workarounds to solve P4 limitations regard-
ing stateful packet processing.

DAIET [486] introduces in-network data aggregation where the aggregation
task is offloaded to the entire network. This reduces the amount of traffic and
reliefs the destination of computational load. The authors provide a prototype
implementation in P414 but only a few details are disclosed.

Sankaran et al. [487] increase the processing speed of packets by reducing
the time that is required by forwarding nodes to parse the packet header. To
that end, ingress routers parse the header stack to compute a so-called unique
parser code (UPC) which they add to the packet header. Downstream nodes
need to parse only the UPC to make forwarding decisions.

14.2.2. In-Network Consensus
Distributed algorithms or mechanisms may require consensus to determine

the right solution or processing. This includes communication between partici-
pating entities and some ways to determine the right solution.

Zhang et al. [488] propose to offload parts of the Raft consensus algorithm
to P4 switches. However, the mechanisms require an additional client to run on
the switch. The authors implement their application for a P4 software switch,
but details are not presented.

93

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Dang et al. [489, 490] describe a P4 implementation of Paxos, a protocol
that solves consensus for distributed algorithms in a network of unreliable pro-
cessors based on information exchange between switches. This work contains a
detailed description of a complex P4 implementation. The authors explain all
components, provide code snippets, and discuss their design choices.

P4BFT [492, 493] introduces a consensus mechanism against buggy or mali-
cious control plane instances. The controller responses are sent to trustworthy
instances which compare the responses and establish consensus, e.g., by choos-
ing the most common response. The authors propose to offload the comparison
process to the data plane.

SwiShmem [494] is a distributed shared state management layer for the
P4 data plane to implement stateful distributed network functions. In high-
performance environments controllers are easily overloaded when consistency of
write-intensive distributed network functions, like DDoS detection, or rate lim-
iters, is required. Therefore, SwiShmem offloads consistency mechanisms from
the control plane to the data plane. Then, consistency mechanisms operate at
line rate because switches process traffic, and generate and forward state update
messages without controller interaction.

Byzantine fault refers to a system where consensus between multiple entities
has to be established where one or more entities are unreliable. Byzantine fault
tolerance (BFT) describes mechanisms that handle such faults. However, BFTs
often require significant time to reach consensus due to high computational
overhead to reduce uncertainty. Switch-centric BFT (SC-BFT) [495] proposes to
offload BFT functionalities, i.e., time synchronization and state synchronization,
into the data plane. This significantly accelerates the consensus procedure since
nodes process information at line rate.

LODGE [497] implements a mechanism for switches to make forwarding
decisions based on global state without control of a central instance. Developers
define global state variables which are stored by all stateful data plane devices.
When such a node processes a packet that changes a global state variable, the
switch generates and forwards an update packet to all other stateful switches
on a predefined distribution tree. LOADER [498] introduces global state to
the data plane. Consensus is maintained by the data plane devices through
distributed algorithms, i.e., the switches send notification messages when global
state changes. This increases scalability in comparison to mechanisms where
consensus is managed by a central control entity.

FLAIR [500] accelerates read operations in leader-based consensus protocols
by processing the read requests in the data plane. To that end, FLAIR devices
in the core maintain persistent information about pending write operations on
all objects in the system. When a client submits a read request, the FLAIR
switch checks whether the requested object is stable, i.e., if it has pending write
operations. If the object is stable, the FLAIR switch instructs another client
with a stable version of the object, to send it to the requesting client. If the
object is not stable, the FLAIR switch forwards the write request to the leader.

94

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

14.3. State Migration
In Swing State [501], switches maintain state in registers that should be

migrated to other nodes. For migration, state information is carried by regular
packets created by the P4 clone operation throughout the network.

P4Sync [502] is a protocol to migrate data plane state between switches.
Thereby, it does not require controller interaction and provides guarantees on the
authenticity of the transferred state. To that end, it leverages the switch’s packet
generator to transfer the content of registers between devices. Authenticity in a
migration operation is guaranteed by a hash chain where each packet contains
the hashed values of both the current payload and the payload of the previous
packet.

Xue et al. [504] propose a hybrid approach for storing flow entries to address
the issue of limited on-switch memory. While some flow entries are still stored in
the internal memory of the switch, some flow entries may be stored on servers.
Switches access them with only low latency via remote direct memory access
(RDMA).

Kuzniar et al. [505] propose to leverage programmable switches to act as
in-network cache to speed up queries over encrypted data stores. Encrypted
key-value pairs are thereby stored in registers.

Sankaran et al. [506] describe a system to relieve switches from parsing
headers. They propose to parse headers at an ingress switch only and add a
unique parser code to the packet that identifies the set of headers of the packet.
With this information, following switches can parse relevant information from
the headers without having to parse the whole header stack.

14.4. Application Support
This subsection describes work that focuses on support or implementation

of existing applications and protocols.
P4DNS [507] is an in-network DNS system. The authors propose a hybrid

architecture with performance-critical components in the data plane and compo-
nents with flexibility requirements in the control plane. The data plane responds
to DNS requests and forwards regular traffic while cache management, recursive
DNS requests, and uncached DNS responses are handled by the control plane.

P4-BNG [509] implements a carrier-grade broadband network gateway (BNG)
in P4. The authors aim to provide an implementation for many different tar-
gets. To that end, they introduce a layer between data plane and control plane.
This hardware-specific BNG data plane controller runs directly on the targets
to provide a uniform interface to the control plane. It then configures the data
plane according to the control commands from the control plane.

ARP-P4 [511] implements MAC address learning based on ARP solely on
the P4 data plane. To substitute a control plane, the authors integrate MAC
learning as an external function.

Glebke et al. [512] propose to offload computer vision functionalities, in
particular, time-critical computations, to the data plane. To that end, the

95

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

authors leverage convolution filters on a P4-programmable NIC. The necessary
computations are distributed to various MATs.

COordinate-based INdexing (COIN) [513] is a mechanism to ensure efficient
access to data on multiple distributed edge servers. To that end, the authors
introduce a centralized instance that indexes data and its associated location.
When an edge server requires data that it has not cached itself, it requests the
data index at the centralized instance which provides a data location.

Lu et al. [514] propose intra-network inference (INI) and implement it in
P4. It offloads neural network computations into the data plane. To that end,
each P4 switch communicates via USB with a dedicated neural compute stick
which performs computations.

Yazdinejad et al. [515] present a P4-based blockchain enabled packet parser.
The proposed architecture focuses on FPGAs and aims to bring the security
characteristics of blockchains into the data plane to greatly increase processing
speed.

P4rt-OVS [516] is an extension for the OVS based on BPFs to combine the
programmability of P4 and the well-known features of the OVS. P4rt-OVS
enables runtime programming of the OVS, in particular, the deployment of new
network features without recompilation of the OVS. It contains a P4-to-BPF
compiler which allows developers to write data plane code for the OVS in P4.

SwitchML [518] proposes to accelerate distributed machine learning training
with programmable switch data planes. Within distributed machine learning,
so-called worker nodes compute model updates on a subset of the training data.
Afterwards, these model updates are synchronized and merged on the worker
nodes. The authors of SwitchML design a communication primitive to perform
parts of the model aggregation within the network. They evaluate their algo-
rithm on the Tofino platform and show an increase in training performance up
to a factor of 5.5.

SwitchAgg [520] proposes a switch design for in-network aggregation that
solves shortcomings of common reprogrammable switches. It processes packets
at line rate and drastically reduces the required network traffic for distributed
algorithms. The authors implement and evaluate their switch design in Verilog
HDL on a NetFPGA-SUME.

14.5. Summary and Analysis
P4 facilitates the development of prototypes in the domain of network cod-

ing (see Subection 14.1) by providing target-specific packet header processing
functions. The prototypes heavily rely on externs to implement complex packet
processing behavior, i.e., encoding and decoding operations, packet splitting
and packet merging. Such prototypes were mainly developed for the bmv2 and
portability to hardware platforms depends on the properties of the used ex-
terns and the capabilities of the hardware targets. Distributed algorithms (see
Section 14.2) leverage all sorts of P4’s core features. Some prototypes define
and use custom packet headers to transport information that are not available
in standard protocols. Others rely on flexible packet header processing and

96

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

target-specific packet header processing functions to implement unconventional
and complex packet processing behavior. Some prototypes require packet pro-
cessing on the control plane to resolve consistency issues or make network-wide
configuration decisions. In the context of state migration (see Section 14.3)
the prototypes mainly leverage externs to enable stateful processing. As a re-
sult, most projects were developed for the bmv2 with only limited portability
to hardware platforms. Finally, some prototypes reimplement traditional net-
work protocols or network elements, e.g., DNS, BNG, or ARP. Those projects
mainly define and use custom packet headers for information transport, flexible
packet header processing to implement the functionality of the specific protocol
or network element, target-specific packet header processing functions for com-
plex packet processing, and packet processing on the control plane for corner
cases.

15. Discussion & Outlook

We discuss the findings of this survey and present an outlook.

15.1. P4 as a Language for Programmable Data Planes
From a variety of data plane programming approaches, P4 became the cur-

rently most widespread standard. Learning resources (Section 3.8) and the bmv2
P4 software target (Section 5.1) constitute low entry barriers for P4 technology.
This is appealing for academia, and hardware support on high-speed platforms
make P4 relevant for industry. The large body of literature that we surveyed
in this work demonstrates that P4 has the right abstractions to build proto-
types for many use cases in different application domains. Moreover, P4 allows
simple and flexible definition of data plane APIs (Section 6) that can be used
by simple control plane programs or complex, enterprise-grade SDN controllers.
Thus, P4 allows practitioners and researchers to express their data plane and
control plane algorithms in a simple way and thereby unleashes a great innova-
tion potential. As P4 is supported by multiple platforms, there is a potentially
large user group. In addition, P4 is an open programming language so that the
source code can be published as open source. Therefore, public P4 code can
profit from a large user community, both in quantity and quality, which is a
benefit for software maintenance and security.

We consider P4 as a milestone technology. It offers great flexibility and
an easy, generalized, yet powerful abstraction to describe data plane behavior.
Its main objective is high-speed packet header processing. Its wide support by
high-speed hardware targets enables prototype development for many different
use cases.

15.2. P4 Targets Revisited
We have listed many available P4 targets in Section 5. However, our litera-

ture overview showed that mostly the bmv2 development and testing platform

97

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

as well as P4 hardware targets based on the Tofino ASIC were applied in the
reviewed papers.

The vast majority of prototypes runs on the software switch bmv2. One
reason is that it is freely available for everyone. In addition, the complexity of
the code is not constrained by hardware restrictions. And finally, any required
extern can be customized. Therefore, there is no limit on algorithmic complex-
ity so that bmv2 can serve as a platform for any use case – but only from a
functional point of view. As it is a pure software-based prototyping solution, it
cannot provide high throughput and is, therefore, not suitable for deployment
in production environments.

The Intel Tofino family of Intelligent Fabric Processor (IFP) ASICs is cur-
rently the most popular hardware target and the only programmable data plane
platform with throughput rates up to 25.6Tbit/s and ports running at up to
400Gbit/s, making it appropriate for production environments like data centers
or core networks. Tofino uses P4 as native programming language. Therefore,
comprehensive tools are offered to support the P4 development process on this
platform. Moreover, P4 gives access to all features of the Tofino chip so that
there is no penalty of using P4 as a programming language. Existing restrictions
are due to the functional limitation of a high-speed platform. Thus, prototypes
for Tofino are more challenging but prove the technical feasibility of a new con-
cept at commercial scale. Probably for these reasons the Tofino turned out to
be the mostly used hardware platform in our survey.

P4 can be also used on FPGA- or NPU-based targets. They come with only
a few ports and lower throughput rates so that they may be used for special-
purpose server applications but not for typical switching devices. They ex-
cel through the possibility to extend the target functionality with user-defined
externs. These cards are typically programmed by vendor-specific languages.
P4 support is achieved by trans-compilers that translate P4 programs into the
vendor-specific format. P4 programmability might be limited to a restricted
feature set while access to all features of a target is only possible through the
vendor-specific programming language. Whether the application of P4 for such
targets is beneficial compared to vendor-specific programming languages or in-
terfaces, mainly depends on the use case, level of knowledge of the programmer,
and if prospect target-independence is a goal.

15.3. Portability, Target- and Vendor-Independence
Portability is an important advantage of using a high-level programming lan-

guage such as P4. While the subject of portability is explicitly discussed in the
P416 specification (see Section 3), practical implications are frequently misun-
derstood. In general, P4 programs are not expected to be portable across differ-
ent P4 architectures. P4 programs written for a given P4 architecture should be
portable across all P4 targets that implement the corresponding model, provided
there are sufficient resources on the P4 target. Even if two P4 targets support
the same P4 architecture, a P4 program written for one P4 target might not
compile to the other P4 target because of the differences in the available re-
sources. The only portability guarantee that is made is that if the program can

98

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

be successfully compiled on both P4 targets, it will exhibit the same behavior
and produce the same results. This guarantee is somewhat weaker, compared
to what portability means in the general purpose programming languages.

There have been several efforts to define portable P4 architectures. For
network switches, it is mainly the Portable Switch Architecture (PSA). Their
main challenge is not in the language, but the capabilities of existing high-speed
hardware. While software P4 targets such as the bmv2 have no difficulties imple-
menting any P4 architecture, it is almost impossible to emulate a non-existing
capability or provide an adaptation layer on a high-speed hardware P4 target;
simply because of the lack of sufficient resources. This is especially true for any
differences that can be found in fixed-function components and externs. As a
result, today’s efforts tend to codify the “lowest common denominator” func-
tionality that is guaranteed to be found on multiple P4 targets while carefully
avoiding codifying any behavior that might differ. This severely limits the abil-
ity of P4 programs to fully use the capabilities of the chosen P4 targets and thus
almost all P4 code surveyed today tends to use native P4 architectures instead.

Portable P4 architectures still do not provide target- or vendor-independence,
i.e., the ability to simply recompile a P4 program without any changes on a dif-
ferent P4 target for either the same or a different vendor. This is due to the
fact that the availability of specific resources differs among P4 targets.

We evaluated the specific P4 targets chosen by the authors of the surveyed
works. Thereby, we noticed several important trends. First, the majority of
works have been implemented either for the bmv2 P4 target, P4 targets with the
Tofino ASIC, or both. When both implementations were present, the authors
tend to keep their implementations for the bmv2 P4 target and Tofino P4 target
separate as two independent P4 programs. Quite often, the implementations
are highly different and many authors had dedicated sections in their works
explaining the required major changes in porting a P4 program written for
the bmv2 P4 target into a P4 program for Tofino P4 targets. A number of
authors specifically mention that they could implement their P4 program only
on some targets but not on others. Reasons are specific hardware resource limits,
e.g., number of stages, and hardware constraints, e.g., available operations and
number of operations per packet. They are naturally present on all high-speed
targets. Additional reasons are special externs and fixed-function functionality
that are only available on specific P4 targets.

15.4. A Business Perspective for P4-Programmable Data Planes
Today, the most prevalent hardware network appliances are proprietary de-

vices for which customized hardware and software are jointly developed.
Data plane programming breaks with this process. Programmable packet

processing ASICs such as the Tofino may be sold by specialized manufacturers
and integrated by other vendors with a motherboard, CPU, memory, and con-
nectors in white box switches. The accompanying software, i.e., data plane and
control plane programs, might be provided by the same vendor, a third party,
or implemented by the users themselves.

99

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Because software is developed independently of hardware, the agility of the
development process can be increased, which can reduce the time to market.
Hardware platforms become reusable; they can be leveraged for multiple pur-
poses with the help of appropriate P4 programs.

Network solution providers may leverage the lowered entry barrier for cus-
tomized hardware appliances to develop and sell P4 software for various P4-
capable targets, at least with moderate adaptation effort. A decade of imple-
mentation experience may no longer be a prerequisite for that business.

In addition, companies with large networks and particular use cases, e.g.,
special applications in data centers, may use customized algorithms to overcome
inefficiencies of standardized protocols or mechanisms.

Large companies can avoid vendor lock-in by acquisition of programmable
components instead of black boxes. The components are assembled possibly
with open-source software leveraging data plane programming, SDN, and NFV.
The ACCESS 4.0 architecture [522] and the O-RAN Alliance [523] are examples.
This type of disaggregation also enables cost scaling effects where off-the-shelf
components are bought at moderate cost instead of expensive specialized appli-
ances.

15.5. Outlook
P4 is a programming language for a diverse set of programmable network

targets. Currently, its main practical application are high-speed switches. It
is supported by Intel’s Tofino ASIC, but other manufacturers like Xilinx and
Pensando recently also launched P4-based products.

The many prototypes surveyed in this paper showed that there is a need
for more functionality on programmable switches, which may be provided by
extern functions. While they reduce portability, they enable more use cases.
Examples for such extern functions are features that have been used in some
of the pure software-based P4 prototypes. They encrypt and decrypt packet
payload, support floating-point operations, provide flexible hash functions, or
allow more complex calculations. Those externs might be provided by the target
manufacturers for common use cases or integrated by users.

Hardware with a vendor-specific programming language may benefit from
offering interfaces and cross-compilers for P4 together with useful extern func-
tions. Although this may not give access to the full functionality of the plat-
form, users with P4 programming knowledge can customize such devices for
their needs without worrying about hardware details.

The biggest driver for P4 is possibly disaggregation. While currently de-
vices from different vendors can be orchestrated by a customized controller, P4
may have the potential to extend disaggregation towards specialized appliances
based on off-the-shelf programmable hardware. Hardware without an open pro-
gramming interface cannot profit from that market.

100

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

16. Conclusion

In this paper, we first gave a tutorial on data plane programming with P4.
We delineated it from SDN and introduced programming models with a special
focus on PISA which is most relevant for P4. We provided an overview of the
current state of P4 with regard to programming language, architectures, com-
pilers, targets, and data plane APIs. We reported research efforts to advance P4
that fall in the areas of optimization of development and deployment, research
on P4 targets, and P4-specific approaches for control plane operation.

In the second part of the paper, we analyzed 245 papers on applied research
that leverage P4 for implementation purposes. We categorized these publica-
tions into research domains, summarized their key points, and characterized
them by prototype, target platform, and source code availability. For each re-
search domain, we presented an analysis on how works benefit from P4. To that
end, we identified a small set of core features that facilitate implementations.
The survey proved a tremendous uptake of P4 for prototyping in academic re-
search from 2018 to 2021. One reason is certainly the multitude of openly
available resources on P4 and the bmv2 P4 software target. They are an ideal
starting point for creating P4-based prototypes, even for beginners.

The many P4-based activities which emerged only within short time show
that P4 technology can speed up the evolution of computer networking. While
multiple hardware targets are available, most hardware-based prototypes lever-
age the Tofino ASIC that is optimized for high throughput on many ports and
particularly suited for data center and WAN applications. However, the ma-
jority of P4-based prototypes was implemented with the bmv2 software switch.
Many of them were not ported to hardware, probably due to the complexity
of their data plane algorithms and lack of required extern functions on cur-
rent hardware. This may change in the future if new P4 hardware targets are
available. We expect P4 to become a base technology for multiple hardware
appliances, in particular in the context of disaggregation and for small-scale
markets.

17. Acknowledgement

This work was partly supported by the Deutsche Forschungsgemeinschaft
(DFG) under grant ME2727/1-2. The authors alone are responsible for the
content of this paper.

References

[1] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F. Kaashoek, The Click
Modular Router, ACM Transactions on Computer Systems (TOCS) 18
(2000) 217–231.

[2] VPP/What is VPP?, https://bit.ly/2mrxVGE, accessed 01-20-2021
(2021).

101

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[3] GitHub: NPL-Spec, https://github.com/nplang/NPL-Spec, accessed
01-20-2021 (2021).

[4] Software Defined Specification Environment for Networking (SDNet),
https://www.xilinx.com/support/documentation/backgrounders/
sdnet-backgrounder.pdf, accessed 01-20-2021 (2021).

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, D. Walker, P4:
Programming Protocol-independent Packet Processors, ACM SIGCOMM
Computer Communications Review (CCR) 44 (2014) 87–95.

[6] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti,
A Survey of Software-Defined Networking: Past, Present, and Future
of Programmable Networks, IEEE Communications Surveys & Tutorials
(COMST) 16 (2014) 1617–1634.

[7] Y. Jarraya, T. Madi, M. Debbabi, A Survey and a Layered Taxonomy of
Software-Defined Networking, IEEE Communications Surveys & Tutorials
(COMST) 16 (2014) 1955–1980.

[8] W. Xia, Y. Wen, C. H. Foh, D. Niyato, H. Xie, A Survey on
Software-Defined Networking, IEEE Communications Surveys & Tutorials
(COMST) 17 (2015) 27–51.

[9] D. F. Macedo, D. Guedes, L. F. M. Vieira, M. A. M. Vieira,
M. Nogueira, Programmable Networks—From Software-Defined Radio to
Software-Defined Networking, IEEE Communications Surveys & Tutorials
(COMST) 17 (2015) 1102–1125.

[10] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodol-
molky, S. Uhlig, Software-Defined Networking: A Comprehensive Survey,
Proceedings of the IEEE 103 (2015) 14–76.

[11] R. Masoudi, A. Ghaffari, Software defined networks: A survey, Journal of
Network and Computer Applications (JNCA) 67 (2016) 1–25.

[12] C. Trois, M. D. Del Fabro, L. C. E. de Bona, M. Martinello, A Survey on
SDN Programming Languages: Toward a Taxonomy, IEEE Communica-
tions Surveys & Tutorials (COMST) 18 (2016) 2687–2712.

[13] W. Braun, M. Menth, Software-Defined Networking Using OpenFlow:
Protocols, Applications and Architectural Design Choices, MDPI Future
Internet Journal (FI) 6 (2014) 302–336.

[14] F. Hu, Q. Hao, K. Bao, A Survey on Software-Defined Network and Open-
Flow: From Concept to Implementation, IEEE Communications Surveys
& Tutorials (COMST) 16 (2014) 2181–2206.

102

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[15] A. Lara, A. Kolasani, B. Ramamurthy, Network Innovation using Open-
Flow: A Survey, IEEE Communications Surveys & Tutorials (COMST)
16 (2014) 493–512.

[16] R. Bifulco, G. Rétvári, A Survey on the Programmable Data Plane: Ab-
stractions, Architectures, and Open Problems, in: IEEE International
Conference on High Performance Switching and Routing (HPSR), 2018,
pp. 1–7.

[17] E. Kaljic, A. Maric, P. Njemcevic, M. Hadzialic, A Survey on Data Plane
Flexibility and Programmability in Software-Defined Networking, IEEE
ACCESS 7 (2019) 47804–47840.

[18] O. Michel, R. Bifulco, G. Rétvári, S. Schmid, The Programmable Data
Plane: Abstractions, Architectures, Algorithms, and Applications, ACM
Computing Surveys 1 (2021).

[19] S. Kaur, K. Kumar, N. Aggarwal, A review on p4-programmable data
planes: Architecture, research efforts, and future directions, Computer
Communications 170 (2021).

[20] E. F. Kfoury, J. Crichigno, E. Bou-Harb, An exhaustive survey on p4
programmable data plane switches: Taxonomy, applications, challenges,
and future trends, ArXiv e-prints (2021).

[21] Y. Gao, Z. Wang, A Review of P4 Programmable Data Planes for Network
Security, Mobile Information Systems (2021).

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling Innovation in
Campus Networks, ACM SIGCOMM Computer Communications Review
(CCR) 38 (2008) 69–74.

[23] BESS: Berkeley Extensible Software Switch, http://span.cs.berkeley.
edu/bess.html, accessed 01-20-2021 (2021).

[24] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, M. Horowitz, Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN, ACM SIGCOMM Con-
ference 43 (2013) 99–110.

[25] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, T. Edsall,
DRMT: Disaggregated Programmable Switching, in: ACM SIGCOMM
Conference, 2017, p. 1–14.

[26] Google Presentations: P4 Tutorial, http://bit.ly/p4d2-2018-spring,
accessed 01-20-2021 (2018).

103

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[27] Website of the P4 Language Consortium, https://p4.org/, accessed 01-
20-2021 (2021).

[28] The P4 Language Specification, https://p4.org/p4-spec/p4-14/v1.0.
5/tex/p4.pdf, accessed 01-20-2021 (2018).

[29] P4 16 Language Specification (v.1.2.1, https://p4.org/p4-spec/docs/
P4-16-v1.2.1.html, accessed 01-20-2021 (2020).

[30] M. Moshref, A. Bhargava, A. Gupta, M. Yu, R. Govindan, Flow-level
State Transition as a New Switch Primitive for SDN, in: ACM SIGCOMM
Conference, 2014, p. 61–66.

[31] G. Bianchi, M. Bonola, A. Capone, C. Cascone, OpenState: Programming
Platform-independent Stateful Openflow Applications Inside the Switch,
ACM SIGCOMM Computer Communications Review (CCR) 44 (2014)
44–51.

[32] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrish-
nan, G. Varghese, N. McKeown, S. Licking, Packet Transactions: High-
Level Programming for Line-Rate Switches, in: ACM SIGCOMM Confer-
ence, 2016, p. 15–28.

[33] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Bruschi,
D. Sanvito, G. Siracusano, A. Capone, M. Honda, F. Huici, G. Siracusano,
FlowBlaze: Stateful Packet Processing in Hardware, in: USENIX Sympo-
sium on Networked Systems Design & Implementation (NSDI), 2019, p.
531–547.

[34] H. Song, Protocol-Oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane, in: ACM Workshop on Hot
Topics in Networks (HotNets), 2013, p. 127–132.

[35] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, D. Walker, NetKAT: Semantic Foundations for Networks,
in: ACM Symposium on Principles of Programming Languages (POPL),
2014, p. 113–126.

[36] P4 Tutorial, https://github.com/p4lang/tutorials, accessed 05-05-
2021 (2021).

[37] P4 Guide, https://github.com/jafingerhut/p4-guide, accessed 05-
05-2021 (2021).

[38] P4 Learning, https://github.com/nsg-ethz/p4-learning, accessed
05-05-2021 (2021).

[39] Charter of the P4 Architecture WG, https://github.com/p4lang/
p4-spec/blob/master/p4-16/psa/charter/P4_Arch_Charter.mdk, ac-
cessed 01-20-2021 (2021).

104

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[40] P4_16 PSA Specification (v1.1), https://p4lang.github.io/p4-spec/
docs/PSA-v1.1.0.html, accessed 01-20-2021 (2018).

[41] P4-HLIR Specification v.0.9.30, https://github.com/p4lang/p4-hlir/
blob/master/HLIRSpec.pdf, accessed 01-20-2021 (2016).

[42] GitHub: p4c, https://github.com/p4lang/p4c, accessed 01-20-2021
(2021).

[43] P. G. Patra, C. E. Rothenberg, G. Pongracz, MACSAD: High Performance
Dataplane Applications on the Move, in: IEEE International Conference
on High Performance Switching and Routing (HPSR), 2017, pp. 1–6.

[44] Open Data Plane, https://opendataplane.org/, accessed 01-20-2021
(2021).

[45] L. Jose, M. R. N. M. Lisa Yan, Stanford University; George Varghese,
Compiling Packet Programs to Reconfigurable Switches, in: USENIX
Symposium on Networked Systems Design & Implementation (NSDI),
2015, p. 103–115.

[46] P. Li, Y. Luo, P4GPU: Accelerate Packet Processing of a P4 Program with
a CPU-GPU Heterogeneous Architecture, in: ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS),
2016, pp. 125–126.

[47] GitHub: p4c-behavioural, https://github.com/p4lang/
p4c-behavioral/tree/master/p4c_bm, accessed 01-20-2021 (2021).

[48] GitHub: Behavioural Model Version 2 (BMv2), https://github.com/
p4lang/behavioral-model, accessed 01-20-2021 (2021).

[49] P4 Behaviour Model: Why did we need BMv2,
https://github.com/p4lang/behavioral-model\
#why-did-we-replace-p4c-behavioral-with-bmv2, accessed 01-
20-2021 (2021).

[50] GitHub: Behavioral model targets, https://github.com/p4lang/
behavioral-model/blob/master/targets/README.md, accessed 01-20-
2021 (2021).

[51] BMv2 Performance, https://github.com/p4lang/behavioral-model/
blob/master/docs/performance.md, accessed 01-20-2021 (2021).

[52] GitHub: eBPF Backend for p4c, https://github.com/p4lang/p4c/
tree/master/backends/ebpf, accessed 01-20-2021 (2021).

[53] p4c-ubpf: a New Back-end for the P4 Compiler, https://p4.org/p4/
p4c-ubpf.html, accessed 01-20-2021 (2021).

105

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[54] GitHub: p4c-xdp, https://github.com/vmware/p4c-xdp, accessed 01-
20-2021 (2021).

[55] P4@ELTE, http://p4.elte.hu/, accessed 01-20-2021 (2021).

[56] S. Laki, D. Horpácsi, P. Vörös, R. Kitlei, D. Leskó, M. Tejfel, High speed
packet forwarding compiled from protocol independent data plane speci-
fications, in: ACM SIGCOMM Conference, 2016, p. 629–630.

[57] Data Plane Development Kit (DPDK), https://www.dpdk.org/, ac-
cessed 01-20-2021 (2021).

[58] GitHub: T4P4S, https://github.com/P4ELTE/t4p4s, accessed 01-20-
2021 (2021).

[59] A. Bhardwaj, A. Shree, V. B. Reddy, S. Bansal, A Preliminary Perfor-
mance Model for Optimizing Software Packet Processing Pipelines, in:
ACM SIGOPS Asia-Pacific Workshop on System (APSys), 2017, pp. 1–7.

[60] X. Wu, P. Li, T. Miskell, L. Wang, Y. Luo, X. Jiang, Ripple: An Efficient
Runtime Reconfigurable P4 Data Plane for Multicore Systems, in: Inter-
national Conference on Networking and Network Applications (NaNA),
2019, pp. 142–148.

[61] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, J. Rex-
ford, PISCES: A Programmable, Protocol-Independent Software Switch,
in: ACM SIGCOMM Conference, 2016, p. 525–538.

[62] Open vSwitch, https://www.openvswitch.org/, accessed 01-20-2021
(2021).

[63] GitHub: PISCES, https://github.com/P4-vSwitch, accessed 01-20-
2021 (2021).

[64] S. Choi, X. Long, M. Shahbaz, S. Booth, A. Keep, J. Marshall, C. Kim,
The Case for a Flexible Low-Level Backend for Software Data Planes, in:
Asia-Pacific Workshop on Networking (APnet), 2017, p. 71–77.

[65] S. Choi, X. Long, M. Shahbaz, S. Booth, A. Keep, J. Marshall, C. Kim,
PVPP: A Programmable Vector Packet Processor, in: ACM Symposium
on SDN Research (SOSR), 2017, p. 197–198.

[66] Northbound Networks - Who are You?, https://northboundnetworks.
com/pages/about-us, accessed 01-20-2021 (2021).

[67] GitHub: ZodiacFX-P4, https://github.com/NorthboundNetworks/
ZodiacFX-P4, accessed 01-20-2021 (2021).

[68] GitHub: p4c-zodiacfx, https://github.com/NorthboundNetworks/
p4c-zodiacfx, accessed 01-20-2021 (2021).

106

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[69] P. Zanna, P. Radcliffe, K. G. Chavez, A Method for Comparing OpenFlow
and P4, in: International Telecommunication Networks and Applications
Conference (ITNAC), 2019, pp. 1–3.

[70] GitHub: P4-NetFPGA, https://github.com/NetFPGA/
P4-NetFPGA-public/wiki, accessed 01-20-2021 (2021).

[71] S. Ibanez, G. Brebner, N. McKeown, N. Zilberman, The P4-NetFPGA
Workflow for Line-Rate Packet Processing, in: ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA), 2019,
p. 1–9.

[72] N. Zilberman, Y. Audzevich, G. A. Covington, A. W. Moore, NetFPGA
SUME: Toward 100 Gbps as Research Commodity, IEEE Micro 34 (2014)
32–41.

[73] Netcope P4, https://www.netcope.com/Netcope/media/content/
NetcopeP4_2019_web.pdf, accessed 01-20-2021 (2021).

[74] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster,
H. Weatherspoon, P4FPGA: A Rapid Prototyping Framework for P4, in:
ACM Symposium on SDN Research (SOSR), 2017, p. 122–135.

[75] GitHub: P4FPGA, https://github.com/p4fpga/p4fpga, accessed 01-
20-2021 (2021).

[76] P. Benácek, V. Pu, H. Kubátová, P4-to-VHDL: Automatic Generation
of 100 Gbps Packet Parsers, in: IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2016, pp.
148–155.

[77] P. Benáček, V. Puš, J. Kořenek, M. Kekely, Line Rate Programmable
Packet Processing in 100Gb Networks, in: International Conference on
Field Programmable Logic and Applications (FPL), 2017, pp. 1–1.

[78] J. Cabal, P. Benáček, L. Kekely, M. Kekely, V. Puš, J. Kořenek, Config-
urable FPGA Packet Parser for Terabit Networks with Guaranteed Wire-
Speed Throughput, in: ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2018, p. 249–258.

[79] S. da Silva, Jeferson, Boyer, François-Raymond, Langlois, J. Pierre, P4-
Compatible High-Level Synthesis of Low Latency 100 Gb/s Streaming
Packet Parsers in FPGAs, in: ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2018, p. 147–152.

[80] M. Kekely, J. Korenek, Mapping of P4 Match Action Tables to FPGA, in:
International Conference on Field Programmable Logic and Applications
(FPL), 2017, pp. 1–2.

107

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[81] R. Iša, P. Benáček, V. Puš, Verification of Generated RTL from P4 Source
Code, in: IEEE International Conference on Network Protocols (ICNP),
2018, pp. 444–445.

[82] Z. Cao, H. Su, Q. Yang, J. Shen, M. Wen, C. Zhang, P4 to FPGA-A Fast
Approach for Generating Efficient Network Processors, IEEE ACCESS 8
(2020) 23440–23456.

[83] Z. Cao, H. Su, Q. Yang, M. Wen, C. Zhang, A Template-based Framework
for Generating Network Processor in FPGA, in: IEEE Conference on
Computer Communications Workshops (INFOCOMWKSHPS), 2019, pp.
1057–1058.

[84] Open Tofino, https://github.com/barefootnetworks/open-tofino, accessed
01-22-2021 (2021).

[85] EdgeCore Wedge 100BF-32X, https://www.edge-core.com/
productsInfo.php?cls=1&cls2=180&cls3=181&id=335, accessed
01-20-2021 (2021).

[86] APS Networks BF2556X-1T-A1F, https://stordirect.com/shop/
switches/25g-switches/aps-networks-bf2556x-1t-a1f/, acessed 01-
22-2021 (2021).

[87] APS Networks BF6064X-T-A2F, https://stordirect.com/shop/
switches/100g-switches/aps-networks-bf6064x-t-a2f/, acessed
01-22-2021 (2021).

[88] Netberg Aurora 610, https://netbergtw.com/products/aurora-610/,
accessed 01-20-2021 (2021).

[89] Arista Press Release: Arista Announces New Multi-function Platform
for Cloud Networking, https://www.arista.com/en/company/news/
press-release/5148-pr-20180605, accessed 01-20-2021 (2021).

[90] Cisco Blog: Increase Flexibility with Cisco’s Programmable
Cloud Infrastructure, https://blogs.cisco.com/datacenter/
increase-flexibility-with-ciscos-programmable-cloud-infrastructure,
accessed 01-20-2021 (2021).

[91] SONiC - Supported Platforms, https://azure.github.io/SONiC/
Supported-Devices-and-Platforms.html, accessed 01-20-2021 (2021).

[92] A. Seibulescu, M. Baldi, Leveraging P4 Flexibility to Expose Target-
Specific Features, in: P4 Workshop in Europe (EuroP4), 2020, p. 36–42.

[93] The Pensando Distributed Services Platform, https://pensando.io/
our-platform/, accessed 01-20-2021 (2021).

108

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[94] Netronome: P4 Data Plane Programming, https://netronome.com/
media/documents/WP_P4_Data_Plane_Programming.pdf, accessed 01-
20-2021 (2018).

[95] Netronome: Programming with P4 and C, https://www.netronome.
com/media/documents/WP_Programming_with_P4_and_C.pdf, accessed
09-20-2019 (2018).

[96] H. Harkous, M. Jarschel, M. He, R. Pries, W. Kellerer, Towards Under-
standing the Performance of P4 Programmable Hardware, in: ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS), 2019, pp. 1–6.

[97] Apache Thrift, https://thrift.apache.org/, accessed 01-20-2021
(2021).

[98] gRPC, https://grpc.io/, accessed 01-20-2021 (2021).

[99] Google Protocol Buffers, https://developers.google.com/
protocol-buffers/, accessed 01-20-2021 (2021).

[100] Charter of the P4 API WG, https://github.com/p4lang/p4-spec/
blob/master/api/charter/P4_API_WG_charter.mdk, accessed 01-20-
2021 (2021).

[101] P4 Runtime API Specification v.1.3.0 (2019-12-01), https://p4.org/
p4runtime/spec/v1.3.0/P4Runtime-Spec.html, accessed 01-20-2021
(2020).

[102] ONOS: P4 brigade, https://wiki.onosproject.org/display/ONOS/
P4+brigade, accessed 01-20-2021 (2021).

[103] OpenDaylight: P4 brigade, P4PluginDeveloperGuide, accessed 09-23-
2019 (2019).

[104] B. O’Connor, Y. Tseng, M. Pudelko, C. Cascone, A. Endurthi, Y. Wang,
A. Ghaffarkhah, D. Gopalpur, T. Everman, T. Madejski, J. Wanderer,
A. Vahdat, Using P4 on Fixed-Pipeline and Programmable Stratum
Switches, in: P4 Workshop in Europe (EuroP4), 2010, pp. 1–2.

[105] GitHub: P4tutorial, https://github.com/p4lang/tutorials/tree/
master/utils/p4runtime_lib, accessed 01-20-2021 (2021).

[106] GitHub: PI Library, https://github.com/p4lang/PI, accessed 01-20-
2021 (2021).

[107] GitHub: Behavioural Model - simple_switch_grpc, https:
//github.com/p4lang/behavioral-model/tree/master/targets/
simple_switch_grpc, accessed 01-20-2021 (2021).

109

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[108] GitHub: bmv2 Runtime CLI, https://github.com/p4lang/
behavioral-model/blob/master/tools/runtime_CLI.py, accessed
01-20-2021 (2021).

[109] E. O. Zaballa, Z. Zhou, Graph-to-P4: A P4 Boilerplate Code Generator
for Parse Graphs, in: P4 Workshop in Europe (EuroP4), 2019, pp. 1–2.

[110] Y. Zhou, J. Bi, ClickP4: Towards Modular Programming of P4, in: ACM
SIGCOMM Conference Posters and Demos, 2017, p. 100–102.

[111] M. Baldi, daPIPE A Data Plane Incremental Programming Environment,
in: P4 Workshop in Europe (EuroP4), 2019, pp. 1–6.

[112] M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, M. Mezini, How to
Avoid Making a Billion-Dollar Mistake: Type-Safe Data Plane Program-
ming with SafeP4, in: European Conference on Object-Oriented Program-
ming (ECOOP), 2019, pp. 1–28.

[113] M. Riftadi, F. Kuipers, P4I/O: Intent-Based Networking with P4, in:
IEEE Conference on Network Softwarization (NetSoft), 2019, pp. 438–
443.

[114] L. Yu, J. Sonchack, V. Liu, Mantis: Reactive Programmable Switches, in:
ACM SIGCOMM Conference, 2020, p. 296–309.

[115] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou, B. Tian, C. Sun, D. Cai,
M. Zhang, M. Yu, Lyra: A Cross-Platform Language and Compiler for
Data PlaneProgramming on Heterogeneous ASICs, in: ACM SIGCOMM
Conference, 2020, p. 435–450.

[116] M. Riftadi, J. Oostenbrink, F. Kuipers, GP4P4: Enabling Self-
Programming Networks, ArXiv e-prints (2019).

[117] D. Moro, D. Sanvito, A. Capone, FlowBlaze.p4: a library for quick pro-
totyping of stateful SDN applications in P4, in: IEEE Conference on
Network Function Virtualization and Software-Defined Networking (NFV-
SDN), 2020, pp. 95–99.

[118] D. Moro, D. Sanvito, A. Capone, Demonstrating FlowBlaze.p4: fast pro-
totyping for EFSM-based data plane applications, in: IEEE Conference on
Network Function Virtualization and Software-Defined Networking (NFV-
SDN), 2020, pp. 116–117.

[119] D. Moro, D. Sanvito, A. Capone, Developing EFSM-Based Stateful Ap-
plications with FlowBlaze.P4 and ONOS, in: P4 Workshop in Europe
(EuroP4), 2020, p. 52–53.

[120] N. Sultana, J. Sonchack, H. Giesen, I. Pedisich, Z. Han, N. Shyamkumar,
S. Burad, A. DeHon, B. T. Loo, Flightplan: Dataplane disaggregation
and placement for p4 programs, in: USENIX Symposium on Networked
Systems Design & Implementation (NSDI), 2021, pp. 571–592.

110

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[121] R. Shah, A. Shirke, A. Trehan, M. Vutukuru, P. Kulkarni, pcube: Primi-
tives for Network Data Plane Programming, in: IEEE International Con-
ference on Network Protocols (ICNP), 2018, pp. 430–435.

[122] Z. Ma, J. Bi, C. Zhang, Y. Zhou, A. B. Dogar, CacheP4: A Behavior-level
Caching Mechanism for P4, in: ACM SIGCOMM Conference Posters and
Demos, 2017, p. 108–110.

[123] A. Abhashkumar, J. Lee, J. Tourrilhes, S. Banerjee, W. Wu, J.-M. Kang,
A. Akella, P5: Policy-driven Optimization of P4 Pipeline, in: ACM Sym-
posium on SDN Research (SOSR), 2017, p. 136–142.

[124] P. Wintermeyer, M. Apostolaki, A. Dietmüller, L. Vanbever, P2GO: P4
Profile-Guided Optimizations, in: ACM Workshop on Hot Topics in Net-
works (HotNets), 2020, p. 146–152.

[125] S. Yang, L. Baia, L. Cui, Z. Ming, Y. Wu, S. Yu, H. Shen, Y. Pan, P4
Edge node enabling stateful traffic engineering and cyber security, Journal
of Network and Computer Applications (JNCA) 171 (2020) A84–A95.

[126] B. Vass, E. Bérczi-Kovács, C. Raiciu, G. Rétvári, Compiling Packet Pro-
grams to Reconfigurable Switches: Theory and Algorithms, in: P4 Work-
shop in Europe (EuroP4), 2020, p. 28–35.

[127] S. Abdi, U. Aftab, G. Bailey, B. Boughzala, F. Dewal, S. Parsazad,
E. Tremblay, PFPSim: A Programmable Forwarding Plane Simulator,
in: ACM/IEEE Symposium on Architectures for Networking and Com-
munications Systems (ANCS), 2016, pp. 55–60.

[128] J. Bai, J. Bi, P. Kuang, C. Fan, Y. Zhou, C. Zhang, NS4: Enabling
Programmable Data Plane Simulation, in: ACM Symposium on SDN
Research (SOSR), 2018, pp. 1–7.

[129] C. Fan, J. Bi, Y. Zhou, C. Zhang, H. Yu, NS4: A P4-Driven Network
Simulator, in: ACM SIGCOMM Conference Posters and Demos, 2017, p.
105–107.

[130] N. McKeown, D. Talayco, G. Varghese, N. P. Lopes, N. Bjørner,
A. Rybalchenko, Automatically Verifying Reachability and Well-
Formedness in P4 Networks, https://www.microsoft.com/en-us/
research/wp-content/uploads/2016/09/p4nod.pdf, accessed 01-20-
2021 (2016).

[131] A. Kheradmand, G. Rosu, P4K: A Formal Semantics of P4 and Applica-
tions, ArXiv e-prints (2018).

[132] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang,
C. Caşcaval, N. McKeown, N. Foster, P4V: Practical Verification for
Programmable Data Planes, in: ACM SIGCOMM Conference, 2018, p.
490–503.

111

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[133] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, M. Barcel-
los, Uncovering Bugs in P4 Programs with Assertion-based Verification,
in: ACM Symposium on SDN Research (SOSR), 2018, p. 1–7.

[134] M. Neves, L. Freire, A. Schaeffer-Filho, M. Barcellos, Verification of P4
Programs in Feasible Time using Assertions, in: ACM Conference on
emerging Networking EXperiments and Technologies (CoNEXT), 2018,
p. 73–85.

[135] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, C. Raiciu, De-
bugging P4 Programs with Vera, in: ACM SIGCOMM Conference, 2018,
p. 518–532.

[136] M. A. Noureddine, A. Hsu, M. Caesar, F. A. Zaraket, W. H. Sanders,
P4AIG: Circuit-Level Verification of P4 Programs, in: IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks – Supplemental
Volume (DSN-S), 2019, pp. 21–22.

[137] D. Dumitrescu, R. Stoenescu, L. Negreanu, C. Raiciu, bf4: towards bug-
free P4 programs, in: ACM SIGCOMM Conference, 2020, p. 571–585.

[138] D. Dumitrescu, R. Stoenescu, M. Popovici, L. Negreanu, C. Raiciu, Dat-
aplane equivalence and its applications, in: USENIX Symposium on Net-
worked Systems Design & Implementation (NSDI), 2019, pp. 683–698.

[139] F. Yousefi, A. Abhashkumar, K. Subramanian, K. Hans, S. Ghor-
bani, A. Akella, Liveness Verification of Stateful Network Functions, in:
USENIX Symposium on Networked Systems Design & Implementation
(NSDI), 2020, pp. 257–272.

[140] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, P. Athanas, P4Pktgen:
Automated Test Case Generation for P4 Programs, in: ACM Symposium
on SDN Research (SOSR), 2018, pp. 1–7.

[141] Y. Zhou, J. Bi, Y. Lin, Y. Wang, D. Zhang, Z. Xi, J. Cao, C. Sun,
P4Tester: Efficient Runtime Rule Fault Detection for Programmable Data
Planes, in: IEEE International Workshop on Quality of Service (IWQoS),
2019, pp. 1–10.

[142] GitHub: P4app, https://github.com/p4lang/p4app, accessed 01-20-
2021 (2021).

[143] A. Shukla, K. N. Hudemann, A. Hecker, S. Schmid, Runtime Verification
of P4 Switches with Reinforcement Learning, in: Workshop on Network
Meets AI & ML, 2019, p. 1–7.

[144] D. Jindal, R. Joshi, B. Leong, P4TrafficTool: Automated Code Generation
for P4 Traffic Generators and Analyzers, in: ACM Symposium on SDN
Research (SOSR), 2019, p. 152–153.

112

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[145] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soulé, H. Weatherspoon, Whippersnapper: A P4 Language Bench-
mark Suite, in: ACM Symposium on SDN Research (SOSR), 2017, p.
95–101.

[146] F. Rodriguez, P. G. K. Patra, L. Csikor, C. E. Rothenberg, P. Vörös,
S. Laki, G. Pongrácz, BB-Gen: A Packet Crafter for P4 Target Evaluation,
in: ACM SIGCOMM Conference Posters and Demos, 2018, p. 111–113.

[147] H. Harkous, M. Jarschel, M. He, R. Pries, W. Kellerer, P8: P4 with Pre-
dictable Packet Processing Performance, IEEE Transactions on Network
and Service Management (TNSM) (2020) 1–1.

[148] S. Kodeswaran, M. T. Arashloo, P. Tammana, J. Rexford, Tracking P4
Program Execution in the Data Plane, in: ACM Symposium on SDN
Research (SOSR), 2020, p. 117–122.

[149] K. Birnfeld, D. C. da Silva, W. Cordeiro, B. B. N. de França, P4 Switch
Code Data Flow Analysis: Towards Stronger Verification of Forwarding
Plane Software, in: IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2020, pp. 1–8.

[150] M. Neves, B. Huffaker, K. Levchenko, M. Barcellos, Dynamic Property
Enforcement in Programmable Data Planes, in: IFIP-TC6 Networking
Conference (Networking), 2019, pp. 1–9.

[151] C. Zhang, J. Bi, Y. Zhou, J. Wu, B. Liu, Z. Li, A. B. Dogar, Y. Wang,
P4DB: On-the-fly Debugging of the Programmable Data Plane, in: IEEE
International Conference on Network Protocols (ICNP), 2017, pp. 1–10.

[152] Y. Zhou, J. Bi, C. Zhang, B. Liu, Z. Li, Y. Wang, M. Yu, P4DB: On-the-
Fly Debugging for Programmable Data Planes, IEEE/ACM Transactions
on Networking (ToN) 27 (2019) 1714–1727.

[153] M. Neves, K. Levchenko, M. Barcellos, Sandboxing Data Plane Programs
for Fun and Profit, in: ACM SIGCOMM Conference Posters and Demos,
2017, p. 103–104.

[154] A. Shukla, S. Fathalli, T. Zinner, A. Hecker, S. Schmid, P4Consist: To-
ward Consistent P4 SDNs, IEEE Journal on Selected Areas in Communi-
cations (JSAC) 38 (2020) 1293–1307.

[155] Z. Xia, J. Bi, Y. Zhou, C. Zhang, KeySight: A Scalable Troubleshooting
Platform Based on Network Telemetry, in: ACM Symposium on SDN
Research (SOSR), 2018, pp. 1–2.

[156] F. Ruffy, T. Wang, A. Sivaraman, Gauntlet: Finding Bugs in Compilers
for Programmable Packet Processing, in: USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), 2020, pp. 1–17.

113

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[157] J. Krude, J. Hofmann, M. Eichholz, K. Wehrle, A. Koch, M. Mezini, On-
line Reprogrammable Multi Tenant Switches, in: ACM CoNEXT Work-
shop on Emerging In-Network Computing Paradigms, 2019, p. 1–8.

[158] D. Hancock, J. van der Merwe, HyPer4: Using P4 to Virtualize the Pro-
grammable Data Plane, in: ACM Conference on emerging Networking
EXperiments and Technologies (CoNEXT), 2016, p. 35–49.

[159] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, J. Wu, HyperV: A High Perfor-
mance Hypervisor for Virtualization of the Programmable Data Plane,
in: IEEE International Conference on Computer Communications and
Networks (ICCCN), 2017, pp. 1–9.

[160] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, J. Wu, MPVisor: A Modular
Programmable Data Plane Hypervisor, in: ACM Symposium on SDN
Research (SOSR), 2017, p. 179–180.

[161] GitHub: HyperVDP, https://github.com/HyperVDP, accessed 01-20-
2021 (2021).

[162] C. Zhang, J. Bi, Y. Zhou, J. Wu, HyperVDP: High-Performance Virtual-
ization of the Programmable Data Plane, IEEE Journal on Selected Areas
in Communications (JSAC) 37 (2019) 556–569.

[163] M. Saquetti, G. Bueno, W. Cordeiro, J. R. Azambuja, P4VBox: Enabling
P4-Based Switch Virtualization, IEEE Communications Letters 24 (2020)
146–149.

[164] M. Saquetti, G. Bueno, W. Cordeiro, J. R. Azambuja, VirtP4: An Ar-
chitecture for P4 Virtualization, in: IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), 2019, pp. 75–78.

[165] P. Zheng, T. Benson, C. Hu, P4Visor: Lightweight Virtualization and
Composition Primitives for Building and Testing Modular Programs, in:
ACM Conference on emerging Networking EXperiments and Technologies
(CoNEXT), 2018, p. 98–111.

[166] R. Parizotto, L. Castanheira, F. Bonetti, A. Santos, A. Schaeffer-Filho,
PRIME: Programming In-Network Modular Extensions, in: IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2020, pp. 1–
9.

[167] E. O. Zaballa, D. Franco, M. S. Berger, M. Higuero, A Perspective on
P4-Based Data and Control Plane Modularity for Network Automation,
in: P4 Workshop in Europe (EuroP4), 2020, p. 59–61.

[168] R. Stoyanov, N. Zilberman, MTPSA: Multi-Tenant Programmable
Switches, in: P4 Workshop in Europe (EuroP4), 2020, p. 43–48.

114

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[169] GitHub: MTPSA, https://github.com/mtpsa, accessed 01-20-2021
(2021).

[170] S. Han, S. Jang, H. Choi, H. Lee, S. Pack, Virtualization in Programmable
Data Plane: A Survey and Open Challenges, IEEE Open Journal of the
Communications Society 1 (2020) 527–534.

[171] J. Santiago da Silva, T. Stimpfling, T. Luinaud, B. Fradj, B. Boughzala,
One for All, All for One: A Heterogeneous Data Plane for Flexible P4 Pro-
cessing, in: IEEE International Conference on Network Protocols (ICNP),
2018, pp. 440–441.

[172] C. Beckmann, R. Krishnamoorthy, H. Wang, A. Lam, C. Kim, Hurdles
for a DRAM-based Match-Action Table, in: Conference on Innovation in
Clouds, Internet and Networks and Workshops (ICIN), 2020, pp. 13–16.

[173] A. Aghdai, Y. Xu, H. J. Chao, Design of a hybrid modular switch,
in: IEEE Conference on Network Function Virtualization and Software-
Defined Networking (NFV-SDN), 2017, pp. 1–6.

[174] S. Laki, D. Horpacsi, P. Voros, M. Tejfel, P. Hudoba, G. Pongracz, L. Mol-
nar, The Price for Asynchronous Execution of Extern Functions in Pro-
grammable Software Data Planes, in: Workshop on Flexible Network Data
Plane Processing (NETPROC@ICIN), 2020, pp. 23–28.

[175] D. Horpácsi, P. Vörös, M. Tejfel, S. Laki, G. Pongrácz, L. Molnár, Asyn-
chronous Extern Functions in Programmable Software Data Planes, in:
P4 Workshop in Europe (EuroP4), 2019, pp. 1–2.

[176] D. Scholz, A. Oeldemann, F. Geyer, S. Gallenmüller, H. Stubbe, T. Wild,
A. Herkersdorf, G. Carle, Cryptographic Hashing in P4 Data Planes, in:
P4 Workshop in Europe (EuroP4), 2019, pp. 1–6.

[177] J. S. da Silva, F.-R. Boyer, L.-O. Chiquette, J. P. Langlois, Extern Objects
in P4: an ROHC Header Compression Scheme Case Study, in: IEEE
Conference on Network Softwarization (NetSoft), 2018, pp. 517–522.

[178] N. Gray, A. Grigorjew, T. Hosssfeld, A. Shukla, T. Zinner, Highlighting
the Gap Between Expected and Actual Behavior in P4-enabled Networks,
in: IFIP/IEEE Symposium on Integrated Management (IM), 2019, pp.
731–732.

[179] M. V. Dumitru, D. Dumitrescu, C. Raiciu, Can We Exploit Buggy P4
Programs?, in: ACM Symposium on SDN Research (SOSR), 2020, p.
62–68.

[180] J. Mambretti, J. Chen, F. Yeh, S. Y. Yu, International P4 Networking
Testbed, in: ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), 2019, pp. 1–2.

115

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[181] B. Chung, C. Tseng, J. H. Chen, J. Mambretti, P4MT: Multi-Tenant Sup-
port Prototype for International P4 Testbed, in: ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS),
2019, pp. 1–2.

[182] A national programmable infrastructure to experiment
with next-generation networks, https://www.2stic.nl/
national-programmable-infrastructure.html, accessed 01-20-2021
(2021).

[183] R. Sukapuram, G. Barua, PPCU: Proportional Per-packet Consistent Up-
dates for SDNs using Data Plane Time Stamps, Computer Networks 155
(2019) 72–86.

[184] R. Sukapuram, G. Barua, ProFlow: Proportional Per-Bidirectional-Flow
Consistent Updates, IEEE Transactions on Network and Service Manage-
ment (TNSM) 16 (2019) 675–689.

[185] S. Liu, T. A. Benson, M. K. Reiter, Efficient and Safe Network Updates
with Suffix Causal Consistency, in: European Conference on Computer
Systems (EUROSYS), 2019, p. 1–15.

[186] T. D. Nguyen, M. Chiesa, M. Canini, Decentralized Consistent Network
Updates in SDN with ez-Segway, ArXiv e-prints (2017).

[187] S. Geissler, S. Herrnleben, R. Bauer, A. Grigorjew, T. Zinner, M. Jarschel,
The Power of Composition: Abstracting aMulti-Device SDN Data Path
Through a Single API, IEEE Transactions on Network and Service Man-
agement (TNSM) (2019) 722–735.

[188] E. C. Molero, S. Vissicchio, L. Vanbever, Hardware-Accelerated Network
Control Planes, in: ACMWorkshop on Hot Topics in Networks (HotNets),
2018, p. 120–126.

[189] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J. Rex-
ford, Heavy-Hitter Detection Entirely in the Data Plane, in: ACM Sym-
posium on SDN Research (SOSR), 2017, p. 164–176.

[190] GitHub: Hashpipe, https://github.com/vibhaa/hashpipe, accessed
01-20-2021 (2021).

[191] Y. Lin, C. Huang, S. Tsai, SDN Soft Computing Application for Detecting
Heavy Hitters, IEEE Transactions on Industrial Informatics (ToII) 15
(2019) 5690–5699.

[192] D. A. Popescu, G. Antichi, A. W. Moore, Enabling Fast Hierarchical
Heavy Hitter Detection using Programmable Data Planes, in: ACM Sym-
posium on SDN Research (SOSR), 2017, p. 191–192.

116

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[193] R. Harrison, Q. Cai, A. Gupta, J. Rexford, Network-Wide Heavy Hit-
ter Detection with Commodity Switches, in: ACM Symposium on SDN
Research (SOSR), 2018, pp. 1–7.

[194] J. Kučera, D. A. Popescu, H. Wang, A. Moore, J. Kořenek, G. Antichi,
Enabling Event-Triggered Data Plane Monitoring, in: ACM Symposium
on SDN Research (SOSR), 2020, p. 14–26.

[195] M. Silva, A. Jacobs, R. Pfitscher, L. Granville, IDEAFIX: Identifying
Elephant Flows in P4-Based IXP Networks, in: IEEE Global Communi-
cations Conference (GLOBECOM), 2018, pp. 1–6.

[196] B. Turkovic, J. Oostenbrink, F. Kuipers, Detecting Heavy Hitters in the
Data-plane, ArXiv e-prints (2019).

[197] D. Ding, M. Savi, G. Antichi, D. Siracusa, An Incrementally-Deployable
P4-Enabled Architecture for Network-Wide Heavy-Hitter Detection,
IEEE Transactions on Network and Service Management (TNSM) 17
(2020) 75–88.

[198] GitHub: Network-Wide Heavy-Hitter Detection Implemen-
tation in P4 Language, https://github.com/DINGDAMU/
Network-wide-heavy-hitter-detection, accessed 01-20-2021 (2021).

[199] J. Sonchack, A. J. Aviv, E. Keller, J. M. Smith, Turboflow: Informa-
tion Rich Flow Record Generation on Commodity Switches, in: European
Conference on Computer Systems (EUROSYS), 2018, p. 1–16.

[200] GitHub: TurboFlow, https://github.com/jsonch/TurboFlow, accessed
01-20-2021 (2021).

[201] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, J. M. Smith, Scaling
Hardware Accelerated Network Monitoring to Concurrent and Dynamic
Queries With *Flow, in: USENIX Annual Technical Conference (ATC),
2018, pp. 823–835.

[202] GitHub: StarFlow, https://github.com/jsonch/starflow, accessed
01-25-2021 (2021).

[203] J. Hill, M. Aloserij, P. Grosso, Tracking Network Flows with P4, in:
IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS),
2018, pp. 23–32.

[204] L. Castanheira, R. Parizotto, A. E. Schaeffer-Filho, FlowStalker: Com-
prehensive Traffic Flow Monitoring on the Data Plane using P4, in: IEEE
International Conference on Communicaotions (ICC), 2019, pp. 1–6.

[205] R. Parizotto, L. Castanheira, R. H. Ribeiro, L. Zembruzki, A. S. Jacobs,
L. Z. Granville, A. Schaeffer-Filho, ShadowFS: Speeding-up Data Plane
Monitoring and Telemetry using P4, in: IEEE International Conference
on Communicaotions (ICC), 2020, pp. 1–6.

117

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[206] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos,
A. Madeira, FlowLens: Enabling Efficient Flow Classification for ML-
based Network Security Applications, in: Network and Distributed Sys-
tems Security Symposium (NDSS), 2021, pp. 1–18.

[207] GitHub: FlowLens, https://github.com/dmbb/FlowLens, accessed 04-
14-2021 (2021).

[208] W. Wang, P. Tammana, A. Chen, T. S. E. Ng, Grasp the Root Causes in
the Data Plane: Diagnosing Latency Problems with SpiderMon, in: ACM
Symposium on SDN Research (SOSR), 2020, p. 55–61.

[209] X. Chen, S. Landau-Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, T.-Y. Wang, Fine-Grained Queue Measurement in the Data
Plane, in: ACM Conference on emerging Networking EXperiments and
Technologies (CoNEXT), 2019, p. 15–29.

[210] Z. Zhao, X. Shi, X. Yin, Z. Wang, Q. Li, HashFlow for Better Flow Record
Collection, in: IEEE International Conference on Distributed Computing
Systems (ICDCS), 2019, pp. 1416–1425.

[211] Q. Huang, P. P. C. Lee, Y. Bao, Sketchlearn: Relieving User Burdens
in Approximate Measurement with Automated Statistical Inference, in:
ACM SIGCOMM Conference, 2018, p. 576–590.

[212] GitHub: SketchLearn, https://github.com/huangqundl/SketchLearn,
accessed 01-20-2021 (2021).

[213] L. Tang, Q. Huang, P. C. Lee, A Fast and Compact Invertible Sketch
for Network-Wide Heavy Flow Detection, IEEE/ACM Transactions on
Networking (ToN) 28 (2020) 2350–2363.

[214] GitHub: MV-Sketch, https://github.com/Grace-TL/MV-Sketch, ac-
cessed 01-20-2021 (2021).

[215] Z. Hang, M. Wen, Y. Shi, C. Zhang, Interleaved Sketch: Toward Consis-
tent Network Telemetry for Commodity Programmable Switches, IEEE
ACCESS 7 (2019) 146745–146758.

[216] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, V. Braverman, One Sketch
to Rule Them All: Rethinking Network Flow Monitoring with UnivMon,
in: ACM SIGCOMM Conference, 2016, p. 101–114.

[217] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li,
S. Uhlig, Elastic Sketch: Adaptive and Fast Network-wide Measurements,
in: ACM SIGCOMM Conference, 2018, p. 561–575.

[218] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li,
S. Uhlig, Adaptive Measurements Using One Elastic Sketch, IEEE/ACM
Transactions on Networking (ToN) 27 (2019) 2236–2251.

118

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[219] GitHub: ElasticSketch, https://github.com/BlockLiu/
ElasticSketchCode, accessed 01-20-2021 (2021).

[220] F. Pereira, N. Neves, F. M. V. Ramos, Secure network monitoring using
programmable data planes, in: IEEE Conference on Network Function
Virtualization and Software-Defined Networking (NFV-SDN), 2017, pp.
286–291.

[221] R. F. T. Martins, F. L. Verdi, R. Villaça, L. F. U. Garcia, Using Probabilis-
tic Data Structures for Monitoring of Multi-tenant P4-based Networks, in:
IEEE Symposium on Computers and Communications (ISCC), 2018, pp.
204–207.

[222] Y.-K. Lai, K.-Y. Shih, P.-Y. Huang, H.-P. Lee, Y.-J. Lin, T.-L. Liu, J. H.
Chen, Sketch-based Entropy Estimation for Network Traffic Analysis us-
ing Programmable Data Plane ASICs, in: ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems (ANCS), 2019,
pp. 1–2.

[223] Z. Liu, S. Zhou, O. Rottenstreich, V. Braverman, J. Rexford, Memory-
Efficient Performance Monitoring on Programmable Switches with Lean
Algorithms, in: SIAM Symposium on Algorithmic Principles of Computer
Systems (APOCS), 2020, pp. 31–44.

[224] L. Tang, Q. Huang, P. P. C. Lee, SpreadSketch: Toward Invertible and
Network-Wide Detection of Superspreaders, in: IEEE International Con-
ference on Computer Communications (INFOCOM), 2020, pp. 1608–1617.

[225] GitHub: SpreadSketch, http://adslab.cse.cuhk.edu.hk/software/
spreadsketch/, accessed 01-20-2021 (2021).

[226] J. Vestin, A. Kassler, D. Bhamare, K. Grinnemo, J. Andersson, G. Pon-
gracz, Programmable Event Detection for In-Band Network Telemetry, in:
IEEE International Conference on Cloud Networking (IEEE CloudNet),
2019, pp. 1–6.

[227] S. Wang, Y. Chen, J. Li, H. Hu, J. Tsai, Y. Lin, A Bandwidth-Efficient
INT System for Tracking the Rules Matched by the Packets of a Flow, in:
IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6.

[228] D. Bhamare, A. Kassler, J. Vestin, M. A. Khoshkholghi, J. Taheri, IntOpt:
In-Band Network Telemetry Optimization for NFV Service Chain Mon-
itoring, in: IEEE International Conference on Communicaotions (ICC),
2019, pp. 1–7.

[229] C. Jia, T. Pan, Z. Bian, X. Lin, E. Song, C. Xu, T. Huang, Y. Liu, Rapid
Detection and Localization of Gray Failures in Data Centers via In-band
Network Telemetry, in: IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2020, pp. 1–9.

119

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[230] GitHub: Gray Failures Detection and Localization, https://github.
com/graytower/INT_DETECT, accessed 01-20-2021 (2021).

[231] B. Niu, J. Kong, S. Tang, Y. Li, Z. Zhu, Visualize Your IP-Over-Optical
Network in Realtime: A P4-Based Flexible Multilayer In-Band Network
Telemetry (ML-INT) System, IEEE ACCESS 7 (2019) 82413–82423.

[232] N. S. Kagami, R. I. T. da Costa Filho, L. P. Gaspary, CAPEST: Offloading
Network Capacity and Available Bandwidth Estimation to Programmable
Data Planes, IEEE Transactions on Network and Service Management
(TNSM) 17 (2020) 175–189.

[233] GitHub: Capest, https://github.com/nicolaskagami/capest, ac-
cessed 01-20-2021 (2021).

[234] N. Choi, L. Jagadeesan, Y. Jin, N. N. Mohanasamy, M. R. Rahman,
K. Sabnani, M. Thottan, Run-time Performance Monitoring, Verification,
and Healing of End-to-End Services, in: IEEE Conference on Network
Softwarization (NetSoft), 2019, pp. 30–35.

[235] A. Sgambelluri, F. Paolucci, A. Giorgetti, D. Scano, F. Cugini, Exploit-
ing Telemetry in Multi-Layer Networks, in: International Conference on
Transparent Optical Networks (ICTON), 2020, pp. 1–4.

[236] Y. Feng, S. Panda, S. G. Kulkarni, K. K. Ramakrishnan, N. Duffield, A
SmartNIC-Accelerated Monitoring Platform for In-band Network Teleme-
try, in: IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), 2020, pp. 1–6.

[237] J. Marques, K. Levchenko, L. Gaspary, IntSight: Diagnosing SLO Viola-
tions with in-Band Network Telemetry, in: ACM Conference on emerging
Networking EXperiments and Technologies (CoNEXT), 2020, p. 421–434.

[238] GitHub: IntSight, https://github.com/jonadmark/intsight-conext,
accessed 01-20-2021 (2021).

[239] D. Suh, S. Jang, S. Han, S. Pack, X. Wang, Flexible sampling-based
in-band network telemetry in programmable data plane, ICT Express 6
(2020) 62–65.

[240] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, C. Kim, Language-Directed Hardware Design for Net-
work Performance Monitoring, in: ACM SIGCOMM Conference, 2017,
p. 85–98.

[241] V. Nathan, S. Narayana, A. Sivaraman, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, C. Kim, Demonstration of the Marple System for Network
Performance Monitoring, in: ACM SIGCOMM Conference Posters and
Demos, 2017, p. 57–59.

120

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[242] GitHub: Marple, https://github.com/performance-queries/marple,
accessed 01-20-2021 (2021).

[243] P. Laffranchini, L. Rodrigues, M. Canini, B. Krishnamurthy, Measure-
ments As First-class Artifacts, in: IEEE International Conference on Com-
puter Communications (INFOCOM), 2019, pp. 415–423.

[244] GitHub: Mafia, https://github.com/paololaff/mafia-sdn, accessed
01-20-2021 (2021).

[245] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, W. Willinger,
Sonata: Query-Driven Streaming Network Telemetry, in: ACM Sympo-
sium on SDN Research (SOSR), 2018, p. 357–371.

[246] GitHub: SONATA, https://github.com/Sonata-Princeton/
SONATA-DEV, accessed 01-20-2021 (2021).

[247] R. Teixeira, R. Harrison, A. Gupta, J. Rexford, PacketScope: Monitor-
ing the Packet Lifecycle Inside a Switch, in: ACM Symposium on SDN
Research (SOSR), 2020, p. 76–82.

[248] Y. Gao, Y. Jing, W. Dong, UniROPE: Universal and Robust Packet Tra-
jectory Tracing for Software-Defined Networks, IEEE/ACM Transactions
on Networking (ToN) 26 (2018) 2515–2527.

[249] S. Knossen, J. Hill, P. Grosso, Hop Recording and Forwarding State Log-
ging: Two Implementations for Path Tracking in P4, in: IEEE/ACM
Innovating the Network for Data-Intensive Science (INDIS), 2019, pp.
36–47.

[250] A. Indra Basuki, D. Rosiyadi, I. Setiawan, Preserving Network Privacy
on Fine-grain Path-tracking Using P4-based SDN, in: International Con-
ference on Radar, Antenna, Microwave, Electronics, and Telecommunica-
tions (ICRAMET), 2020, pp. 129–134.

[251] R. Joshi, T. Qu, M. C. Chan, B. Leong, B. T. Loo, BurstRadar: Practi-
cal Real-time Microburst Monitoring for Datacenter Networks, in: ACM
SIGOPS Asia-Pacific Workshop on System (APSys), 2018, pp. 1–8.

[252] GitHub: BurstRadar, https://github.com/harshgondaliya/
burstradar, accessed 01-20-2021 (2021).

[253] M. Ghasemi, T. Benson, J. Rexford, Dapper: Data Plane Performance
Diagnosis of TCP, in: ACM Symposium on SDN Research (SOSR), 2017,
p. 61–74.

[254] C.-H. He, B. Y. Chang, S. Chakraborty, C. Chen, L. C. Wang, A Zero
Flow Entry Expiration Timeout P4 Switch, in: ACM Symposium on SDN
Research (SOSR), 2018, pp. 1–2.

121

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[255] A. Riesenberg, Y. Kirzon, M. Bunin, E. Galili, G. Navon, T. Mizrahi,
Time-Multiplexed Parsing in Marking-Based Network Telemetry, in:
ACM International Conference on Systems and Storage (SYSTOR), 2019,
p. 80–85.

[256] GitHub: P4 Alternate Marking Algorithm, https://github.com/
AlternateMarkingP4/FlaseClase, accessed 01-20-2021 (2021).

[257] S. Y. Wang, H. W. Hu, Y. B. Lin, Design and Implementation of TCP-
Friendly Meters in P4 Switches, IEEE/ACM Transactions on Networking
(ToN) 28 (2020) 1885–1898.

[258] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, B. Koldehofe, P4STA: High
Performance Packet Timestamping with Programmable Packet Proces-
sors, in: IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2020, p. 1–9.

[259] GitHub: P4STA, https://github.com/ralfkundel/P4STA, accessed 01-
20-2021 (2021).

[260] R. Hark, D. Bhat, M. Zink, R. Steinmetz, A. Rizk, Preprocessing Monitor-
ing Information on the SDN Data-Plane using P4, in: IEEE Conference on
Network Function Virtualization and Software-Defined Networking (NFV-
SDN), 2019, pp. 1–6.

[261] D. Ding, M. Savi, D. Siracusa, Estimating Logarithmic and Exponential
Functions to Track Network Traffic Entropy in P4, in: IEEE/IFIP Net-
work Operations and Management Symposium (NOMS), 2020, pp. 1–9.

[262] GitHub: P4Entropy, https://github.com/DINGDAMU/P4Entropy, ac-
cessed 01-20-2021 (2021).

[263] P. Taffet, J. Mellor-Crummey, Lightweight, Packet-Centric Monitoring of
Network Traffic and Congestion Implemented in P4, in: IEEE Symposium
on High-Performance Interconnects (HOTI), 2019, pp. 54–58.

[264] Y. Lin, Y. Zhou, Z. Liu, K. Liu, Y. Wang, M. Xu, J. Bi, Y. Liu, J. Wu,
NetView: Towards On-Demand Network-Wide Telemetry in the Data
Center, in: IEEE International Conference on Communicaotions (ICC),
2020, pp. 1–6.

[265] J. Bai, M. Zhang, G. Li, C. Liu, M. Xu, H. Hu, FastFE: Accelerating
ML-Based Traffic Analysis with Programmable Switches, in: Workshop
on Secure Programmable Network Infrastructure (SPIN), 2020, p. 1–7.

[266] J. Kučera, R. B. Basat, M. Kuka, G. Antichi, M. Yu, M. Mitzenmacher,
Detecting Routing Loops in the Data Plane, in: ACM Conference on
emerging Networking EXperiments and Technologies (CoNEXT), 2020,
p. 466–473.

122

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[267] Z. Hang, Y. Shi, M. Wen, C. Zhang, TBSW: Time-Based Sliding Win-
dow Algorithm for Network Traffic Measurement, in: IEEE International
Conference on High Performance Computing and Communications; IEEE
International Conference on Smart City; IEEE International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), 2019, pp. 1305–
1310.

[268] B. Guan, S. Shen, FlowSpy: An Efficient Network Monitoring Framework
Using P4 in Software-Defined Networks, in: IEEE Semiannual Vehicular
Technology Conference (VTC), 2019, pp. 1–5.

[269] Heavy Hitter Detection: Guest lecture for CS344 at Stanford, https://
cs344-stanford.github.io/lectures/Lecture-4-HHD.pdf, accessed
01-20-2021 (2018).

[270] B. Claise, Cisco Systems NetFlow Services Export Version 9, RFC 3954,
RFC Editor (10 2004).
URL http://www.rfc-editor.org/rfc/rfc3954.txt

[271] P. Phaal, S. Panchen, N. McKee, InMon Corporation’s sFlow: A Method
for Monitoring Traffic in Switched and Routed Networks, RFC 3176, RFC
Editor (09 2001).
URL http://www.rfc-editor.org/rfc/rfc3176.txt

[272] B. Claise, B. Trammell, P. Aitken, Specification of the IP Flow Infor-
mation Export (IPFIX) Protocol for the Exchange of Flow Information,
STD 77, RFC Editor (09 2013).
URL http://www.rfc-editor.org/rfc/rfc7011.txt

[273] In-band Network Telemetry (INT), https://p4.org/assets/
INT-current-spec.pdf, accessed 01-20-2021 (2021).

[274] Charter of the P4 Applications WG, https://github.com/p4lang/
p4-applications/blob/master/docs/charter.pdf, accessed 01-20-
2021 (2021).

[275] C. Kim, A. Sivaraman, N. P. Katta, A. Bas, A. Dixit, L. J. Wobker,
In-band Network Telemetry via Programmable Dataplanes, https://
nkatta.github.io/papers/int-demo.pdf (2015).

[276] F. Cugini, P. Gunning, F. Paolucci, P. Castoldi, A. Lord, P4 In-Band
Telemetry (INT) for Latency-Aware VNF in Metro Networks, in: Optical
Fiber Communication Conference (OFC), 2019, pp. 1–3.

[277] Open Networking Foundation: Trellis, https://www.opennetworking.
org/trellis/, accessed 01-20-2021 (2021).

[278] Google Presentations: Trellis & P4 Tutorial, http://bit.ly/
trellis-p4-slides, accessed 01-20-2021 (2018).

123

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[279] GitHub: ONF Trellis, https://github.com/opennetworkinglab/
routing/tree/master/trellis, accessed 01-20-2021 (2021).

[280] A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit, M. Budiu, DC.P4:
Programming the Forwarding Plane of a Data-center Switch, in: ACM
SIGCOMM Conference, 2015, p. 1–8.

[281] GitHub: DC.p4, https://github.com/p4lang/papers/tree/master/
sosr15, accessed 01-20-2021 (2021).

[282] Open Network Foundation: P4 apps at ONF, https://github.com/
p4lang/p4-applications/blob/master/meeting_slides/2018_04_
19_ONF.pdf, accessed 01-20-2021 (2018).

[283] GitHub: fabric.p4, https://github.com/opennetworkinglab/onos/
blob/master/pipelines/fabric/impl/src/main/resources/fabric.
p4, accessed 01-20-2021 (2021).

[284] RARE (Router for Academia, Research & Education),
https://wiki.geant.org/display/RARE/Home, accessed 04-16-2021
(2021).

[285] GitHub: RARE, https://github.com/frederic-loui/RARE, accessed
04-16-2021 (2021).

[286] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, T. Clausen,
Stateless Load-Aware Load Balancing in P4, in: IEEE International Con-
ference on Network Protocols (ICNP), 2018, pp. 418–423.

[287] R. Miao, H. Zeng, C. Kim, J. Lee, M. Yu, SilkRoad: Making Stateful
Layer-4 Load Balancing Fast and Cheap using Switching ASICs, in: ACM
SIGCOMM Conference, 2017, p. 15–28.

[288] N. Katta, M. Hira, C. Kim, A. Sivaraman, J. Rexford, HULA: Scalable
Load Balancing using Programmable Data Planes, in: ACM Symposium
on SDN Research (SOSR), 2016, p. 1–12.

[289] C. H. Benet, A. J. Kassler, T. Benson, G. Pongracz, MP-HULA: Multipath
Transport Aware Load Balancing using Programmable Data Planes, in:
Morning Workshop on In-Network Computing, 2018, p. 7–13.

[290] B. T. Chiang, K. Wang, Cost-effective Congestion-aware Load Balancing
for Datacenters, in: International Conference on Electronics, Information,
and Communication (ICEIC), 2019, pp. 1–6.

[291] J.-L. Ye, C. Chen, Y. H. Chu, A Weighted ECMP Load Balancing Scheme
for Data Centers using P4 Switches, in: IEEE International Conference
on Cloud Networking (IEEE CloudNet), 2018, pp. 1–4.

124

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[292] K.-F. Hsu, P. Tammana, R. Beckett, A. Chen, J. Rexford, D. Walker,
Adaptive Weighted Traffic Splitting in Programmable Data Planes, in:
ACM Symposium on SDN Research (SOSR), 2020, p. 103–109.

[293] M. Pizzutti, A. Schaeffer-Filho, An Efficient Multipath Mechanism Based
on the Flowlet Abstraction and P4, in: IEEE Global Communications
Conference (GLOBECOM), 2018, pp. 1–6.

[294] M. Pizzutti, A. Schaeffer-Filho, Adaptive Multipath Routing based on
Hybrid Data and Control Plane Operation, in: IEEE International Con-
ference on Computer Communications (INFOCOM), 2020, pp. 730–738.

[295] J. Zhang, S. Wen, J. Zhang, H. Chai, T. Pan, T. Huang, L. Zhang,
Y. Liu, F. R. Yu, Fast Switch-Based Load Balancer Considering Appli-
cation Server States, IEEE/ACM Transactions on Networking (ToN) 28
(2020) 1391–1404.

[296] Q. Li, J. Zhang, T. Pan, T. Huang, Y. Liu, Data-driven Routing Op-
timization based on Programmable Data Plane, in: IEEE International
Conference on Computer Communications and Networks (ICCCN), 2020,
pp. 1–9.

[297] E. Kawaguchi, H. Kasuga, N. Shinomiya, Unsplittable flow Edge Load
factor Balancing in SDN using P4 Runtime, in: International Telecom-
munication Networks and Applications Conference (ITNAC), 2019, pp.
1–6.

[298] E. Cidon, S. Choi, S. Katti, N. McKeown, AppSwitch: Application-layer
Load Balancing withina Software Switch, in: Asia-Pacific Workshop on
Networking (APnet), 2017, p. 64–70.

[299] V. Olteanu, A. Agache, A. Voinescu, C. Raiciu, Stateless Datacenter Load-
balancing with Beamer, in: USENIX Symposium on Networked Systems
Design & Implementation (NSDI), 2018, pp. 125–139.

[300] GitHub: Beamer, https://github.com/Beamer-LB, accessed 01-25-2021
(2021).

[301] J. Geng, J. Yan, Y. Zhang, P4QCN: Congestion Control using P4-Capable
Device in Data Center Networks, Electronics Journal 8 (2019) 280.

[302] J. Jiang, Y. Zhang, An Accurate Congestion Control Mechanism in Pro-
grammable Network, in: IEEE Annual Computing and Communication
Workshop and Conference (CCWC), 2019, pp. 673–677.

[303] S. Shahzad, E. Jung, J. Chung, R. Kettimuthu, Enhanced Explicit Con-
gestion Notification (EECN) in TCP with P4 Programming, in: In-
ternational Conference on Green and Human Information Technology
(ICGHIT), 2020, pp. 35–40.

125

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[304] C. Chen, H. Fang, M. S. Iqbal, QoSTCP: Provide Consistent Rate Guar-
antees to TCP flows in Software Defined Networks, in: IEEE International
Conference on Communicaotions (ICC), 2020, pp. 1–6.

[305] A. Laraba, J. François, I. Chrisment, S. R. Chowdhury, R. Boutaba, De-
feating Protocol Abuse with P4: Application to Explicit Congestion No-
tification, in: IFIP-TC6 Networking Conference (Networking), 2020, pp.
431–439.

[306] N. K. Sharma, M. Liu, K. Atreya, A. Krishnamurthy, Approximating
Fair Queueing on Reconfigurable Switches, in: USENIX Symposium on
Networked Systems Design & Implementation (NSDI), 2018, p. 1–16.

[307] C. Cascone, N. Bonelli, L. Bianchi, A. Capone, B. Sansò, Towards Ap-
proximate Fair Bandwidth Sharing via Dynamic Priority Queuing, in:
IEEE International Symposium on Local and Metropolitan Area Networks
(LANMAN), 2017, pp. 1–6.

[308] D. Bhat, J. Anderson, P. Ruth, M. Zink, K. Keahey, Application-based
QoE support with P4 and OpenFlow, in: IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2019, pp. 817–823.

[309] E. F. Kfoury, J. Crichigno, E. Bou-Harb, D. Khoury, G. Srivastava, En-
abling TCP Pacing using Programmable Data Plane Switches, in: Inter-
national Conference on Telecommunications and Signal Processing (TSP),
2019, pp. 273–277.

[310] Y. Chen, L. Yen, W. Wang, C. Chuang, Y. Liu, C. Tseng, P4-Enabled
Bandwidth Management, in: Asia-Pacific Network Operations and Man-
agement Symposium (APNOMS), 2019, pp. 1–5.

[311] S. S. W. Lee, K. Chan, A Traffic Meter Based on a Multicolor Marker for
Bandwidth Guarantee and Priority Differentiation in SDN Virtual Net-
works, IEEE Transactions on Network and Service Management (TNSM)
16 (2019) 1046–1058.

[312] S.-Y. Wang, J.-Y. Li, Y.-B. Lin, Aggregating and disaggregating packets
with various sizes of payload in P4 switches at 100 Gbps line rate, Journal
of Network and Computer Applications (JNCA) 165 (2020) 102676.

[313] K. Tokmakov, M. Sarker, J. Domaschka, S. Wesner, A Case for Data Cen-
tre Traffic Management on Software Programmable Ethernet Switches, in:
IEEE International Conference on Cloud Networking (IEEE CloudNet),
2019, pp. 1–6.

[314] B. Turkovic, F. Kuipers, N. van Adrichem, K. Langendoen, Fast Network
Congestion Detection and Avoidance using P4, in: Workshop on Network-
ing for Emerging Applications and Technologies (NEAT), 2018, p. 45–51.

126

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[315] R. Kundel, J. Blendin, T. Viernickel, B. Koldehofe, R. Steinmetz, P4-
CoDel: Active Queue Management in Programmable Data Planes, in:
IEEE Conference on Network Function Virtualization and Software-
Defined Networking (NFV-SDN), 2018, pp. 1–4.

[316] GitHub: P4-CoDel, https://github.com/ralfkundel/p4-codel, ac-
cessed 01-20-2021 (2021).

[317] M. Menth, H. Mostafaei, D. Merling, M. Häberle, Implementation and
Evaluation of Activity-Based Congestion Management using P4 (P4-
ABC), MDPI Future Internet Journal (FI) 11 (2019) 159.

[318] B. Turkovic, F. Kuipers, P4air: Increasing Fairness among Competing
Congestion Control Algorithms, in: IEEE International Conference on
Network Protocols (ICNP), 2020, pp. 1–12.

[319] L. B. Fernandes, L. Camargos, Bandwidth throttling in a P4 switch,
in: IEEE Conference on Network Function Virtualization and Software-
Defined Networking (NFV-SDN), 2020, pp. 91–94.

[320] G. Wang, C. Chen, C. Chen, L. Pan, Y. Wang, C. Fan, C. Hsu, Streaming
Scalable Video Sequences with Media-Aware Network Elements Imple-
mented in P4 Programming Language, in: IEEE/IFIP Network Opera-
tions and Management Symposium (NOMS), 2018, pp. 1–2.

[321] A. G. Alcoz, A. Dietmüller, L. Vanbever, SP-PIFO: Approximating Push-
In First-Out Behaviors using Strict-Priority Queues, in: USENIX Sympo-
sium on Networked Systems Design & Implementation (NSDI), 2020, pp.
59–76.

[322] I. Kunze, M. Gunz, D. Saam, K. Wehrle, J. Rüth, Tofino + P4: A Strong
Compound for AQM on High-Speed Networks?, in: IFIP/IEEE Interna-
tional Symposium on Integrated Network Management, 2021, pp. 72–80.

[323] GitHub: PIE for Tofino, https://github.com/COMSYS/
pie-for-tofino, accessed 04-15-2021 (2021).

[324] H. Harkous, C. Papagianni, K. De Schepper, M. Jarschel, M. Dimolianis,
R. Preis, Virtual queues for p4: A poor man’s programmable traffic man-
ager, IEEE Transactions on Network and Service Management (TNSM)
(2021) 1–1.

[325] B. Andrus, S. A. Sasu, T. Szyrkowiec, A. Autenrieth, M. Chamania, J. K.
Fischer, S. Rasp, Zero-Touch Provisioning of Distributed Video Analyt-
ics in a Software-Defined Metro-Haul Network with P4 Processing, in:
Optical Fiber Communication Conference (OFC), 2019, pp. 1–3.

[326] S. Ibanez, G. Antichi, G. Brebner, N. McKeown, Event-Driven Packet
Processing, in: ACM Workshop on Hot Topics in Networks (HotNets),
2019, p. 133–140.

127

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[327] E. F. Kfoury, J. Crichigno, E. Bou-Harb, Offloading Media Traffic to
Programmable Data Plane Switches, in: IEEE International Conference
on Communicaotions (ICC), 2020, pp. 1–7.

[328] I. Kettaneh, S. Udayashankar, A. Abdel-hadi, R. Grosman, S. Al-Kiswany,
Falcon: Low Latency, Network-Accelerated Scheduling, in: P4 Workshop
in Europe (EuroP4), 2020, p. 7–12.

[329] T. Osiński, M. Kossakowski, M. Pawlik, J. Palimąka, M. Sala, H. Tarasiuk,
Unleashing the Performance of Virtual BNG by Offloading Data Plane to
a Programmable ASIC, in: P4 Workshop in Europe (EuroP4), 2020, p.
54–55.

[330] J. Lee, R. Miao, C. Kim, M. Yu, H. Zeng, Stateful Layer-4 Load Balancing
in Switching ASICs, in: ACM SIGCOMM Conference Posters and Demos,
2017, p. 133–135.

[331] K. Nichols, V. Jacobson, A. McGregor, J. Iyengar, Controlled Delay Active
Queue Management, RFC 8289, RFC Editor (01 2018).
URL https://tools.ietf.org/rfc/rfc8289.txt

[332] B. Lewis, L. Fawcett, M. Broadbent, N. Race, Using P4 to Enable Scalable
Intents in Software Defined Networks, in: IEEE International Conference
on Network Protocols (ICNP), 2018, pp. 442–443.

[333] GitHub: P4 Source Routing, https://github.com/BenRLewis/
P4-Source-Routing, accessed 01-20-2021 (2021).

[334] L. Luo, H. Yu, S. Luo, Z. Ye, X. Du, M. Guizani, Scalable Explicit Path
Control in Software-Defined Networks, Journal of Network and Computer
Applications (JNCA) 141 (2019) 86–103.

[335] GitHub: P4 Paco, https://github.com/an15m/paco, accessed 01-20-
2021 (2021).

[336] A. Kushwaha, S. Sharma, N. Bazard, A. Gumaste, B. Mukherjee, Design,
Analysis, and a Terabit Implementation of a Source-Routing-Based SDN
Data Plane, IEEE Systems Journal (2020).

[337] A. Abdelsalam, A. Tulumello, M. Bonola, S. Salsano, C. Filsfils, Pushing
Network Programmability to the limits with SRv6 uSIDs and P4, in: P4
Workshop in Europe (EuroP4), 2020, p. 62–64.

[338] W. Braun, J. Hartmann, M. Menth, Demo: Scalable and Reliable
Software-Defined Multicast with BIER and P4, in: IFIP/IEEE Sympo-
sium on Integrated Management (IM), 2017, pp. 905–906.

[339] Bitbucket: p4-bfr), https://bitbucket.org/wb-ut/p4-bfr, accessed
01-20-2021 (2021).

128

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[340] D. Merling, S. Lindner, M. Menth, P4-Based Implementation of BIER
and BIER-FRR for Scalable and Resilient Multicast, Journal of Network
and Computer Applications (JNCA) 169 (2020) 102764.

[341] D. Merling, S. Lindner, M. Menth, Hardware-based evaluation of scalable
and resilient multicast with bier in p4, IEEE ACCESS 9 (2021) 34500–
34514.

[342] GitHub: P4-BIER, https://github.com/uni-tue-kn/p4-bier, ac-
cessed 01-20-2021 (2021).

[343] GitHub: P4-BIER for Tofino, https://github.com/uni-tue-kn/
p4-bier-tofino, accessed 04-26-2021 (2021).

[344] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich,
M. Hira, Elmo: Source Routed Multicast for Public Clouds, in: ACM
Special Interest Group on Data Communication, 2019, pp. 2587–2600.

[345] GitHub: Elmo MCast, https://github.com/Elmo-MCast/p4-programs,
accessed 01-20-2021 (2021).

[346] S. Luo, H. Yu, K. Li, H. Xing, Efficient File Dissemination in Data Cen-
ter Networks with Priority-based Adaptive Multicast, IEEE Journal on
Selected Areas in Communications (JSAC) 38 (2020) 1161–1175.

[347] C. Wernecke, H. Parzyjegla, G. Mühl, P. Danielis, D. Timmermann, Real-
izing Content-Based Publish/Subscribe with P4, in: IEEE Conference on
Network Function Virtualization and Software-Defined Networking (NFV-
SDN), 2018, pp. 1–7.

[348] C. Wernecke, H. Parzyjegla, G. Mühl, E. Schweissguth, D. Timmermann,
Flexible Notification Forwarding for Content-Based Publish/Subscribe
Using P4, in: IEEE Conference on Network Function Virtualization and
Software-Defined Networking (NFV-SDN), 2020, pp. 1–5.

[349] C. Wernecke, H. Parzyjegla, G. Mühl, Implementing Content-based Pub-
lish/Subscribe on the Network Layer with P4, in: IEEE Conference on
Network Function Virtualization and Software-Defined Networking (NFV-
SDN), 2020, pp. 144–149.

[350] C. Wernecke, H. Parzyjegla, G. Mühl, P. Danielis, E. Schweissguth,
D. Timmermann, Stitching Notification Distribution Trees for Content-
based Publish/Subscribe with P4, in: IEEE Conference on Network Func-
tion Virtualization and Software-Defined Networking (NFV-SDN), 2020,
pp. 100–104.

[351] T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, R. Soulé, Packet Sub-
scriptions for Programmable ASICs, in: ACM Workshop on Hot Topics
in Networks (HotNets), 2018, p. 176–183.

129

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[352] R. Kundel, C. Gaertner, M. Luthra, S. Bhowmik, B. Koldehofe, Flexi-
ble Content-based Publish/Subscribe over Programmable Data Planes, in:
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2020, pp. 1–5.

[353] GitHub: p4bsub, https://github.com/ralfkundel/p4bsub/, accessed
01-20-2021 (2021).

[354] J. Vestin, A. Kassler, S. Laki, G. Pongrácz, Towards In-Network Event
Detection and Filtering for Publish/Subscribe Communication using Pro-
grammable Data Planes, IEEE Transactions on Network and Service Man-
agement (TNSM) (2020) 415–428.

[355] S. Signorello, R. State, J. François, O. Festor, NDN.p4: Programming
Information-Centric Data-Planes, in: IEEE Conference on Network Soft-
warization (NetSoft), 2016, pp. 384–389.

[356] R. Miguel, S. Signorello, F. M. V. Ramos, Named Data Networking with
Programmable Switches, in: IEEE International Conference on Network
Protocols (ICNP), 2018, pp. 400–405.

[357] GitHub: NDN.p4, https://github.com/signorello/NDN.p4, accessed
01-20-2021 (2021).

[358] GitHub: NDN.p4-16, https://github.com/netx-ulx/NDN.p4-16, ac-
cessed 01-20-2021 (2021).

[359] O. Karrakchou, N. Samaan, A. Karmouch, ENDN: An Enhanced NDN
Architecture with a P4-programmable Data Plane, in: International Con-
ference on Networking (ICN), 2020, p. 1–11.

[360] R. Sedar, M. Borokhovich, M. Chiesa, G. Antichi, S. Schmid, Support-
ing Emerging Applications With Low-Latency Failover in P4, in: Work-
shop on Networking for Emerging Applications and Technologies (NEAT),
2018, p. 52–57.

[361] GitHub: P4-FRR, https://bitbucket.org/roshanms/p4-frr/src/
master/, accessed 01-20-2021 (2021).

[362] H. Giesen, L. Shi, J. Sonchack, A. Chelluri, N. Prabhu, N. Sultana,
L. Kant, A. J. McAuley, A. Poylisher, A. DeHon, B. T. Loo, In-Network
Computing to the Rescue of Faulty Links, in: Morning Workshop on In-
Network Computing, 2018, pp. 1–6.

[363] T. Qu, R. Joshi, M. Chan, B. Leong, D. Guo, Z. Liu, SQR: In-network
Packet Loss Recovery from Link Failures for Highly Reliable Datacen-
ter Networks, in: IEEE International Conference on Network Protocols
(ICNP), 2019, pp. 1–12.

[364] GitHub: P4 SQR, https://git.io/fjbnV, accessed 01-20-2021 (2021).

130

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[365] S. Lindner, D. Merling, M. Häberle, M. Menth, P4-Protect: 1+1 Path
Protection for P4, in: P4 Workshop in Europe (EuroP4), 2020, p. 21–27.

[366] GitHub: P4-Protect BMv2, https://github.com/uni-tue-kn/
p4-protect, accessed 01-20-2021 (2021).

[367] GitHub: P4-Protect Tofino, https://github.com/uni-tue-kn/
p4-protect-tofino, accessed 01-20-2021 (2021).

[368] K. Hirata, , T. Tachibana, Implementation of Multiple Routing Config-
urations on Software-Defined Networks with P4, in: Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference
(APSIPA ASC), 2019, pp. 13–16.

[369] S. Lindner, M. Häberle, F. Heimgaertner, N. Nayak, S. Schildt, D. Grewe,
H.Loehr, M. Ment, P4 In-Network Source Protection for Sensor Failover,
in: IFIP-TC6 Networking Conference (Networking), 2020, pp. 791–796.

[370] GitHub: P4 Source Protection BMv2, https://github.com/
uni-tue-kn/p4-source-protection, accessed 01-20-2021 (2021).

[371] GitHub: P4 Source Protection Tofino, https://github.com/
uni-tue-kn/p4-source-protection-tofino, accessed 01-20-2021
(2021).

[372] K. Subramanian, A. Abhashkumar, L. D’Antoni, A. Akella, D2R:
Dataplane-Only Policy-Compliant Routing Under Failures (2019).

[373] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich, A. Kamisiński, G. Niko-
laidis, S. Schmid, PURR: A Primitive for Reconfigurable Fast Reroute, in:
ACM Conference on emerging Networking EXperiments and Technologies
(CoNEXT), 2019, p. 1–14.

[374] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
L. Vanbever, Blink: Fast Connectivity Recovery Entirely in the Data
Plane, in: USENIX Symposium on Networked Systems Design & Imple-
mentation (NSDI), 2019, pp. 161–176.

[375] GitHub: Blink, https://github.com/nsg-ethz/Blink, accessed 01-20-
2021 (2021).

[376] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, D. Walker, Contra: A Pro-
grammable System for Performance-aware Routing, in: USENIX Sympo-
sium on Networked Systems Design & Implementation (NSDI), 2020, pp.
701–721.

[377] O. Michel, E. Keller, Policy Routing using Process-Level Identifiers,
in: IEEE International Conference on Cloud Engineering Workshop
(IC2EW), 2016, pp. 7–12.

131

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[378] A. C. Baktir, A. Ozgovde, C. Ersoy, Implementing Service-Centric Model
with P4: A Fully-Programmable Approach, in: IEEE/IFIP Network Op-
erations and Management Symposium (NOMS), 2018, pp. 1–6.

[379] W. Froes, L. Santos, L. N. Sampaio, M. Martinello, A. Liberato, R. S.
Villaca, ProgLab: Programmable Labels for QoS Provisioning on Software
Defined Networks, Computer Communications 161 (2020) 99–108.

[380] N. VARYANI, Z.-L. ZHANG, D. DAI, QROUTE: An Efficient Quality
of Service (QoS) Routing Scheme for Software-Defined Overlay Networks,
IEEE ACCESS 8 (2020) 104109–104126.

[381] S. Gimenez, E. Grasa, S. Bunch, A Proof of Concept Implementation of a
RINA Interior Router using P4-enabled Software Targets, in: Conference
on Innovation in Clouds, Internet and Networks and Workshops (ICIN),
2020, pp. 57–62.

[382] W. Feng, X. Tan, Y. Jin, Implementing ICN over P4 in HTTP Scenario, in:
IEEE International Conference on Hot Information-Centric Networking
(HotICN), 2019, pp. 37–43.

[383] G. Grigoryan, Y. Liu, M. Kwon, PFCA: A Programmable FIB Caching
Architecture, IEEE/ACM Transactions on Networking (ToN) 28 (2020)
1872–1884.

[384] A. McAuley, Y. M. Gottlieb, L. Kant, J. Lee, A. Poylisher, P4-Based
Hybrid Error Control Booster Providing New Design Tradeoffs in Wireless
Networks, in: IEEE Military Communications Conference (MILCOM),
2019, pp. 731–736.

[385] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, E. Bugnion, R2P2: Making
RPCs first-class datacenter citizens, in: USENIX Annual Technical Con-
ference (ATC), 2019, pp. 863–880.

[386] GitHub: R2P2 - Request Response Pair Protocol, https://github.com/
epfl-dcsl/r2p2, accessed 01-25-2021 (2021).

[387] D. Merling, M. Menth, N. Warnke, T. Eckert, An Overview of Bit Index
Explicit Replication (BIER), IETF Journal (2018).

[388] M. Hollingsworth, J. Lee, Z. Liu, J. Lee, S. Ha, D. Grunwald, P4EC:
Enabling Terabit Edge Computing in Enterprise 4G LTE, in: USENIX
Workshop on Hot Topics in Edge Computing (HotEdge), 2020, pp. 1–7.

[389] GitHub: spgw.p4, https://github.com/opennetworkinglab/
onos/blob/master/pipelines/fabric/impl/src/main/resources/
include/control/spgw.p4, accessed 01-20-2021 (2021).

[390] P. Palagummi, K. M. Sivalingam, SMARTHO: A Network Initiated Han-
dover in NG-RAN using P4-based Switches, in: International Conference
on Network and Services Management (CNSM), 2018, pp. 338–342.

132

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[391] A. Aghdai, M. Huang, D. Dai, Y. Xu, J. Chao, Transparent Edge Gate-
way for Mobile Networks, in: IEEE International Conference on Network
Protocols (ICNP), 2018, pp. 412–417.

[392] A. Aghdai, Y. Xu, M. Huang, D. H. Dai, H. J. Chao, Enabling Mobility in
LTE-Compatible Mobile-edge Computing with Programmable Switches,
ArXiv e-prints (2019).

[393] J. Xie, C. Qian, D. Guo, X. Li, S. Shi, H. Chen, Efficient Data Place-
ment and Retrieval Services in Edge Computing, in: IEEE International
Conference on Distributed Computing Systems (ICDCS), 2019, pp. 1029–
1039.

[394] J. Xie, D. Guo, X. Shi, H. Cai, C. Qian, H. Chen, A Fast Hybrid Data
Sharing Framework for Hierarchical Mobile Edge Computing, in: IEEE In-
ternational Conference on Computer Communications (INFOCOM), 2020,
pp. 2609–2618.

[395] C. Shen, D. Lee, C. Ku, M. Lin, K. Lu, S. Tan, A Programmable and
FPGA-accelerated GTP Offloading Engine for Mobile Edge Computing in
5G Networks, in: IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), 2019, pp. 1021–1022.

[396] C. Lee, K. Ebisawa, H. Kuwata, M. Kohno, S. Matsushima, Performance
Evaluation of GTP-U and SRv6 Stateless Translation, in: International
Conference on Network and Services Management (CNSM), 2019, pp. 1–6.

[397] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, Q. Wang, P4-
NetFPGA-based network slicing solution for 5G MEC architectures, in:
ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems (ANCS), 2019, pp. 1–2.

[398] S. K. Singh, C. E. Rothenberg, G. Patra, G. Pongracz, Offloading Vir-
tual Evolved Packet Gateway User Plane Functions to a Programmable
ASIC, in: ACM CoNEXT Workshop on Emerging In-Network Computing
Paradigms, 2019, p. 9–14.

[399] R. Shah, V. Kumar, M. Vutukuru, P. Kulkarni, TurboEPC: Leveraging
Dataplane Programmability to Accelerate the Mobile Packet Core, in:
ACM Symposium on SDN Research (SOSR), 2020, p. 83–95.

[400] P. Vörös, G. Pongrácz, S. Laki, Towards a Hybrid Next Generation
NodeB, in: P4 Workshop in Europe (EuroP4), 2020, p. 56–58.

[401] Y. Lin, T. Huang, S. Tsai, Enhancing 5G/IoT Transport Security Through
Content Permutation, IEEE ACCESS 7 (2019) 94293–94299.

[402] M. Uddin, S. Mukherjee, H. Chang, T. V. Lakshman, SDN-Based Ser-
vice Automation for IoT, in: IEEE International Conference on Network
Protocols (ICNP), 2017, pp. 1–10.

133

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[403] M. Uddin, S. Mukherjee, H. Chang, T. V. Lakshman, SDN-Based Multi-
Protocol Edge Switching for IoT Service Automation, IEEE Journal on
Selected Areas in Communications (JSAC) 36 (2018) 2775–2786.

[404] S.-Y. Wang, C.-M. Wu, Y.-B. Linm, C.-C. Huang, High-Speed Data-Plane
Packet Aggregation and Disaggregation by P4 Switches, Journal of Net-
work and Computer Applications (JNCA) 142 (2019) 98–110.

[405] A. L. R. Madureira, F. R. C. Araújo, L. N. Sampaio, On supporting IoT
data aggregation through programmable data planes, Computer Networks
177 (2020) 107330.

[406] P. Engelhard, A. Zachlod, J. Schulz-Zander, S. Du, Toward scalable and
virtualized massive wireless sensor networks, in: International Conference
on Networked Systems (NetSys), 2019, pp. 1–6.

[407] J. Vestin, A. Kassler, J. Åkerberg, FastReact: In-Network Control
and Caching for Industrial Control Networks using Programmable Data
Planes, in: IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), 2018, pp. 219–226.

[408] F. E. R. Cesen, L. Csikor, C. Recalde, C. E. Rothenberg, G. Pongrácz,
Towards Low Latency Industrial Robot Control in Programmable Data
Planes, in: IEEE Conference on Network Softwarization (NetSoft), 2020,
pp. 165–169.

[409] I. Kunze, R. Glebke, J. Scheiper, M. Bodenbenner, R. H. Schmitt,
K. Wehrle, Investigating the Applicability of In-Network Computing to
Industrial Scenarios, in: International Conference on Industrial Cyber-
Physical Systems (ICPS), 2021, pp. 334–340.

[410] J. Rüth, R. Glebke, K. Wehrle, V. Causevic, S. Hirche, Towards In-
Network Industrial Feedback Control, in: Morning Workshop on In-
Network Computing, 2018, p. 14–19.

[411] P. G. Kannan, R. Joshi, M. C. Chan, Precise Time-Synchronization in the
Data-Plane using Programmable Switching ASICs, in: ACM Symposium
on SDN Research (SOSR), 2019, p. 8–20.

[412] R. Kundel, F. Siegmund, B. Koldehofe, How to Measure the Speed of
Light with Programmable Data Plane Hardware?, in: P4 Workshop in
Europe (EuroP4), 2019, pp. 1–2.

[413] G. Bonofiglio, V. Iovinella, G. Lospoto, G. D. Battista, Kathará: A
Container-Based Framework for Implementing Network Function Virtu-
alization and Software Defined Networks, in: IEEE/IFIP Network Oper-
ations and Management Symposium (NOMS), 2018, pp. 1–9.

134

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[414] M. He, A. Basta, A. Blenk, N. Deric, W. Kellerer, P4NFV: An NFV
Architecture with Flexible Data Plane Reconfiguration, in: International
Conference on Network and Services Management (CNSM), 2018, pp. 90–
98.

[415] T. Osiński, H. Tarasiuk, M. Kossakowski, R. Picard, Offloading Data
Plane Functions to the Multi-Tenant Cloud Infrastructure using P4, in:
P4 Workshop in Europe (EuroP4), 2019, pp. 1–6.

[416] D. Moro, G. Verticale, A. Capone, A Framework for Network Function De-
composition and Deployment, in: International Workshop on the Design
of Reliable Communication Networks (DRCN), 2020, pp. 1–6.

[417] T. Osiński, H. Tarasiuk, L. Rajewski, E. Kowalczyk, DPPx: A P4-based
Data Plane Programmability and Exposure framework to enhance NFV
services, in: IEEE Conference on Network Softwarization (NetSoft), 2019,
pp. 296–300.

[418] A. Mohammadkhan, S. Panda, S. G. Kulkarni, K. K. Ramakrishnan, L. N.
Bhuyan, P4NFV: P4 Enabled NFV Systems with SmartNICs, in: IEEE
Conference on Network Function Virtualization and Software-Defined
Networking (NFV-SDN), 2019, pp. 1–7.

[419] D. Moro, M. Peuster, H. Karl, A. Capone, FOP4: Function Offload-
ing Prototyping in Heterogeneous and Programmable Network Scenarios,
in: IEEE Conference on Network Function Virtualization and Software-
Defined Networking (NFV-SDN), 2019, pp. 1–6.

[420] D. Moro, M. Peuster, H. Karl, A. Capone, Demonstrating FOP4: A Flex-
ible Platform to Prototype NFV Offloading Scenarios, in: IEEE Confer-
ence on Network Function Virtualization and Software-Defined Network-
ing (NFV-SDN), 2019, pp. 1–2.

[421] D. R. Mafioletti, C. K. Dominicini, M. Martinello, M. R. N. Ribeiro,
R. d. S. Villaça, Piaffe: A place-as-you-go in-network framework for flex-
ible embedding of vnfs, in: IEEE International Conference on Communi-
caotions (ICC), 2020, pp. 1–6.

[422] X. Chen, D. Zhang, X. Wang, K. Zhu, H. Zhou, P4SC: Towards High-
Performance Service Function Chain Implementation on the P4-Capable
Device, in: IFIP/IEEE Symposium on Integrated Management (IM),
2019, pp. 1–9.

[423] D. Zhang, X. Chen, Q. Huang, X. Hong, C. Wu, H. Zhou, Y. Yang, H. Liu,
Y. Chen, P4SC: A High Performance and Flexible Framework for Service
Function Chain, IEEE ACCESS 7 (2019) 160982–160997.

[424] GitHub: P4SC, https://github.com/P4SC/p4sc, accessed 01-20-2021
(2021).

135

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[425] H. Lee, J. Lee, H. Ko, S. Pack, Resource-Efficient Service Function Chain-
ing in Programmable Data Plane, in: P4 Workshop in Europe (EuroP4),
2019.

[426] Y. Zhou, J. Bi, C. Zhang, M. Xu, J. Wu, FlexMesh: Flexibly Chaining
Network Functions on Programmable Data Planes at Runtime, in: IFIP-
TC6 Networking Conference (Networking), 2020, pp. 73–81.

[427] A. Stockmayer, S. Hinselmann, M. Häberle, M. Menth, Service Function
Chaining Based on Segment Routing Using P4 and SR-IOV (P4-SFC),
in: Workshop on Virtualization in High-Performance Cloud Computing
(VHPC), 2020, pp. 297–309.

[428] GitHub: P4-SFC, https://github.com/uni-tue-kn/p4-sfc-faas, ac-
cessed 01-20-2021 (2021).

[429] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, Q. Wang,
Hardware-Accelerated Firewall for 5G Mobile Networks, in: IEEE In-
ternational Conference on Network Protocols (ICNP), 2018, pp. 446–447.

[430] Ruben Ricart-Sanchez and Pedro Malagon and Jose M. Alcaraz-Calero
and Qi Wang, NetFPGA-Based Firewall Solution for 5G Multi-Tenant
Architectures, in: IEEE International Conference on Edge Computing
(EDGE), 2019, pp. 132–136.

[431] J. Cao, J. Bi, Y. Zhou, C. Zhang, CoFilter: A High-Performance Switch-
Assisted Stateful Packet Filter, in: ACM SIGCOMM Conference Posters
and Demos, 2018, p. 9–11.

[432] R. Datta, S. Choi, A. Chowdhary, Y. Park, P4Guard: Designing P4
Based Firewall, in: IEEE Military Communications Conference (MIL-
COM), 2018, pp. 1–6.

[433] P. Vörös, A. Kiss, Security Middleware Programming Using P4, in: Inter-
national Conference on Human Aspects of Information Security, Privacy,
and Trust (HAS), 2016, pp. 277–287.

[434] E. O. Zaballa, D. Franco, Z. Zhou, M. S. Berger, P4Knocking: Offloading
host-based firewall functionalities to the network, in: Conference on In-
novation in Clouds, Internet and Networks and Workshops (ICIN), 2020,
pp. 7–12.

[435] A. Almaini, A. Al-Dubai, I. Romdhani, M. Schramm, Delegation of Au-
thentication to the Data Plane in Software-Defined Networks, in: IEEE
International Conferences on Smart Computing, Networking and Services
(SmartCNS), 2019, pp. 58–65.

[436] G. Grigoryan, Y. Liu, LAMP: Prompt Layer 7 Attack Mitigation with
Programmable Data Planes, in: ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS), 2018, pp. 1–4.

136

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[437] A. Febro, H. Xiao, J. Spring, Telephony Denial of Service Defense at Data
Plane (TDoSD@DP), in: IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS), 2018, pp. 1–6.

[438] A. Febro, H. Xiao, J. Spring, Distributed SIP DDoS Defense with P4, in:
IEEE Wireless Communications and Networking Conference (WCNC),
2019, pp. 1–8.

[439] M. Kuka, K. Vojanec, J. Kučera, P. Benáček, Accelerated DDoS Attacks
Mitigation using Programmable Data Plane, in: ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS),
2019, pp. 1–3.

[440] F. Paolucci, F. Cugini, P. Castoldi, P4-based Multi-Layer Traffic Engi-
neering Encompassing Cyber Security, in: Optical Fiber Communication
Conference (OFC), 2018, pp. 1–3.

[441] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, P. Cas-
toldi, An efficient pipeline processing scheme for programming Protocol-
independent Packet Processors, IEEE/OSA Journal of Optical Commu-
nications and Networking 11 (2019) 88–95.

[442] Y. Mi, A. Wang, ML-Pushback: Machine Learning Based Pushback De-
fense Against DDoS, in: ACM Conference on emerging Networking EX-
periments and Technologies (CoNEXT), 2019, p. 80–81.

[443] Y. Afek, A. Bremler-Barr, L. Shafir, Network Anti-Spoofing with SDN
Data Plane, in: IEEE International Conference on Computer Communi-
cations (INFOCOM), 2017, pp. 1–9.

[444] A. C. Lapolli, J. A. Marques, L. P. Gaspary, Offloading Real-time DDoS
Attack Detection to Programmable Data Planes, in: IFIP/IEEE Sympo-
sium on Integrated Management (IM), 2019, pp. 19–27.

[445] GitHub: ddosd-p4, https://github.com/aclapolli/ddosd-p4, ac-
cessed 01-20-2021 (2021).

[446] Y.-Z. Cai, C.-H. Lai, Y.-T. Wang, M.-H. Tsai, Improving Scanner Data
Collection in P4-based SDN, in: Asia-Pacific Network Operations and
Management Symposium (APNOMS), 2020, pp. 126–131.

[447] T.-Y. Lin, J.-P. Wu, P.-H. Hung, C.-H. Shao, Y.-T. Wang, Y.-Z. Cai, M.-
H. Tsai, Mitigating SYN flooding Attack and ARP Spoofing in SDN Data
Plane, in: Asia-Pacific Network Operations and Management Symposium
(APNOMS), 2020, pp. 114–119.

[448] F. Musumeci, V. Ionata, F. Paolucci, M. Cugini, Filippo Tornatore,
Machine-learning-assisted DDoS attack detection with P4 language, in:
IEEE International Conference on Communicaotions (ICC), 2020, pp. 1–
6.

137

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[449] X. Z. Khooi, L. Csikor, D. M. Divakaran, M. S. Kang, DIDA: Distributed
In-Network Defense Architecture Against Amplified Reflection DDoS At-
tacks, in: IEEE Conference on Network Softwarization (NetSoft), 2020,
pp. 277–281.

[450] M. Dimolianis, A. Pavlidis, V. Maglaris, A Multi-Feature DDoS Detection
Schema on P4 Network Hardware, in: Workshop on Flexible Network Data
Plane Processing (NETPROC@ICIN), 2020, pp. 1–6.

[451] D. Scholz, S. Gallenmüller, H. Stubbe, G. Carle, SYN Flood Defense in
Programmable Data Planes, in: P4 Workshop in Europe (EuroP4), 2020,
p. 13–20.

[452] GitHub: syn-proxy, https://github.com/syn-proxy, accessed 01-20-
2021 (2021).

[453] K. Friday, E. Kfoury, E. Bou-Harb, J. Crichigno, Towards a Unified In-
Network DDoS Detection and Mitigation Strategy, in: IEEE Conference
on Network Softwarization (NetSoft), 2020, pp. 218–226.

[454] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, M. Vechev, NetHide: Se-
cure and Practical Network Topology Obfuscation, in: USENIX Security
Symposium, 2018, pp. 693–709.

[455] Benjamin Lewis and Matthew Broadbent and Nicholas Race, P4ID: P4
Enhanced Intrusion Detection, in: IEEE Conference on Network Function
Virtualization and Software-Defined Networking (NFV-SDN), 2019, pp.
1–4.

[456] Gorby Kabasele Ndonda and Ramin Sadre, A Two-level Intrusion Detec-
tion System for Industrial Control System Networks using P4, in: Interna-
tional Symposium for ICS & SCADA Cyber Security Research (ICS-CSR),
2018, pp. 1–10.

[457] J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon, J. M.
Smith, DeepMatch: Practical Deep Packet Inspection in the Data Plane
Using Network Processors, in: ACM Conference on emerging Networking
EXperiments and Technologies (CoNEXT), 2020, p. 336–350.

[458] GitHub: DeepMatch, https://github.com/jhypolite/DeepMatch, ac-
cessed 01-20-2021 (2021).

[459] Q. Qin, K. Poularakis, K. K. Leung, L. Tassiulas, Line-Speed and Scalable
Intrusion Detection at the Network Edge via Federated Learning, in: IFIP-
TC6 Networking Conference (Networking), 2020, pp. 352–360.

[460] GitHub: syn-proxy, https://github.com/vxxx03/IFIPNetworking20,
accessed 01-20-2021 (2021).

138

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[461] J. Amado, S. Signorello, M. Correia, F. Ramos, Poster: Speeding up net-
work intrusion detection, in: IEEE International Conference on Network
Protocols (ICNP), 2020, pp. 1–2.

[462] D. Chang, W. Sun, Y. Yang, A SDN Proactive Defense Mechanism Based
on IP Transformation, in: International Conference on Safety Produce
Informatization (IICSPI), 2019, pp. 248–251.

[463] W. Feng, Z.-L. Zhang, C. Liu, J. Chen, Clé: Enhancing Security with
Programmable Dataplane Enabled Hybrid SDN, in: ACM Conference on
emerging Networking EXperiments and Technologies (CoNEXT), 2019, p.
76–77.

[464] P. Kuang, Y. Liu, L. He, P4DAD: Securing Duplicate Address Detection
Using P4, in: IEEE International Conference on Communicaotions (ICC),
2020, pp. 1–7.

[465] X. Chen, Implementing aes encryption on programmable switches via
scrambled lookup tables, in: Workshop on Secure Programmable Network
Infrastructure (SPIN), 2020, p. 8–14.

[466] GitHub: Tofino AES encryption, https://github.com/
Princeton-Cabernet/p4-projects/tree/master/AES-tofino, ac-
cessed 01-20-2021 (2021).

[467] H. Gondaliya, G. C. Sankaran, K. M. Sivalingam, Comparative Evaluation
of IP Address Anti-Spoofing Mechanisms Using a P4/NetFPGA-Based
Switch, in: P4 Workshop in Europe (EuroP4), 2020, p. 1–6.

[468] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, X. Luo, Programmable
In-Network Security for Context-aware BYOD Policies, in: USENIX Se-
curity Symposium, 2020, pp. 595–612.

[469] GitHub: Poise, https://github.com/qiaokang92/poise, accessed 01-
20-2021 (2021).

[470] F. Hauser, M. Schmidt, M. Häberle, M. Menth, P4-MACsec: Dynamic
Topology Monitoring and Data Layer Protection With MACsec in P4-
Based SDN, IEEE ACCESS 8 (2020) 58845–58858.

[471] GitHub: P4-MACsec, https://github.com/uni-tue-kn/p4-macsec,
accessed 01-20-2021 (2021).

[472] F. Hauser, M. Häberle, M. Schmidt, M. Menth, P4-IPsec: Site-to-Site and
Host-to-Site VPN With IPsec in P4-Based SDN, IEEE ACCESS 8 (2020)
139567–139586.

[473] GitHub: P4-IPsec, https://github.com/uni-tue-kn/p4-ipsec, ac-
cessed 01-20-2021 (2021).

139

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[474] T. Datta, N. Feamster, J. Rexford, L. Wang, SPINE: Surveillance Protec-
tion in the Network Elements, in: USENIX Workshop on Free and Open
Communications on the Internet (FOCI), 2019, pp. 1–7.

[475] GitHub: SPINE, https://github.com/SPINE-P4/spine-code, accessed
01-20-2021 (2021).

[476] Y. Qin, W. Quan, F. Song, L. Zhang, G. Liu, M. Liu, C. Yu, Flexible En-
cryption for Reliable Transmission Based on the P4 Programmable Plat-
form, in: Information Communication Technologies Conference (ICTC),
2020, pp. 147–152.

[477] G. Liu, W. Quan, N. Cheng, N. Lu, H. Zhang, X. Shen, P4NIS: Improving
network immunity against eavesdropping with programmable data planes,
in: IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS), 2020, pp. 91–96.

[478] GitHub: P4NIS, https://github.com/KB00100100/P4NIS, accessed 01-
20-2021 (2021).

[479] M. Liu, D. Gao, G. Liu, J. He, L. Jin, C. Zhou, F. Yang, Learning based
adaptive network immune mechanism to defense eavesdropping attacks,
IEEE ACCESS 7 (2019) 182814–182826.

[480] J. Deng, H. Hu, H. Li, Z. Pan, K. Wang, G. Ahn, J. Bi, Y. Park, VNGuard:
An NFV/SDN Combination Framework for Provisioning and Managing
Virtual Firewalls, in: IEEE Conference on Network Function Virtualiza-
tion and Software-Defined Networking (NFV-SDN), 2015, pp. 107–114.

[481] H. Zhang, W. Quan, H.-c. Chao, C. Qiao, Smart identifier network: A col-
laborative architecture for the future internet, Networks Magazine 30 (3)
(2016) 46–51.

[482] R. Kumar, V. Babu, D. Nicol, Network Coding for Critical Infrastruc-
ture Networks, in: IEEE International Conference on Network Protocols
(ICNP), 2018, pp. 436–437.

[483] GitHub: AquaFlow, https://github.com/gopchandani/AquaFlow, ac-
cessed 01-20-2021 (2021).

[484] D. Goncalves, S. Signorello, F. M. V. Ramos, M. Medard, Random Linear
Network Coding on Programmable Switches, in: ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS),
2019, pp. 1–6.

[485] T. Kohler, R. Mayer, F. Dürr, M. Maaß, S. Bhowmik, K. Rothermel,
P4CEP: Towards In-Network Complex Event Processing, in: Morning
Workshop on In-Network Computing, 2018, p. 33–38.

140

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[486] A. Sapio, I. Abdelaziz, M. Canini, P. Kalnis, DAIET: A System for Data
Aggregation Inside the Network, in: ACM Symposium on Cloud Comput-
ing (SoCC), 2017, p. 1.

[487] G. C. Sankaran, K. M. Sivalingam, Design and Analysis of Fast IP
Address-Lookup Schemes based on Cooperation among Routers, in: Inter-
national Conference on COMmunication Systems and NETworks (COM-
SNETS), 2020, pp. 330–339.

[488] Y. Zhang, B. Han, Z.-L. Zhang, V. Gopalakrishnan, Network-Assisted
Raft Consensus Algorithm, in: ACM SIGCOMM Conference Posters and
Demos, 2017, p. 94–96.

[489] H. T. Dang, M. Canini, F. Pedone, R. Soulé, Paxos Made Switch-y, ACM
SIGCOMM Computer Communications Review (CCR) 46 (2016) 18–24.

[490] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilbermanand, H. Weath-
erspoon, M. Canini, F. Pedone, R. Soulé, P4xos: Consensus as a Network
Service, IEEE/ACM Transactions on Networking (ToN) 28 (2020) 1726–
1738.

[491] GitHub: P4xos, https://github.com/P4xos/P4xos, accessed 01-20-2021
(2021).

[492] E. Sakic, N. Deric, E. Goshi, W. Kellerer, P4BFT: Hardware-Accelerated
Byzantine-Resilient Network Control Plane, in: IEEE Global Communi-
cations Conference (GLOBECOM), 2019, pp. 1–7.

[493] E. Sakic, N. Deric, C. B. Serna, E. Goshi, W. Kellerer, P4BFT: A Demon-
stration of Hardware-Accelerated BFT in Fault-Tolerant Network Control
Plane, in: ACM SIGCOMM Conference Posters and Demos, 2019, p. 6–8.

[494] L. Zeno, D. R. K. Ports, J. Nelson, M. Silberstein, SwiShmem: Distributed
Shared State Abstractions for Programmable Switches, in: ACM Work-
shop on Hot Topics in Networks (HotNets), 2020, p. 160–167.

[495] S. Han, S. Jang, H. Lee, S. Pack, Switch-Centric Byzantine Fault Toler-
ance Mechanism in Distributed Software Defined Networks, IEEE Com-
munications Letters 24 (2020) 2236–2239.

[496] GitHub: SC-BFT, https://github.com/MNC-KOR/SC-BFT, accessed 01-
20-2021 (2021).

[497] G. Sviridov, M. Bonola, A. Tulumello, P. Giaccone, A. Bianco, G. Bianchi,
LODGE: LOcal Decisions on Global statEs in Progrananaable Data
Planes, in: IEEE Conference on Network Softwarization (NetSoft), 2018,
pp. 257–261.

141

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[498] G. Sviridov, M. Bonola, A. Tulumello, P. Giaccone, A. Bianco, G. Bianchi,
LOcAl DEcisions on Replicated States (LOADER) in programmable data-
planes: Programming abstraction and experimental evaluation, Computer
Networks 181 (2020) 107637.

[499] GitHub: LOADER, https://github.com/german-sv/loader, accessed
01-20-2021 (2021).

[500] H. Takruri, I. Kettaneh, A. Alquraan, S. Al-Kiswany, FLAIR: Accelerat-
ing Reads with Consistency-Aware Network Routing, in: USENIX Sym-
posium on Networked Systems Design & Implementation (NSDI), 2020,
pp. 723–737.

[501] S. Luo, H. Yu, L. Vanbever, Swing State: Consistent Updates for Stateful
and Programmable Data Planes, in: ACM Symposium on SDN Research
(SOSR), 2017, p. 115–121.

[502] J. Xing, A. Chen, T. E. Ng, Secure State Migration in the Data Plane,
in: Workshop on Secure Programmable Network Infrastructure (SPIN),
2020, p. 28–34.

[503] GitHub: P4Sync, https://github.com/jiarong0907/P4Sync, accessed
01-20-2021 (2021).

[504] Y. Xue, Z. Zhu, Hybrid Flow Table Installation: Optimizing Remote
Placements of Flow Tables on Servers to Enhance PDP Switches for In-
Network Computing, IEEE Transactions on Network and Service Man-
agement (TNSM) (2020) 429–440.

[505] C. Kuzniar, M. Neves, I. Haque, POSTER: Accelerating Encrypted Data
Stores Using Programmable Switches, in: IEEE International Conference
on Network Protocols (ICNP), 2020, pp. 1–2.

[506] G. C. Sankaran, K. M. Sivalingam, Collaborative Packet Header Parsing in
NetFPGA-Based High Speed Switches, IEEE Networking Letters 2 (2020)
124–127.

[507] J. Woodruff, M. Ramanujam, N. Zilberman, P4DNS: In-Network DNS,
in: P4 Workshop in Europe (EuroP4), 2019, pp. 1–6.

[508] GitHub: P4DNS, https://github.com/cucl-srg/P4DNS, accessed 01-
20-2021 (2021).

[509] R. Kundel, L. Nobach, J. Blendin, H.-J. Kolbe, G. Schyguda, V. Gurevich,
B. Koldehofe, R. Steinmetz, P4-BNG: Central Office Network Functions
on Programmable Packet Pipelines, in: International Conference on Net-
work and Services Management (CNSM), 2019, pp. 1–9.

[510] GitHub: p4se, https://github.com/opencord/p4se, accessed 01-20-
2021 (2021).

142

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[511] I. Martinez-Yelmo, J. Alvarez-Horcajo, M. Briso-Montiano, D. Lopez-
Pajares, E. Rojas, ARP-P4: A Hybrid ARP-Path/P4Runtime Switch,
in: IEEE International Conference on Network Protocols (ICNP), 2018,
pp. 438–439.

[512] R. Glebke, J. Krude, I. Kunze, J. Rüth, F. Senger, K. Wehrle, Towards
Executing Computer Vision Functionality on Programmable Network De-
vices, in: ACM CoNEXT Workshop on Emerging In-Network Computing
Paradigms, 2019, p. 15–20.

[513] J. Xie, C. Qian, D. Guo, M. Wang, S. Shi, H. Chen, Efficient Indexing
Mechanism for Unstructured Data Sharing Systems in Edge Computing,
in: IEEE International Conference on Computer Communications (INFO-
COM), 2019, pp. 820–828.

[514] Y.-S. Lu, K. C.-J. Lin, Enabling Inference Inside Software Switches,
in: Asia-Pacific Network Operations and Management Symposium (AP-
NOMS), 2020, pp. 1–4.

[515] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, P4-to-
blockchain: A secure blockchain-enabled packet parser for software defined
networking, Computers & Security Journal 88 (2019) 101629.

[516] T. Osiński, H. Tarasiuk, P. Chaignon, M. Kossakowski, P4rt-OVS: Pro-
gramming Protocol-Independent,Runtime Extensions for Open vSwitch
with P4, in: IFIP-TC6 Networking Conference (Networking), 2020, pp.
413–421.

[517] GitHub: P4rt-OVS, https://github.com/Orange-OpenSource/
p4rt-ovs, accessed 01-20-2021 (2021).

[518] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishna-
murthy, M. Moshref, D. Ports, P. Richtarik, Scaling Distributed Machine
Learning with In-Network Aggregation, in: USENIX Symposium on Net-
worked Systems Design & Implementation (NSDI), 2021.

[519] SwitchML, https://github.com/p4lang/p4app-switchML, accessed 15-
02-2022 (2021).

[520] F. Yang, Z. Wang, X. Ma, G. Yuan, X. An, SwitchAgg: A Further Step
Towards In-Network Computing, in: IEEE Intl Conf on Parallel & Dis-
tributed Processing with Applications, Big Data & Cloud Computing, Sus-
tainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), 2019.

[521] S. R. Li, R. W. Yeung, N. Cai, Linear Network Coding, IEEE Transactions
on Information Theory 49 (2003) 371–381.

143

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

[522] Deutsche Telekom AG: Deutsche Telekom’s Access 4.0 platform goes live,
https://www.telekom.com/en/media/media-information/archive/
deutsche-telekom-s-access-4-0-platform-goes-live-615974,
accessed 05-17-2021 (2021).

[523] O-RAN Alliance, https://www.o-ran.org/, accessed 05-17-2021 (2021).

144

Journal Pre-proof

Frederik Hauser studied computer science at the University of Tuebingen,
Germany, and received his Master degree. Since then, he has been a researcher at
the C
PhD
func

Mar ,
and
of C
main
and

Dan
habi
obta
com
defin

Stef
Germ
netw
at th
softw

Vlad
educ
data
mos
prog
Con
orga

Flor
been
rem
Man
proje
Man

Rein
(Res
netw
defin

Mich
Univ
inter
resil
defin
Thin
Jo
ur

na
l P

re
-p

ro
of

hair of Communication Networks at the University of Tuebingen, pursuing his
. His main research interests include software defined networking, network
tion virtualization, and network security.

co Haeberle studied computer science at the University of Tuebingen, Germany
received his Master degree. Since then, he has been a researcher at the Chair
ommunication Networks at the University of Tuebingen, pursuing his PhD. His
 research interests include software defined networking, P4, network security,
automated network management.

iel Merling is a Ph.D student at the chair of communication networks of Prof. Dr.
l. Michael Menth at the Eberhard Karls University Tübingen, Germany. There he
ined his master's degree in 2017 and afterwards, became part of the
munication networks research group. His area of expertise include software-
ed networking, scalability, routing and resilience issues, and multicast.

fen Lindner is a Ph.D. student at the Eberhard Karls University Tübingen,
any. He wrote his bachelor and master thesis at the chair of communication

orks of Prof. Dr. habil. Michael Menth. He started his Ph.D. in September 2019
e communication networks research group. His research interests include
are-defined networking, P4 and congestion management.

imir Gurevich is a Principal Engineer at Intel Corp., where he conducts
ational and development activities related to P4 language, Tofino ASICs and the
 plane APIs. Intel Connectivity Academy course developed by Vladimir is the
t popular educational program for teaching the P4 language and data plane
ramming and currently has more than 800 graduates. He also leads a Intel
nectivity Research Program serving more than 150 universities and research
nizations working with Intel on next-generation networks.

ian Zeiger holds a PhD in Computer Science. For more than 10 years he has
 doing research and technology transfer on ad-hoc networks, mobile platform

ote operations, and IIoT. Since 2011 he is working in Industry as Project
ager, Key Expert, and Senior Research Scientist in national & international R&D
cts. He currently works for Siemens and he is a certified PMI Project

agement Professional and IACRB Certified SCADA Security Architect.

hard Frank is a Senior Industrial Communication & Virtualization Expert
earch Scientist) at the Siemens AG. His interests are virtualization in industrial
orks, industrial routing and switching research aspects with focus on software
ed capabilities and zero trust architectures.

ael Menth is a professor at the Department of Computer Science at the
ersity of Tuebingen and Chair holder of Communication Networks. His special
ests are performance analysis and optimization of communication networks,
ience and routing issues, resource and congestion management, software-
ed networking and Internet protocols, industrial networking, and the Internet of
gs.

Journal Pre-proof

Frederik Hauser

Marco Habe

Daniel Merl

Steffen Lind

Vladimir Gurevich
Jo
ur

na
l P

re
-p

ro
ofrle

ing

ner

Florian Zeiger

Reinhard Frank

Michael Menth

1

Journal Pre-proof

Decla

☒ Th ips

that

☐The ed
as po

Jo
ur

na
l P

re
-p

ro
of

ration of interests

e authors declare that they have no known competing financial interests or personal relationsh

could have appeared to influence the work reported in this paper.

 authors declare the following financial interests/personal relationships which may be consider
tential competing interests:

