
Journal of Network and Computer Applications 176 (2021) 102947

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Review

A survey on network forwarding in Software-Defined Networking
Liang Yang ∗, Bryan Ng ∗, Winston K.G. Seah, Lindsay Groves, Deepak Singh
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

A R T I C L E I N F O

Keywords:
Software-Defined Networking (SDN)
Forwarding table entry (FTE)
Forwarding pipeline
Forwarding representation
Networking element
Boolean algebra

A B S T R A C T

The packet forwarding behaviour of a network relies on the forwarding rules residing in the networking
element (e.g. switches and routers) to forward packets. This applies to both traditional networking and
software-defined networking (SDN). These forwarding rules vary in their structures and sizes, but they
represent the same fundamental functionality: to match incoming packets against rules and determine its
forwarding behaviour. All these rules in a network device constitute a packet forwarding pipeline. This survey
paper presents a new taxonomy for the representation of the forwarding pipeline in SDN based on core
networking functionality. The new taxonomy uses a typology and attributes of the forwarding behaviour to
establish a cohesive vocabulary and a classification system to study and characterise the interactions of FTE
along an end-to-end path in SDN. The survey also shows that Boolean algebra is most widely used for the low-
level representation of FTEs and facilitates the assessment of ‘‘equivalence’’ between FTEs and has practical
uses in traffic monitoring and packet classification within SDN, among others.
1. Introduction

Networking elements in a computer communication network are
forwarding devices (switches or routers) linked together to deliver
packets from one point to another. In a traditional network (e.g. In-
ternet Protocol (IP) and MPLS (Multi-protocol label switching), these
networking elements have a control plane and a data plane coupled
together (Masoudi and Ghaffari, 2016). The control plane performs
control functions such as deciding the best routing (or forwarding)
path, installing rules for forwarding and configuration of networking
elements along the end-to-end path. While the data plane forwards
packets based on forwarding rules made by the control plane.

The forwarding rules in traditional networking are defined as access
control list (ACL) and IP lookup table. The ACL is mostly configured
by the administrator manually while IP tables are usually created and
updated locally by the routing protocol residing in each networking
element (Habib et al., 2019; Kao et al., 2019). Often, the ACL and
IP tables are modified manually by network administrators to manage
localised requirements resulting in a complex network configuration.
In addition, the use of a low-level programming language and vendor
dependency makes configuration of the network cumbersome and error
prone for network operators.

To simplify the configuration complexity in the traditional network,
a new networking paradigm called Software-Defined Networking (SDN)
that uses a high-level programming language has emerged (Nunes et al.,

∗ Corresponding authors.
E-mail addresses: yzyangliang@gmail.com (L. Yang), bryan.ng@ecs.vuw.ac.nz (B. Ng), winston.seah@ecs.vuw.ac.nz (W.K.G. Seah), lindsay@ecs.vuw.ac.nz

2014; Zhang et al., 2018a). SDN is a network paradigm in which the
control plane is decoupled from a networking element. In an SDN, the
control function is moved to a logically centralised controller which
eases the load on a networking element with the primary function of
forwarding packets. It allows the network to be controlled and managed
through a software written in a high-level programming language.

The shift of the control function from a hardware to software
dependency allows the system to be more agile, programmable and
centrally managed. The forwarding rules in an SDN are defined by a
set of flow table and group tables, the difference between flow tables
and group tables is that Group tables consist of multiple flow table
entries and actions associated with particular groups (as defined by the
controller). In the remainder of this paper, we generalise flow tables
and group tables as forwarding table entries (FTEs), except where it is
necessary to differentiate them.

Forwarding table entries have more flexible structure, stronger for-
warding manipulation abilities and inevitably more complicated logic
than the ACL and IP tables. These dynamically provisioned FTEs control
packet forwarding behaviour from a network-wide perspective rather
than the device-level perspective in ACLs and IP tables (Levin et al.,
2012). To model the network-wide forwarding behaviour, a controller
must have a systematic method to represent FTEs across the network.
Moreover, a common vocabulary and representation (or model) of FTEs
is necessary to systematically model end-to-end network behaviour and
vailable online 9 December 2020
084-8045/© 2020 Elsevier Ltd. All rights reserved.

(L. Groves), deepak.singh@ecs.vuw.ac.nz (D. Singh).

https://doi.org/10.1016/j.jnca.2020.102947
Received 25 August 2019; Received in revised form 5 October 2020; Accepted 7 D
ecember 2020

http://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:yzyangliang@gmail.com
mailto:bryan.ng@ecs.vuw.ac.nz
mailto:winston.seah@ecs.vuw.ac.nz
mailto:lindsay@ecs.vuw.ac.nz
mailto:deepak.singh@ecs.vuw.ac.nz
https://doi.org/10.1016/j.jnca.2020.102947
https://doi.org/10.1016/j.jnca.2020.102947
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2020.102947&domain=pdf

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.
abstract low-level-behaviour. In this survey we show that FTEs serve as
an appropriate abstraction for end-to-end network behaviour.

The motivation to investigate the existing technologies on forward-
ing pipelines which refers to the functionalities of networking elements,
forwarding rules and the topologies connect these elements. These
functionalities determine the forwarding path of packets which are
similar to the pipelines in a watering system, hence also called as
packet forwarding pipelines.

In this survey, we will review the literature on network forward-
ing and representation of forwarding pipelines. This survey offers an
overview on the state-of-the-art advances in representations of the
packet forwarding pipelines that contributes to the understanding of
key features of a packet forwarding behaviour. This survey reviews
existing and up-to-date technical solutions, identifies their basic char-
acteristics to derive the essential FTE attributes which must be covered
by an FTE representation.

The goal of a representation is to better understand and utilise the
functionality of FTEs inside SDN. An effective FTE representation must
meet the following criteria: (i) it should cover the major attributes
of FTE, for example, wildcard, priority and multi-table; (ii) it should
be capable of exploiting the various manipulations on FTEs such as
validation and facilitating FTE placement; and (iii) it should have the
ability to integrate network information such as traffic statistics and
topology to resolve realistic networking problems. With the help of
the representation, a controller can easily transfer high-level policies
to low-level FTEs and correctly place them into switches or routers.

The scope of this survey includes FTE representation and network-
ing applications based on the analysis of different approaches to char-
acterising FTEs. In the review of a FTE representation, the forwarding
pipeline in traditional networking and SDN are inspected and charac-
terised which forms the basis of the taxonomy we develop later in the
survey. Moreover, the various representations to analyse FTE (called a
typology — grouping of FTE representations with shared similarities)
as well as the rationale why they are chosen and their respective
applicable scenarios are presented. To better relate the outputs of this
survey to practice, we review two types of applications: (i) assessing
equivalence in forwarding behaviour and (ii) traffic monitoring.

An overview of SDN is given in Section 2 to guide readers through
the concepts, architecture, and the de-facto protocol (OpenFlow) of
SDN. It is then followed by the deconstructing the forwarding pipeline
in both the traditional network and SDN in Section 3. This is followed
by the core contribution of this survey which is a taxonomy of FTE
representation in Section 4. Next, the taxonomy is applied to systemat-
ically categorise the literature with comments related to why they are
suited and their respective application scenarios in Section 5. Finally,
a summary of this survey is given in Section 6.

2. SDN: Overview

In a networked system, network elements have two basic compo-
nents: the control plane and the data plane. The control plane performs
control logic such as routing protocols, middlebox configuration while
the data plane forwards the traffic based on control logic. The control
plane and data plane are coupled together, thus enabling each network
element to participate in route making decisions and data forwarding.

However, this tight coupling is not flexible when the network
size increases. The obfuscated control logic coupled with proprietary
hardware and the use of low-level programming languages makes the
system rigid and complex. Therefore it copes poorly with issues of
scalability, reliability and security which are more pronounced as the
network size increases. These issues in the traditional network hinder
the performance of the system as the network traffic is increasing by
the day (Saraswat et al., 2019; Lu et al., 2019; Hossein et al., 2019;
Kuan and Dimyati, 2006; Hsueh et al., 2018).

To cope with the aforementioned issues in the traditional network,
a network paradigm called ‘‘Software-Defined Networking’’ (SDN) was
2

Fig. 1. Simplified SDN Architecture.

seen as the next generation of computer networking. SDN has two
defining characteristics that sets it apart from traditional networks: (a)
it separates the control plane from the data plane, and (b) it logically
centralises the control plane to direct multiple data plane elements
through a single software control program (Feamster et al., 2013). From
SDN, new areas of research such as Network Function Virtualisation
(NFV) have emerged, network service chaining, network as code have
emerged (Yan et al., 2018; Li et al., 2019; Zhou and Benson, 2019;
Sanger et al., 2019; Qiu et al., 2019; Lin et al., 2019; Vardi and
Kupferman, 2019; Kyung and Park, 2019; Riener et al., 2019).

A simplified architecture view of an SDN is depicted in Fig. 1.
The core of an SDN enabled network is the controller which not only
exercises direct control over all networking devices, but also responds
to the requests from the application side. A controller communicates
with the higher-level components, the applications, via the northbound
interface. Similarly, it also communicates with the lower-level compo-
nents for example the network elements across the network, via the
southbound interface.

Some protocols for the southbound interface are OpenFlow (McK-
eown et al., 2008), ForCES (Haleplidis et al., 2015), Border Gateway
Protocol (BGP) (Rekhter et al., 1994), Network Configuration Protocol
(NETCONF) (Enns et al., 2011), Open vSwitch Database Management
Protocol (OVSDB) (Pfaff et al., 2015; Hao and Ng, 2019), OpFlex (Smith
et al., 2014). OpenFlow is among the first and most widely used
protocol to define communication between the controller and switch
in an SDN paradigm (Goransson and Black, 2014; Hao et al., 2017; Li
et al., 2016; Hao and Ng, 2018).

Traditional network management protocols such as NETCONF or
routing protocol such as BGP have been reused to configure the
switches in SDN. Even though these protocols do not provide the
same flexibility as OpenFlow, they are considered as southbound APIs
and supported by major vendors such as NEC, Pica8 and HP. Some
alternatives to OpenFlow have been documented in the literature for
example OVSDB, ForCES and OpFlex. OVSDB manages Open vSwitch
implementation by adopting a non-OpenFlow protocol to program
OpenFlow switches. Similar to OpenFlow, both OpFlex and ForCES
follow the policy-driven mechanism. OpFlex replaces the OpenFlow
controller and OpenFlow interface with ‘‘Policy Authority’’ and ‘‘Policy
Agent’’, respectively. However, the switch in OpFlex still relies on the
FTE-like flow tables to forward packets.

As a competing protocol with OpenFlow, ForCES is different from

OpenFlow in many aspects, but they share the same design principle in

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.
Fig. 2. A network abstraction: forwarding tables.

forwarding models. ForCES manages the packet forwarding behaviour
with an abstraction of Logical Functional Blocks (LFBs) which share
the similar functionality as OpenFlow FTE. Both LFBs and OpenFlow
tables consist of ‘‘Match-Action’’-like entries, i.e. FTE. Therefore, the
underlying principles of an SDN forwarding discussed in this survey
extends to non-OpenFlow protocols too.

Recent surveys have shown that the proliferation of SDN across
different domains is widespread (Li et al., 2018; Yu et al., 2018; Rojas
et al., 2018; Alsaeedi et al., 2019; Omar and Samsudin, 2019; Souri
et al., 2019; Su et al., 2019; Ben Azzouz and Jamai, 2019; Kantor et al.,
2019; Xie et al., 2018; Sultana et al., 2019; Liu et al., 2019) even reach-
ing emerging areas such as machine learning (Sultana et al., 2019; Xie
et al., 2018; Bakker et al., 2018), Internet of Things (IoT) (Salman et al.,
2018; Priya and Silas, 2019; Farris et al., 2018) and blockchains (Yang
et al., 2019; Jindal et al., 2019). Our extensive research of the literature
has identified that none of the surveys in the recent two years have
collated and studied FTE representations and classified them as we have
done in this survey.

3. Forwarding pipeline

In networking, a pipeline is a chain of packet-processing entities (or
filters) connected in a certain type of structure, where the output of
one entity is the input of another one. For an individual networking
device (switch or router), the packet-processing entities include the
various chained forwarding tables such as the ACL table, IP routing
table in traditional networking and generic forwarding table in SDN.
Similarly, for a network (traditional or SDN), the packet-processing
entities include forwarding tables in all networking devices which are
connected with a certain type of topology. This pipeline is also called
packet forwarding pipeline because its major function is forwarding
data packets between two devices.

3.1. Forwarding tables in traditional networking and SDN

As illustrated in Fig. 2, a packet’s forwarding path is determined by
the forwarding tables in each network element. The forwarding tables
in traditional networking are usually statically configured or generated
by locally running routing protocols. Whereas, the forwarding tables
in SDN can be dynamically provisioned and updated by a centralised
controller.

Traditional networking mainly relies on routing and switching pro-
tocols such as BGP (Border Gateway Protocol), IGRP (Interior Gateway
Protocol) and Ethernet to perform packet forwarding. However, some
applications such as firewall and load balancing need more flexible
ways to dynamically regulate the network. To meet this requirement,
the concept of an ACL was introduced by Cisco to provide an alterna-
tive to manipulate the switch forwarding behaviour. An ACL can be
3

considered as a special purpose filter in a forwarding pipeline which is
designed to specify the access rights allowed or denied for all incoming
packets.

Besides an ACL table, an IP routing table has also been widely
used in a forwarding pipeline (Huang and Zhao, 1999). In a network,
each networking device maintains a routing table which consists of a
set of IP prefix entries and their associated egress interface(s). When
an IP data packet reaches a device, this packet’s destination address
will be matched against the routing table to find its egress interface(s)
by matching against the longest IP prefix. Compared to an ACL, an
IP routing table is a generic purpose filter and the most important
components of a forwarding pipeline. IP routing tables determine a
packet’s forwarding path in a network.

From the above two functions, we can see that ACL policy and IP
routing in tandem with the underlying protocols perform the following
two steps to achieve ‘‘network management’’: (i) the incoming packets
match against ACLs or IP route (e.g. prefix matching) and (ii) execute
certain actions (drop or output packets). This specific design for each
ACL and IP routing function is radically changed by use of forwarding
tables in SDN (Benson et al., 2009).

The core concept of an SDN is that by creating a few careful
abstractions based on ACL and IP routing tables, the complexity of the
underlying components is hidden and the new functionalities are easily
developed via the programming interface between the network devices
and the controller. One popular programming interface is OpenFlow
which is the de-facto southbound interface that gives the higher level
software access to the forwarding plane of an SDN. In OpenFlow, FTE
has replaced the ACL and routing entry of traditional networking to
manage the forwarding capabilities of networking devices. Packets are
forwarded according to the path which is composed of FTEs. For a
pure SDN, the behaviours of all packets can be precisely controlled by
manipulating FTEs.

OpenFlow was proposed around 2008 and it is still evolving as the
mechanism and usage of FTE are not fully researched (Pfaff et al.,
2009). The core idea of FTE is similar to the policies which have been
widely used in an ACL while the policy’s scope and depth have been
largely extended in OpenFlow. As the network scales and grows in
complexity, FTEs are not easy to understand and manipulate. Therefore,
it is important to find a way to represent FTEs as they determine the
packet forwarding behaviour in an SDN.

The two major perspectives of OpenFlow specification are FTE
manipulations (installation, deletion, modification) and statistics up-
dates (Dargahi et al., 2017). These perspectives motivate the research
on FTE representation and manipulation for better management of an
SDN. In the following subsection, existing research works on character-
ising forwarding behaviour are discussed. The significance of FTEs and
how they relate to optimal network utilisation has been discussed in
the works of Guo et al. (2018, 2017) whereby the relationship between
flow table occupancy and link utilisation is established.

3.2. Existing works on characterising forwarding behaviour

Existing works that investigate the forwarding behaviour of packets
can be classified into three categories based on three different for-
warding tables whose structures and functionalities vary. The three
forwarding tables are (i) ACL, (ii) IP routing entry, and (iii) FTE. This
subsection reviews the existing works for all these three forwarding ta-
bles and derives the four essential attributes for a successful forwarding
pipeline representation.

3.2.1. Regulating forwarding behaviour by ACL
An ACL is composed of a sequence of rules to match against the

packet to determine whether a specific action is performed or not. It
is a special type of role-based access control (RBAC) (Ferraiolo et al.,
2003). A ‘‘minimal RBAC Model’’ (RBACm) can be compared with an
ACL mechanism (ACLg) where only groups are permitted as entries in
the ACL (Barkley, 1997). An ACL has been widely used in a computer

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.

s
r
c

f
c

o
s
H
t
i
p
a

f
2
T
b
i

b
T
a
f
c
d

3

a
t
c
m
r
r
I
i

w
s
a
p
a
I
i

Fig. 3. An ACL example with corresponding access matrix.

ystem such as the user account authentication, firewall, etc. The prior
esearch on ACL is mainly focused on the validation of these access
ontrol policies and the optimisation of their storage space.

Lampson introduced the formal notions of subject and object as
well as an access matrix that mediated the access of subjects to ob-
jects (Lampson, 1974). An access matrix consists of a set of subjects
𝑠 ∈ 𝑆, a set of objects 𝑜 ∈ 𝑂, a set of operations 𝑜𝑝 ∈ 𝑂𝑃 , and a
unction 𝑜𝑝𝑠(𝑠, 𝑜) ⊆ 𝑂𝑃 , which determines the operations that subject 𝑠
an perform on object 𝑜.

To model a simple network as an access matrix, we use an example
f a network enforcing an ACL. Fig. 3 shows an ACL example where a
elect host in NetB is granted permission to access NetA. All traffic from
ost B destined to NetA is permitted while all other from NetB destined

o NetA is denied. Its corresponding access matrix is demonstrated
n Table 1. The specified operations (permit host 192.168.10.1) are
erformed on all incoming packets which are the implicit objects of
n access matrix.

An access matrix can be easily transformed to the ‘‘match-action’’
orm (MAF) which has been specified in OpenFlow specification (ONF,
014). For an example in Fig. 3, its equivalent MAF is illustrated in
able 2. An MAF does not include the field of object in access matrix
ecause all ACLs share the same object: incoming packets. The action
n MAF only contains two operations: permit and deny.

The default action for all packets which are not explicitly permitted
y ACLs is denied which is why the second row is added in Table 2.
he match field in a MAF is composed of an access matrix’s subject
nd the negatives of the fields in operation. From the perspective of
unctionality, an ACL is equal to a generic forwarding table with no
onstraints on match fields and only two type of actions (permit and
eny) allowed.

.2.2. Regulating forwarding behaviour by IP routing table
An IP routing table determines which specific route is selected for

given IP address. The table entry in an IP routing table represents
he smallest subnet that contains the given IP address. A routing table
aptures two aspects: Composition and Relation (Michaelis and Diek-
ann, 2016). The Composition aspect deals with the components of a

outing table and their respective meaning while Relation interprets a
outing table from different functional perspective. The structure of an
P routing table with the Composition and Relation aspects is illustrated
n Fig. 4.

As seen in Fig. 4, a routing table is composed of single table entries
here each entry contains a longest prefix IP address and its corre-

ponding routing action (a subset relationship). The relation between
n IP address and its corresponding routing action can be then inter-
reted from the two functional perspectives: (1) IP interval per entry
nd (2) IP interval per port. The IP interval per entry is a function from
P (interval) to port (where the intervals do not overlap) while the IP
nterval per port is a function from port to IP (a range of IP addresses or
4

Fig. 4. IP routing table structure.

Table 1
Access matrix for the ACL example in Fig. 3. The access matrix resides in router R1.

Subject Object Operation

Interface ethernet0 (e0) Incoming packets Permit host 192.168.10.1

* * Deny

Table 2
‘‘Match-action’’ form for the ACL example in Fig. 3.

Match Fields Action

Ingress port = Ethernet 0 PERMITDestination IP address = 192.168.10.1

* DENY

an IP space). Algorithm 1 defines the routing table semantics (Michaelis
and Diekmann, 2016) in which the datatype linord-helper maps the set
relationship between two IP addresses (lines 2–6). It is used to express
the concept of longest prefix match (LPM) (lines 13–16). For all IP
packets which match the given routing table entries (lines 8–11), they
will be forwarded to the corresponding output interface or next-hop
depending on their associated routing-actions (lines 17–19).

3.2.3. Regulating forwarding behaviour by FTE
OpenFlow provides an industry-standard application programming

interface and protocol to program forwarding tables in switches. Open-
Flow is managed by Open Networking Foundation (ONF), an organ-
isation dedicated to promoting and adoption of SDN. OpenFlow is
evolving and will continue to evolve. The latest OpenFlow switch
specification is Version 1.5.0 (Protocol version 0 × 06) (ONF, 2014)
which was released on December 19, 2014 by ONF.

Since OpenFlow Version 1.1.0 (ONF, 2011), a flexible pipeline with
multiple tables is exposed to the control layer. As depicted in Fig. 5,
packets are processed through a pipeline which consists of one or
more flow tables, group tables whereby each table consists of multiple
FTEs. The pipeline has two processing stages: ingress processing and
egress processing which is separated by the first egress table as seen
in Fig. 5 (ONF, 2014). The pipeline processing starts with ingress
processing from the first flow table, labelled ‘‘Table 0’’ in Fig. 5. The
output of ingress processing may direct a packet to an output port
in egress processing which is optional. The incoming packet ’’Packet
In’’ must be matched against FTEs of ‘‘Table 0’’ and subsequently the
packet might be forwarded to any table following ‘‘Table 0’’ based on
the action set and pipeline instructions such as metadata which carries
information between tables. When a packet is matched against the FTEs
of a flow table, a matched flow entry is selected to execute a set of
instructions.

The instructions can be to forward the packet to a specific port or
another table. The instructions can also direct the packet to a Group
table for further processing as seen in Fig. 5. The group table is used to
execute group actions on packets and consists of group entries. A Group
table contains forwarding entries and actions for packets associated

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.

w
t
t
p
i
s

i
e

Algorithm 1 Routing table semantics
1: datatype (′𝑎,′𝑏) linord-helper = LinordHelper ′𝑎 ′𝑏
2: begin
3: AB definition linord-helper-less-eq1 a b ≡ [case a of LinordHelper a1 a2 ⇒ case b of LinordHelper b1 b2 ⇒ (a1 < b1) ∨ ((a1 =
b1) ∧ (a2 ≤ b2))]

4: AB definition a ≤ b ⟷ linord-helper-less-eq1 a b
5: AB definition (a ≠ b ∧ linord-helper-less-eq1 a b)
6: end
7: theory Routing-Table
8: import ../IP-Address/Prefix-Match
9: import ../IP-Addresses/IPv4 ../IP-Addresses/IPv6

10: import Linorder-Helper
11: import ../IP-Address/IP-Address-toString
12: begin
13: ABrecord(overloaded) ′i routing-rule =
14: ABrecord(overloaded) routing-match :: (′i::len) prefix-match
15: ABrecord(overloaded) metric :: nat
16: ABrecord(overloaded) routing-action :: ′i routing-action
17: ABrecord(overloaded) ′i routing-action =
18: ABrecord(overloaded) output-iface :: string
19: ABrecord(overloaded) next-hop :: ′i word optio
20: end
Fig. 5. OpenFlow table processing (ONF, 2014).
Fig. 6. Inside FTE: OpenFlow packet matching and actions.
ith a group, which can be a set of TCP ports, or a set of actions applied
o traffic aggregates. The Group table functionality represents an area
hat is under studied within the SDN context but can be extremely
owerful and flexible. Finally, if a packet has no matching flow entry
n a flow table, the packet is processed depending on the instructions
pecified in the table-miss entry.

The match fields and actions in FTE can be easily customised to
mplement the same forwarding behaviour as ACL and IP routing
ntry (Bosshart et al., 2013a). For an ACL, the match fields remain
5

the same as FTE, only the ACL’s default action ‘‘deny’’ is replaced by
‘‘drop’’. The conversion from an IP routing entry to an FTE is more
straightforward, neither the match fields or actions need any changes.
But not all match fields in traditional networking are explicitly indi-
cated. For example, the packets with specified VLAN id and destination
MAC (DMAC) address will be only sent to an IP routing table for prefix
searching. Therefore to maintain the same forwarding behaviour as
an existing IP routing entry, the match fields of FTE will become the
combination of ‘‘VLAN, DMAC’’.

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.
Table 3
Forwarding table comparison.

Network Table Dimensions Actions

Single Multiple Copy Pop/Push Set Out

Traditional network ACL x x x
IP routing x x

SDN FTE x x x x x x

Fig. 7. OpenFlow attributes.

A flow table consists of multiple FTEs. Fig. 6 illustrates the main
components of an FTE: match fields, instructions, counters, timeouts
and priority. An FTE is identified by match fields and priority. The
match fields determine whether a packet can hit an FTE while the
priority determines whether a packet has the chance to match against
this FTE or not. Only the matching FTE with the highest priority will be
selected. A match field contains the well-known fields in an IP header
(source MAC, destination MAC, source IP, destination IP, etc.) as well
as the fields related to pipeline processing, for example, ingress port
and metadata.

From the research works (Yang et al., 2016a, 2017a,b) on SDN
forwarding table, there are four essential FTE attributes: (i) Wildcard
[W], (ii) Priority [P], (iii) Multi-table [M], iv) Topology [T]. The
attributes can be extended by taking into consideration whether an FTE
supports group actions or not, however this is beyond the scope of this
survey because it is a feature that has not been widely studied at the
time this research was conducted.

Among the above key attributes, wildcard and priority are only as-
sociated with a single table. Wildcard and priority are inherited from an
ACL and a lot of research has been done on these attributes (Pozo et al.,
2008; Wong et al., 2010). As illustrated in Fig. 7, they are categorised as
core attributes and must be covered by all representations. Multi-table
is one of the most significant feature in OpenFlow to enrich dynamic
configuration and placement of a FTE. Multi-table is listed as extended
attributes in Fig. 7 and it must be represented by any network-wide
representation. Although topology is not an intrinsic attribute of a FTE,
it is still listed here as a crucial attribute because it plays an important
role in determining a network-wide packet forwarding behaviour.

3.3. Pipelines: a common denominator for packet forwarding

Inside a single forwarding element (switch or router), there might
have multiple forwarding tables where each table serves a different
purpose to match their respective specified field(s) against the incoming
packets. These tables construct a packet forwarding pipeline which is
the common denominator for ACL and IP routing table in traditional
networking as well as the generic forwarding tables in SDN. In the
next few paragraphs we will compare by way of example the tables
6

Fig. 8. Switch-level pipeline in a traditional network.

Fig. 9. Switch-level pipeline in SDN.

in traditional networking and SDN to highlight the difference in the
forwarding pipeline.

The first example is an IP routing table. It has only one match
field i.e., the destination IP address to match upon the incoming
packets, it is also called a single dimensional forwarding pipeline (Kang
et al., 2013a). The second example is an ACL, which is a multiple
dimensional pipeline because it matches against more than one known
field simultaneously. However, as the name ACL suggests, it can only
decide whether a packet is allowed to pass through a device by its
predetermined action: permit or deny.

The SDN paradigm uses a more generic forwarding pipeline which
allows arbitrary combination of multiple fields and performs more
complex actions. Each of the tables are dynamically provisioned based
on the program running in the controller.

In Table 3 we compare the traditional network with SDN. Each table
(denoted in the row) is marked with an ‘‘x’’ if the table supports a
‘‘Dimension’’ for matching and is able to perform a set of ‘‘Actions’’.
The Dimension column indicates that the table for the use case is single
dimensional (e.g. IP or VLAN or TCP) or multidimensional (e.g. TCP
and MPLS). For example, IP routing only requires the source and
destination address fields from the IP headers (i.e. one dimension)
while ACLs must have the capability for regulating access via both
IP headers, TCP headers and potentially other headers (i.e. multiple
dimensions).

For ACLs, there are many possible combinations of IP addresses
or ports the administrator may want to configure. Hence, multiple
dimensions are a must for ACL. The Actions are described below:

• copy: copy TTL (Time-to-live) to/from the packet
• pop/push: apply all tag pop/push actions to the packet (e.g. MPLS

or VLAN tags)
• set: apply all set-field actions to the packet
• out: forward the packet on the port specified by the output action

Table 3 highlights a stark difference between different table types
in traditional network vs. SDN. From the perspective of matching
‘‘Dimensions’’, the IP routing table only has one dimension which is
the IP prefix while the rest two types have arbitrary combinations of
the fields in a packet header. From the perspective of ‘‘actions’’, the
IP routing table always directs to the next-hop via an ‘‘Out’’ action
and associates with a single egress interface. For SDN, the tables can
implement an arbitrary combination of actions via the FTE, hence all
actions are marked ‘‘x’’.

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.

f
i
2
t
f
e
i
a
p

4

n
t
i
t
r

4

l
a
F
w
f
m
r
f
l

4

I
i
1
p
q
p
w

e
d
t
c
c

In traditional networking, each table has fixed width and is assigned
the corresponding predetermined functionality, for example, VLAN
validation in the first table, IP address prefix matching in the second
table and ACL filtering in the third table. However, in SDN, these tables
can be customised and are not restricted to the predetermined actions.
Hence, the ACL and IP routing tables can also be considered as a special
type of forwarding pipelines. A forwarding pipeline is composed of one
or multiple forwarding tables which contain FTEs to specify the match
fields and their associated actions.

Though the structure and functionalities of forwarding pipelines
have changed significantly from traditional networking to SDN, the
underlying hardware remains the same. Most SDN switches on the
market share the same hardware as before. Figs. 8 and 9 illustrate the
reference forwarding pipeline of a typical ASIC (application-specific
integrated circuit) based switch in traditional networking and SDN,
respectively.

4. FTE representation

Even though the OpenFlow protocol is evolving, various approaches
have been proposed to analyse and manipulate the FTE in OpenFlow.
A summary of the literature of FTE representation is presented in
Table 4. FTE representations have been studied using simple logical
connectives (Bifulco and Schneider, 2013; Katta et al., 2014; Ng et al.,
2013; Hao and Ng, 2019) to more complex and abstract representations
such as infinitary logic.

In general, FTE representations are built upon one or a combination
of logic. The term ‘‘logic’’ in this survey is an expression system with
well defined syntax, semantics and pragmatics. Examples of single-logic
based representations include algebra (Foster et al., 2015; Shin et al.,
2013, 2012), set theory (Foster et al., 2011; Monsanto et al., 2012),
first-order logic based model checking (Son et al., 2013), temporal
logic (Al-Shaer and Al-Haj, 2010; Gutz et al., 2012; Wang et al., 2013),
and higher-order type theory (Guha et al., 2013a,b). Single logic for
FTE representations cannot completely capture the complete attributes
for OpenFlow such as the Topology and dynamic table placements.
However, single-logic representations are much more tractable and
have been the most popular in the literature.

Some representations that adopt more than one logic which includes
Z (Shin et al., 2013, 2012) and multiple-logics based model check-
ing (Canini et al., 2012). The Z representation is developed from typed
first-order predicate logic and Zermelo–Fraenkel set theory. Multi-logic
representations of FTE in SDN are not as well developed compared to
single-logic, examples of research applying multi-logic are Skalka et al.
(2019), Gordon (2018) and Mycroft et al. (2016).

Our proposed FTE representation is divided into four main typolo-
gies (Table 4) namely: logical connectives (LC), algebra (AL), set theory
(ST) and formal representations (FR) and each representation has been
shown to be able to model one or more OpenFlow attributes described
earlier in Section 3.2.3. In this survey, a typology is defined as a
grouping of FTE representations with shared similarities. Collectively,
the typology and the ability to model out the OpenFlow attributes
define the taxonomy of FTE representations in the literature.

4.1. Logical connective (LC)

This typology is denoted as LC in Table 4. Logical connective
representation mainly utilises logical operators to express the relation
and interactions between FTEs. The relations that can be in place
among match fields and instruction sets are first analysed in Bifulco
and Schneider (2013). Based on potential relation combinations, the
five FTE interaction types: Disjoint, Exact match, Subset, Superset, and
7

Correlated are defined in Bifulco and Schneider (2013).
4.2. Algebra (AL)

Algebraic typology is denoted as AL in Table 4. Algebraic represen-
tation is good at describing the attributes and reasoning of a structure
or program. The simplest algebra is Boolean algebra (Whitesitt, 1995)
in which the values of the variables are the truth values, true(1)
and false(0). Another branch of well-studied algebra representation
pioneered by E.F. Codd called relational algebra (Codd, 1972), was
proposed to model the data stored in relational databases.

Kleene algebra (Kozen, 1997), partly built on relational algebra
ocuses on the semantics of a program which can be expressed as an
dempotent semiring. NetKAT (Anderson et al., 2014; Foster et al.,
015) is another network programming language which is build on
op of Kleene algebra has demonstrated its capability of representation
or the attributes such as priority and topology. However, there is no
vidence to show that NetKAT can also be used to represent multi-table
n SDN. A recent paper by Skalka et al. (2019) relates to the concept of
lgebras to networking in practice and is significant in demonstrating
ractical application of algebra in SDN.

.3. Set theory (ST)

Set theory typology is denoted as ST in Table 4. Set theory (Fre-
etic Foster et al., 2011) is concerned with the concept of sets. It studies
he well-determined collections of objects. However, its strength lies
n descriptiveness rather than manipulation, thus it is unlikely to fulfil
he desired functionalities related to FTE manipulation, for example,
emoving the priority in a single table and combining multiple tables.

.4. Formal representations (FR)

Formal representations is a large family of representations with a
ong history that predates SDN. Formal representations use rigorous
nd provable mathematics in the design and implementation of the
TEs. It is a process to derive logical conclusions from the premises
hich are true or assumed to be true. A formal representation for

orwarding pipelines opens up new opportunities for applying formal
ethods to the analysis, design and optimisation of SDN. Formal rep-

esentations can be categorised based on the underlying logic used and
or representing FTEs these are: (i) symbolic logic and (ii) mathematical
ogic.

.4.1. Symbolic logic
Symbolic logic uses symbols and variables to express logical ideas.

t is by far the simplest kind of logic. Variants of symbolic logic
ncludes propositional logic (Clarke, 2012), predicate logic (Ullman,
994) and temporal logic (Emerson, 1990). Among these three logics,
ropositional logic has no quantifiers while the other two have. The
uantifiers are quite useful to express the uncertainties in a forwarding
ipeline, such as load balancing and failover (Canini et al., 2012) in
hich the same packet might be forwarded to different paths.

Propositional logic studies the indivisible statements. It assumes
very statement can be interpreted as true or false and then pro-
uces more complex statements in which truth-value depends on the
ruth-values of the simpler statements. The symbols or words used to
onnect two statements are logical connectives which include binary
onnectives such as ‘‘or’’, ‘‘and’’ as well as unary connectives such as
‘‘negation’’. It has been proven useful in modelling network forwarding
pipelines where each entry is interpreted as a logical expression of the
conditions to trigger their associated actions (Clarke, 2012).

Since propositional logic is not able to represent the relationship
between propositions, a more powerful logic ‘‘predicate logic’’ has
been studied in Ullman (1994). Predicate logic is an extension of
propositional logic and more expressive. It uses quantified variables

such as existential ‘‘∃’’ (‘‘there exists’’) and universal ‘‘∀’’ (‘‘for all’’) over

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.
Table 4
Summary of FTE manipulation.

Topology Logic Modelled attributesa Applications Project and Reference

FR

Binary decision diagrams,
Computational Tree Logic

[WP] Identify misconfiguration RuleChecker (Zhang et al., 2018b),
FlowChecker (Al-Shaer and Al-Haj, 2010)

Rule partition [WPT] Scalability SGLS (Riener et al., 2019),DIFANE (Yu et al.,
2011),(Kyung and Park, 2019)

Propositional logic, temporal logic [WPT] Test and verification of OpenFlow
applications

FlowLogic (Vardi and Kupferman, 2019),
GVCM (Lin et al., 2019), NICE (Canini et al., 2012)

Computation Tree Logic [T] Slicing and Isolation Slicing abstraction (Gutz et al., 2012)

Linear temporal logic [P] Action-based synthesis of SDN Automated Synthesis of Controller (Wang et al.,
2013)

Coalgebraic theory, Kleene
algebra, Brzozowski derivative

[PT] All-pair connectivity,
Loop-freedom, Translation
validation

NetKAT (Anderson et al., 2014; Foster et al., 2015)

ST

Declarative language, Domain
specific languages, Set-theoretic
operations

[WPT] A compiler, transformation from
application-level policies to
switch-level policies transformer

FastRule (Qiu et al., 2019), NetCore (Monsanto
et al., 2012)

Rectangular representation and
selection

[WPT] Rule placement (space, time,
resource)

Mozart (Zhou and Benson, 2019), ‘‘One Big
Switch’’ (Kang et al., 2013b)

Brick based model [WP] OpenFlow Failure-planning Semantic (Hsueh et al., 2018), RuleBricks
(Williams and Jamjoom, 2013)

Tree decision model, partition [WP] Flow setup efficiency
improvement

CAB (Yan et al., 2014a)

Integer linear programming mode [T] Maximise traffic satisfaction Routing for Efficiency (Nguyen et al., 2014)

Graph-based model [PT] Energy-aware Routing EAR (Giroire et al., 2014)

Graph theory, Recursive theory [WP] Caching system for SDN, FTE
abstraction

CacheFlow (Katta et al., 2014)

Tree-based model, Tagging
approach

[PM] FTE compression Generalised FTE Optimisation (Marsh, 2015)

LC

Set theory [WPT] Application oriented network
programming language over
controller

PCNC (Skalka et al., 2019), Frenetic (Foster et al.,
2011)

Logic connective [WP] Generic analysis, management
and optimisation of FTE

OpenFlow rules interaction (Yang et al., 2017a;
Zeng et al., 2014; Bifulco and Schneider, 2013)

AL

Algebra of communicating shared
resources

[P] Formalisation and verification of
SDN framework

Formal Specifications (Shin et al., 2012, 2013;
Bakker et al., 2019, 2018)

Tree based model, partition [WPT] Traffic-optimal rule placement BigMAC (Yan et al., 2018), vCRIB (Moshref et al.,
2013)

FR, AL

Tree composition/decomposition [M] Multi-table processing on legacy
hardware

Equivalence (Sanger et al., 2019),
FlowAdapter (Pan et al., 2013)

Domain-specific languages [WPT] SDN controller verification Featherweight OpenFlow (Guha et al., 2013a,b),
Coq (Bertot, 2008)

First order logic, Logical
connective

[WP] Verification of security attributes
in OpenFlow

MSAID (Li et al., 2019), FLOVER (Son et al., 2013)

ST, AL Rule Decomposition, Graph-based
model

[PT] Rule decomposition, distribution
and placement

Palette (Kanizo et al., 2013)

LC, FR
CAP (consistency, Availability,
Partition) theorem (Gilbert and
Lynch, 2002)

[WT] Trade-off between policy
enforcement and network
connectivity

CAP for Networks (Panda et al., 2013)

ST, FR Algorithmic Policies [WPT] Simplify SDN Programming Maple (Voellmy et al., 2013)

aModelled attributes: W — Wildcard; P — Priority; M — Multi-table; T — Topology
objects to define the scope of the statements. Predicate logic is a generic
term of higher-order logic.

These logics can describe functional relationships and statements
about ‘‘for all’’ objects or about ‘‘for some’’ objects but their quantifiers
vary. First-order logic quantifies over individuals of the domain of
discourse. Higher-order logic is distinguished from first-order logic by
additional quantifiers. As illustrated in Fig. 10, higher-order logic quan-
tifies over sets or sets of sets while first-order logic has the quantifiers
of non-nested sets.

Modal logic extends the classical proposition logic and predicate
logic to allow the quantifiers to express modality, for example, ‘‘neces-
sarily’’ and ‘‘possibly’’ (Emerson, 1990).

Compared to logical connectives and Boolean algebra, the afore-
mentioned logics in Fig. 10 are high-level abstraction which indicates
8

that they are better at expressing the connections among FTEs, for ex-
ample, the priority and topology. However, the low-level FTE attributes
such as wildcard and ‘‘goto table’’ actions are easily overlooked by these
logics.

4.4.2. Mathematical logic
In mathematical logic, Boolean algebra is a branch of algebra in

which the values of the variables are the truth values ‘‘true’’ and
‘‘false’’, usually denoted by 1 and 0, respectively. Boolean algebra is
naturally suitable to represent SDN forwarding pipeline especially on
the applications such as the equivalent forwarding set evaluation and
traffic monitoring. In the former scenario, the question turns to the
Boolean function on the match fields for the same action. In the latter

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.

s
t

d
n
r
s
o
b

f
o
m
e
1
a
e
f
a
v
i
o
*

o
m
a
S

a
t
(

Fig. 10. Quantifiers of logic.

cenario, the question turns to find all supersets/subsets and retrieve
heir individual statistics for a given flowset.

To fit the Boolean algebra to a FTE, two challenges must be ad-
ressed: wildcard logical operations and deprioritisation. In traditional
etworking, wildcard algebra is only supported on lower bits (at the
ear) of an IP address or MAC address to facilitate the longest prefix
earch, it may locate at any position in a FTE. Thus the Boolean algebra
n FTE must allow the wildcard be positioned anywhere and accepted
y all Boolean operations.

In this survey, ‘‘wildcard’’ stands for ‘‘wildcard mask’’ which was
irst coined by Cisco. It is a mask of bits that indicates which parts
f IP addresses are available for examination. For example, a wildcard
ask 0.0.0.3 represents that the last two bits are not available for

xamination. A packet with an IP address which ends with bit 0 or
will have the same examining result. A wildcard mask is continuous

nd always indicates the last certain number of bits are not available for
xamination. Thus a wildcard mask in a truth table has the following
ormat: 1000011111****, 000111**, 110000* in which the number of
sterisk is flexible while they always position at the rear of a Boolean
alue. However, in FTE, a more flexible format of wildcard is expected
n a truth table, the wildcard (*) should be positioned anywhere (not
nly in the rear of a value), such as 10000**111****, 10000**0011,
**111000.

Another challenge is introduced by a FTE’s unique attribute: ‘‘pri-
rity’’. Due to the prioritisation within a forwarding table, most FTEs’
atch fields cannot reveal their actual matching scope. After appropri-

te adaptations and extensions, Boolean algebra extends the existing
DN application into multiple flow tables across multiple switches.

Besides the intrinsic FTE attributes, wildcard and priority, Boolean
lgebra is also capable of representing another two attributes: multi-
able and topology. The Boolean operations (for example, logical AND
∧) and OR (∨)) between any two forwarding tables or even two

switches can be converted to the operations between the FTEs in their
respective tables or switches.

Besides Boolean algebra, other mathematical logical methods have
also been examined to investigate the possibility of representing FTE
and exploiting their applications. It is found that propositional logic
and some lower-order logic are also good at expressing SDN forwarding
pipeline. However, the abstraction in the process of FTE representation
makes these approaches less applicable in practical scenarios where
some low-level information is already lost. For example, the relative
positions of multiple forwarding table entries and the connections
among multiple tables are hard to be represented in these logics.

Among all the formal semantics, NetKAT represents single table very
well and maintains most essential low-level information. However, the
challenges on Boolean algebra exist for NetKAT as well, which means
the similar adaptations and extensions on Boolean algebra are also
required for NetKAT. Moreover, its initial design does not cover the
multi-table attribute which further limits its applicable scope. For low-
level representation, Boolean algebra is unlikely to reveal the whole
9

picture of network-wide forwarding pipeline. However, it can be easily
extended to support the latest SDN core forwarding attributes such as
priority and multi-table.

Some research in Table 4 adopts the data structure based repre-
sentation such as brick, tree and graph (Yu et al., 2011; Pan et al.,
2013; Kang et al., 2013b; Kanizo et al., 2013; Moshref et al., 2013;
Panda et al., 2013; Yan et al., 2014a; Giroire et al., 2014; Marsh, 2015;
Kuan and Dimyati, 2009). They are not discussed in this survey because
they usually aim to resolve a specific problem rather than providing a
generic solution. For example, the RuleBricks (Williams and Jamjoom,
2013) provides high availability (HA) policies to OpenFlow forwarding
pipeline. This survey intends to find a representation which is not
particular to any application.

5. FTE representation in practice

Based on the analysis of FTE, various applications have been de-
veloped. These applications can be mainly categorised into two types
from functionality perspective: FTE placement and Traffic monitoring.
FTE placement mainly covers the following aspects: (i) FTE manip-
ulation (Curtis et al., 2011; Gember et al., 2012; Pan et al., 2013;
Tootoonchian and Ganjali, 2010), (ii) consistent updates over multiple
switches (Afek et al., 2014; Canini et al., 2013; Katta et al., 2013;
Perešíni et al., 2013; Yuan et al., 2014a), and (iii) placement optimi-
sation (Nguyen et al., 2016). All these three placement applications
rely on the correct conversion among the different forms of tables
across multiple switches. The works on traffic monitoring include traffic
estimation (Zhang et al., 2014), traffic anomaly detection (Zhang,
2013b), verification of forwarding tables (Zeng et al., 2014), etc.

5.1. Optimising FTE

Prior works on FTE’s placement optimisation can be further divided
into two categories: single switch flow table optimisation (Williams and
Jamjoom, 2013; Yan et al., 2014a; Katta et al., 2016; Gupta et al.,
2016; Yu et al., 2016; Wang et al., 2016) and network-wide flow table
optimisation (Giroire et al., 2014; Kang et al., 2013b; Kanizo et al.,
2013; Marsh, 2015; Moshref et al., 2013; Nguyen et al., 2014; Panda
et al., 2013; Voellmy et al., 2013; Yu et al., 2011; Guo et al., 2018).

The optimisation of single table usually focuses on compression
which heavily relies on the mechanism ‘‘merge’’ and ‘‘ split’’. The
new installed rules are firstly merged with each other and then split
according to the structure and size a hardware forwarding table. Then
the neighbouring or function-alike flow entries can be further merged
to save table space.

Another optimisation approach is to deploy FTEs according to their
different access frequencies, for example, deploying the most frequently
accessed FTE in a high-speed cache and the relatively unpopular FTEs
in a low-speed cache (Katta et al., 2016). In the scenario of FTE com-
pression, a number of practical advances to increase the applicability of
a hardware resilience via forwarding table compression algorithm and
compression-aware routing have been discussed (Stephens et al., 2016).
A method to verify whether redundant rules exist and to avoid them
during incremental deployment are also proposed and verified (Wang
et al., 2016).

A major drawback of this ‘‘merge’’ and ‘‘ split’’ approach is that it
fails to explore FTE’s multi-table capability. Some researchers notice the
benefit of multiple flow tables and they perform partitioning and com-
pression by distributing forwarding rules into different tables according
to their respective capabilities (Gupta et al., 2016). Network-wide
optimisation is usually achieved by ‘‘combination’’ and ‘‘distribution’’.
In a given interval, all requests from different applications will be
combined as a single composite request and then reorganises and
distributes the FTEs to the devices. During this process, the exact path
specified by the original application might be changed. It enriches the
freedom to adjust the FTE placement across all applications, however,

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.
Fig. 11. Match fields distribution of OTN conversion.
the achievements of some higher-level goals such as traffic engineering
cannot be guaranteed.

A core question for any deployment of multi-table FTE is related
to assesing the equivalence between the table(s) to be provisioned
and the table(s) deployed in the switches. Particular attention about
multi-table evaluation and deployment should be paid to the research
in Bosshart et al. (2013b), Pan et al. (2013) and Bakker et al. (2018).
The former proposed a reconfigurable match tables (RMT) model which
allows the forwarding plane to be modified by reorganising the tables
(for example, adding new match fields and reconfiguring IP lookup
tables) (Bosshart et al., 2013b). The latter proposed a middle layer to
convert flow rules (FTEs) from the controller to a flow table pipeline
of a hardware switch. In a hardware switch, the transformation from
one single policy to a multi-table rule is usually required so that the
rules can be fitted into different types of hardware (Pan et al., 2013).
Both works in Bosshart et al. (2013b), Pan et al. (2013) and Guo et al.
(2017) are concerned with the conversion between different types of
forwarding tables.

However, it is found that the OTN (the conversion of a One-stage
flow table into 𝑁-stage flow tables) proposed in Pan et al. (2013) is
not always correct. Its core idea is to fill the corresponding match field
value of a one-stage flow entry to multi-stage entries based on their
containing match field types, as illustrated in Fig. 11.

In this conversion, the original single table (Table 1) has been
converted into a multi-table structure (Tables 2 and 3). Take the first
entry in Table 1 as an example, the original match fields {A, B} are
decomposed and distributed into {A} in Table 2 and {B} in Table 3,
respectively.

Closer analysis of the FTEs reveals that packets matching either {A,
B} or {C, D} will behave the same while the packets with {A, D} or
{C, B} will not. The packets with attributes {A, D} will NOT match any
entries in the single table and will be dropped by default. However, in
the converted multi-table, the same packets can match the first entry in
Table 2 and then the second entry in Table 3 sequentially which means
the matching packets will egress out of port 2. For the same packets,
the forwarding behaviour will not be the same which means the single
table is not equivalent to the multi-table. Thus, a systematic approach
to evaluate the equivalence of any two given forwarding sets becomes
a challenge for all forwarding table manipulations.

5.2. Traffic monitoring

FTEs can be used as a modelling tool to design network monitor-
ing solutions, e.g. placing FTEs across a certain end-to-end path. The
most widely adopted network traffic monitoring approaches are either
based on packet sampling or sketch-based measurements. Sampling-
based monitoring solutions are dominated by NetFlow (Hofstede et al.,
2014) and sFlow (Phaal and Lavine, 2004). NetFlow is a feature on
Cisco routers for collecting IP network traffic with predetermined
10
rules. sFlow, short for ‘‘sampled flow’’ provides a means for collecting
information of truncated packets together with the interface statistics.
Since the set of FTEs in an SDN controller is like a ‘‘traffic map’’, the
packet statistics related to a flow across a network can be interrogated
and used as an estimation for traffic monitoring purposes (Yang et al.,
2016b; Madanapalli et al., 2018).

Traffic monitoring with sFlow offers greater scalability (compared
to NetFlow) and it reports information on network traffic (correspond-
ing to OSI (Open Systems Interconnection) layer two to layer seven)
in detail, but it consumes more resources (e.g., CPU, memory, and
bandwidth) (Chakchai So-In and So-In, 2009; Bakker et al., 2019). A
high sampling rate generates too much information (costly to store),
while a lower sampling rate may result in heavy-hitter flows going
undetected.

Compared to a sampling-based monitoring, a sketch-based approach
can process millions of streams in a short time with low overheads.
A sketch-based approach is a probabilistic summary of data streams
within a compact data structure that builds forecast models on top of
sketches which represent the past traffic patterns. A Sketch-based ap-
proach adopts an unique hash function and associates multi-
dimensional tables to data streams for storing summarised data which
requires customisation of existing switch ASIC. This is why most of
the existing works are only verified by simulation and implemented
on field-programmable gate array (FPGA) (Das et al., 2008; Yu et al.,
2013).

To fit the aforementioned approaches into the realistic network
monitoring scenario, ProgME (Programmable Network MEasurement)
presents a framework to measure a flowset defined according to an ap-
plication requirement (Yuan et al., 2011). A statistics query is processed
by a query answering engine which maps a flowset to unique flows
whose statistics can be retrieved directly from a hardware. Even though
the scenarios of these traffic monitoring research vary, they share the
same principle, i.e., to measure an arbitrary set of flows’ traffic based
on the ready statistics.

No matter what kind of approaches and frameworks are chosen,
all the existing SDN traffic monitoring solutions use the same way to
get the statistics. They install the application specified rules and then
retrieve their statistics (Jose et al., 2011; Malboubi et al., 2014; Yu
et al., 2013, 2014; Zhang, 2013). The benefit is that the controller can
customise the FTE rules for flexible traffic monitoring, for example,
the controller is able to update the FTE rules to monitor suspected
malicious traffic dynamically. However, it is difficult to avoid the
interference on the active traffic because the behaviour of all the
packets matching these monitoring FTEs will be altered.

6. Conclusion

This paper reviews the recent literature on the representation and
application of packet forwarding pipeline. Software Defined Network-
ing (SDN) enables a network to be intelligently and centrally controlled

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.
via forwarding table entries. The structure and functionality of FTE are
more complicated than the traditional networking functions such as
ACL and IP routing because of its generalisation. We propose a new tax-
onomy that is based on the FTE typology and the OpenFlow attributes
each typology models to categorise and study the different approaches
to FTE representation. We apply this taxonomy to classify different
projects and research works reported in the literature. Furthermore, we
relate the FTE representation to use cases in practice and analyse how
the representations facilitate research in SDN.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This research is partly supported by Victoria’s Huawei NZ Research
Programme, Software-Defined Green Internet of Things project (E2881)
and Victoria Doctoral Scholarship.

References

Afek, Y., Bremler-Barr, A., Schiff, L., 2014. Ranges and cross-entrance consistency with
openflow. In: Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking. ACM, pp. 233–234.

Al-Shaer, E., Al-Haj, S., 2010. FlowChecker: Configuration analysis and verification of
federated openflow infrastructures. In: Proceedings of the 3rd ACM Workshop on
Assurable and Usable Security Configuration. ACM, pp. 37–44.

Alsaeedi, M., Mohamad, M.M., Al-Roubaiey, A.A., 2019. Toward adaptive and scalable
OpenFlow-SDN flow control: A survey. IEEE Access 7, 107346–107379.

Anderson, C.J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C.,
Walker, D., 2014. NetKAT: Semantic foundations for networks. ACM SIGPLAN Not.
49 (1), 113–126.

Bakker, J.N., Ng, B., Seah, W.K., 2018. Can machine learning techniques be effectively
used in real networks against ddos attacks?. In: 2018 27th International Conference
on Computer Communication and Networks. ICCCN, IEEE, pp. 1–6.

Bakker, J., Ng, B., Seah, W.K., Pekar, A., 2019. Traffic classification with machine
learning in a live network. In: 2019 IFIP/IEEE Symposium on Integrated Network
and Service Management. IM, IEEE, pp. 488–493.

Barkley, J., 1997. Comparing simple role based access control models and access control
lists. In: Proceedings of the Second ACM Workshop on Role-Based Access Control.
ACM, pp. 127–132.

Ben Azzouz, L., Jamai, I., 2019. SDN, slicing, and NFV paradigms for a smart home:
A comprehensive survey. Trans. Emerg. Telecommun. Technol. 30 (10), e3744.

Benson, T., Akella, A., Maltz, D.A., 2009. Mining policies from enterprise network
configuration. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement. IMC ’09, ACM, New York, NY, USA, pp. 136–142.

Bertot, Y., 2008. A short presentation of coq. In: TPHOLs, Vol. 8. Springer, pp. 12–16.
Bifulco, R., Schneider, F., 2013. OpenFlow rules interactions: definition and detection.

In: SDN for Future Networks and Services. SDN4FNS, IEEE, pp. 1–6.
Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Izzard, M., Mujica, F.,

Horowitz, M., 2013a. Forwarding metamorphosis: Fast programmable match-action
processing in hardware for SDN. In: Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM. SIGCOMM ’13, ACM, New York, NY, USA, pp. 99–110.

Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Izzard, M., Mujica, F.,
Horowitz, M., 2013b. Forwarding metamorphosis: Fast programmable match-action
processing in hardware for sdn. ACM SIGCOMM Comput. Commun. Rev. 43 (4),
99–110.

Canini, M., Kuznetsov, P., Levin, D., Schmid, S., 2013. Software transactional network-
ing: Concurrent and consistent policy composition. In: Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking. ACM,
pp. 1–6.

Canini, M., Venzano, D., Peresini, P., Kostic, D., Rexford, J., et al., 2012. A NICE way
to test openflow applications. In: NSDI, Vol. 12. pp. 127–140.

Chakchai So-In, So-In, C., 2009. A survey of network traffic monitoring and analysis
tools. In: Cse 576m computer system analysis project, Washington University in St.
Louis. Citeseer, Washington University in St. Louis.

Clarke, E.M., 2012. Lecture 1: Propositional logic. https://www.cs.cmu.edu/~emc/
15414-f12/lecture/propositional_logic.pdf.

Codd, E.F., 1972. Relational Completeness of Data Base Sublanguages. IBM Corporation.
Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., Banerjee, S.,

2011. DevoFlow: Scaling flow management for high-performance networks. ACM
SIGCOMM Comput. Commun. Rev. 41 (4), 254–265.
11
Dargahi, T., Caponi, A., Ambrosin, M., Bianchi, G., Conti, M., 2017. A survey on the
security of stateful SDN data planes. IEEE Commun. Surv. Tutor. 19 (3), 1701–1725.

Das, A., Nguyen, D., Zambreno, J., Memik, G., Choudhary, A., 2008. An FPGA-based
network intrusion detection architecture. IEEE Trans. Inf. Forensics Secur. 3 (1),
118–132.

Emerson, E.A., 1990. Temporal and modal logic.. In: Handbook of Theoretical Computer
Science, Vol. B. In: Formal Models and Sematics (B), vol. 995, (1072), p. 5.

Enns, R., Bjorklund, M., Schoenwaelder, J., Bierman, A., 2011. Network configuration
protocol (NETCONF). RFC 6241.

Farris, I., Taleb, T., Khettab, Y., Song, J., 2018. A survey on emerging SDN and NFV
security mechanisms for IoT systems. IEEE Commun. Surv. Tutor. 21 (1), 812–837.

Feamster, N., Rexford, J., Zegura, E., 2013. The road to SDN. Queue 11 (12), 20.
Ferraiolo, D., Kuhn, D.R., Chandramouli, R., 2003. Role-Based Access Control. Artech

House.
Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J., Story, A.,

Walker, D., 2011. Frenetic: A network programming language. ACM SIGPLAN Not.
46 (9), 279–291.

Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L., 2015. A coalgebraic decision
procedure for NetKAT. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL. pp. 343–355.

Gember, A., Prabhu, P., Ghadiyali, Z., Akella, A., 2012. Toward software-defined
middlebox networking. In: Proceedings of the 11th ACM Workshop on Hot Topics
in Networks. ACM, pp. 7–12.

Gilbert, S., Lynch, N., 2002. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. Acm Sigact News 33 (2), 51–59.

Giroire, F., Moulierac, J., Phan, T.K., 2014. Optimizing rule placement in software-
defined networks for energy-aware routing. In: Proceedings of the IEEE Global
Communications Conference. GlobeCom. Austin, TX, USA. pp. 1–7.

Goransson, P., Black, C., 2014. Software Defined Networks: A Comprehensive Approach.
Elsevier.

Gordon, C.S., 2018. Polymorphic iterable sequential effect systems. arXiv preprint
arXiv:1808.02010.

Guha, A., Reitblatt, M., Foster, N., 2013a. Formal foundations for software defined
networks. Open Net Summ..

Guha, A., Reitblatt, M., Foster, N., 2013b. Machine-verified network controllers. ACM
SIGPLAN Not. 48 (6), 483–494.

Guo, Z., Liu, R., Xu, Y., Gushchin, A., Walid, A., Chao, H.J., 2017. STAR: Preventing
flow-table overflow in software-defined networks. Comput. Netw. 125, 15–25.

Guo, Z., Xu, Y., Liu, R., Gushchin, A., Chen, K.-y., Walid, A., Chao, H.J., 2018. Balancing
flow table occupancy and link utilization in software-defined networks. Future
Gener. Comput. Syst. 89, 213–223.

Gupta, A., MacDavid, R., Birkner, R., Canini, M., Feamster, N., Rexford, J., Vanbever, L.,
2016. An industrial-scale software defined internet exchange point. In: 13th USENIX
Symposium on Networked Systems Design and Implementation. NSDI 16, USENIX
Association, Santa Clara, CA, pp. 1–14.

Gutz, S., Story, A., Schlesinger, C., Foster, N., 2012. Splendid isolation: A slice
abstraction for software-defined networks. In: Proceedings of the First Workshop
on Hot Topics in Software Defined Networks. ACM, pp. 79–84.

Habib, B., Khurshid, F., Dar, A.H., Shah, Z., 2019. DDoS mitigation in eucalyptus cloud
platform using snort and packet filtering — IP-tables. In: 2019 4th International
Conference on Information Systems and Computer Networks. ISCON. pp. 546–550.

Haleplidis, E., Salim, J.H., Denazis, S., Koufopavlou, O., 2015. Towards a network
abstraction model for SDN. J. Netw. Syst. Manage. 23 (2), 309–327.

Hao, L., Ng, B., 2018. Using genetic algorithms based on neighbor list mechanism to
reduce handover latency for IEEE 802.11 WLAN. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion. pp. 235–236.

Hao, L., Ng, B., 2019. Self-healing solutions for wi-fi networks to provide seamless
handover. In: 2019 IFIP/IEEE Symposium on Integrated Network and Service
Management. IM, IEEE, pp. 639–642.

Hao, L., Ng, B., Qu, Y., 2017. Dynamic optimization of neighbor list to reduce
changeover latency for wi-fi networks. In: Proceedings of the 2017 International
Conference on Telecommunications and Communication Engineering. pp. 20–24.

Hofstede, R., Celeda, P., Trammell, B., Drago, I., Sadre, R., Sperotto, A., Pras, A., 2014.
Flow monitoring explained: From packet capture to data analysis with netflow and
IPFIX. IEEE Commun. Surv. Tutor. 16 (4), 2037–2064.

Hossein, A., Watts, M., Ahmadi, K., 2019. An overview of multi-controller architecture
in software-defined networking. In: CITRENZ Conference (2019). Nelson, NZ. pp.
1–7.

Hsueh, S.-W., Lin, T.-Y., Lei, W.-I., Ngai, C.-L.P., Sheng, Y.-H., Wu, Y.-S., 2018.
Semantic failover in software-defined networking. In: 2018 IEEE 23rd Pacific Rim
International Symposium on Dependable Computing. PRDC, IEEE, pp. 299–308.

Huang, N.-F., Zhao, S.-M., 1999. A novel IP-routing lookup scheme and hardware
architecture for multigigabit switching routers. IEEE J. Sel. Areas Commun. 17
(6), 1093–1104.

Jindal, A., Aujla, G.S., Kumar, N., 2019. SURVIVOR: A blockchain based edge-as-
a-service framework for secure energy trading in SDN-enabled vehicle-to-grid
environment. Comput. Netw. 153, 36–48.

Jose, L., Yu, M., Rexford, J., 2011. Online measurement of large traffic aggregates on
commodity switches. In: Proceedings of the 11th USENIX Conference on Hot Topics
in Management of Internet, Cloud, and Enterprise Networks and Services. Hot-ICE.
pp. 1–13.

http://refhub.elsevier.com/S1084-8045(20)30402-1/sb1
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb1
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb1
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb1
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb1
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb2
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb2
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb2
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb2
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb2
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb3
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb3
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb3
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb4
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb4
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb4
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb4
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb4
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb5
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb5
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb5
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb5
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb5
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb6
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb6
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb6
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb6
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb6
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb7
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb7
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb7
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb7
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb7
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb8
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb8
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb8
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb9
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb9
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb9
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb9
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb9
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb10
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb11
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb11
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb11
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb12
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb12
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb12
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb12
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb12
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb12
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb12
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb13
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb13
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb13
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb13
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb13
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb13
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb13
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb14
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb14
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb14
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb14
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb14
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb14
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb14
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb15
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb15
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb15
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb16
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb16
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb16
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb16
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb16
https://www.cs.cmu.edu/~emc/15414-f12/lecture/propositional_logic.pdf
https://www.cs.cmu.edu/~emc/15414-f12/lecture/propositional_logic.pdf
https://www.cs.cmu.edu/~emc/15414-f12/lecture/propositional_logic.pdf
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb18
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb19
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb19
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb19
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb19
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb19
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb20
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb20
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb20
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb21
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb21
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb21
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb21
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb21
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb22
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb22
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb22
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb23
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb23
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb23
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb24
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb24
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb24
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb25
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb26
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb26
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb26
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb27
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb27
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb27
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb27
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb27
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb29
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb29
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb29
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb29
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb29
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb30
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb30
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb30
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb32
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb32
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb32
http://arxiv.org/abs/1808.02010
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb34
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb34
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb34
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb35
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb35
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb35
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb36
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb36
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb36
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb37
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb37
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb37
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb37
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb37
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb38
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb38
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb38
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb38
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb38
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb38
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb38
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb39
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb39
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb39
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb39
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb39
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb41
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb41
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb41
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb43
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb43
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb43
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb43
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb43
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb45
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb45
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb45
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb45
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb45
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb47
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb47
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb47
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb47
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb47
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb48
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb48
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb48
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb48
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb48
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb49
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb49
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb49
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb49
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb49

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.
Kang, N., Liu, Z., Rexford, J., Walker, D., 2013a. Optimizing the ‘‘one big switch’’
abstraction in software-defined networks. In: Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies. CoNEXT ’13,
ACM, New York, NY, USA, pp. 13–24.

Kang, N., Liu, Z., Rexford, J., Walker, D., 2013b. Optimizing the one big switch
abstraction in software-defined networks. In: Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technologies. ACM, pp.
13–24.

Kanizo, Y., Hay, D., Keslassy, I., 2013. Palette: Distributing tables in software-defined
networks. In: INFOCOM, 2013 Proceedings IEEE. IEEE, pp. 545–549.

Kantor, M., Biernacka, E., Boryło, P., Domżał, J., Jurkiewicz, P., Stypiński, M., Wój-
cik, R., 2019. A survey on multi-layer IP and optical Software-Defined Networks.
Comput. Netw. 162, 106844.

Kao, Y.-C., Liu, J.-C., Wang, Y.-H., Chu, Y.-H., Tsai, S.-C., Lin, Y.-B., 2019. Automatic
blocking mechanism for information security with SDN. J. Internet Serv. Inf. Secur.
9 (1), 60–73.

Katta, N., Alipourfard, O., Rexford, J., Walker, D., 2014. Infinite cacheflow in software-
defined networks. In: Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking. ACM, pp. 175–180.

Katta, N., Alipourfard, O., Rexford, J., Walker, D., 2016. Cacheflow: Dependency-aware
rule-caching for software-defined networks. In: Proc. ACM Symposium on SDN
Research. SOSR. pp. 1–12.

Katta, N.P., Rexford, J., Walker, D., 2013. Incremental consistent updates. In: Proceed-
ings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking. ACM, pp. 49–54.

Kozen, D., 1997. Kleene algebra with tests. ACM Trans. Programm. Lang. Syst. 19 (3),
427–443.

Kuan, C., Dimyati, K., 2006. Analysis of collision probabilities for saturated IEEE 802.11
MAC protocol. Electron. Lett. 42 (19), 1.

Kuan, C., Dimyati, K., 2009. Finite time-horizon Markov model for IEEE 802.11 e. J.
Zhejiang Univ.-SCI. A 10 (10), 1383–1388.

Kyung, Y., Park, J., 2019. Prioritized admission control with load distribution over
multiple controllers for scalable SDN-based mobile networks. Wirel. Netw. 25 (6),
2963–2976.

Lampson, B.W., 1974. Protection. SIGOPS Oper. Syst. Rev. 8 (1), 18–24.
Levin, D., Wundsam, A., Heller, B., Handigol, N., Feldmann, A., 2012. Logically cen-

tralized?: State distribution trade-offs in software defined networks. In: Proceedings
of the First Workshop on Hot Topics in Software Defined Networks. HotSDN ’12,
ACM, New York, NY, USA, pp. 1–6.

Li, W., Meng, W., Kwok, L.F., 2016. A survey on openflow-based software defined
networks: Security challenges and countermeasures. J. Netw. Comput. Appl. 68,
126–139.

Li, Y., Wang, Z., Yao, J., Yin, X., Shi, X., Wu, J., Zhang, H., 2019. MSAID: Automated
detection of interference in multiple SDN applications. Comput. Netw. 153, 49–62.

Li, Y., Yin, X., Wang, Z., Yao, J., Shi, X., Wu, J., Zhang, H., Wang, Q., 2018. A survey on
network verification and testing with formal methods: Approaches and challenges.
IEEE Commun. Surv. Tutor. 21 (1), 940–969.

Lin, Y.-D., Lai, Y.-K., Tsou, Y.-L., Lai, Y.-C., Liou, E.-C., Chiang, Y., 2019. Generic
validation criteria and methodologies for SDN applications. IEEE Syst. J..

Liu, Y., Zhao, B., Zhao, P., Fan, P., Liu, H., 2019. A survey: Typical security issues of
software-defined networking. China Commun. 16 (7), 13–31.

Lu, J., Zhang, Z., Hu, T., Yi, P., Lan, J., 2019. A survey of controller placement problem
in software-defined networking. IEEE Access 7, 24290–24307.

Madanapalli, S.C., Lyu, M., Kumar, H., Gharakheili, H.H., Sivaraman, V., 2018. Real-
time detection, isolation and monitoring of elephant flows using commodity SDN
system. In: NOMS 2018-2018 IEEE/IFIP Network Operations and Management
Symposium. IEEE, pp. 1–5.

Malboubi, M., Wang, L., Chuah, C.N., Sharma, P., 2014. Intelligent SDN based traffic
(de)Aggregation and Measurement Paradigm (iSTAMP). In: IEEE INFOCOM 2014 -
IEEE Conference on Computer Communications. pp. 934–942.

Marsh, C., 2015. A generalized algorithm for flow table optimization. http://www.
crmarsh.com/static/pdf/Charles_Marsh_SDN.pdf.

Masoudi, R., Ghaffari, A., 2016. Software defined networks: A survey. J. Netw. Comput.
Appl. 67, 1–25.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., 2008. Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38 (2), 69–74.

Michaelis, J., Diekmann, C., 2016. Routing. Arch. Formal Proofs URL http://isa-
afp.org/entries/Routing.shtml.

Monsanto, C., Foster, N., Harrison, R., Walker, D., 2012. A compiler and run-time
system for network programming languages. ACM SIGPLAN Not. 47 (1), 217–230.

Moshref, M., Yu, M., Sharma, A.B., Govindan, R., 2013. Scalable rule management for
data centers. In: NSDI. pp. 157–170.

Mycroft, A., Orchard, D., Petricek, T., 2016. Effect systems revisited—control-flow
algebra and semantics. In: Semantics, Logics, and Calculi. Springer, pp. 1–32.

Ng, B., Tan, Y., Roger, Y., 2013. Improved utilization for joint HCCA–EDCA access in
IEEE 802.11 e WLANs. Optim. Lett. 7 (8), 1711–1724.

Nguyen, X.N., Saucez, D., Barakat, C., Turletti, T., 2014. Optimizing rules placement
in OpenFlow networks: trading routing for better efficiency. In: ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking. HotSDN 2014. pp.
127–132.
12
Nguyen, X.N., Saucez, D., Barakat, C., Turletti, T., 2016. Rules placement problem in
openflow networks: A survey. IEEE Commun. Surv. Tutor. 18 (2), 1273–1286.

Nunes, B., Mendonca, M., Xuan-Nam Nguyen, O., K., T., 2014. A survey of software-
defined networking: Past, present, and future of programmable networks. Commun.
Surv. Amp; Tutor. IEEE 16 (3), 1617–1634.

Omar, N., Samsudin, A.T., 2019. Hybrid software-defined network monitoring. In:
Internet and Distributed Computing Systems: 12th International Conference, IDCS
2019, Naples, Italy, October 10–12, 2019, Proceedings, Vol. 11874. Springer
Nature, p. 234.

ONF, 2011. Specification, openflow switch, version 1.1.0. http://archive.openflow.org/
documents/openflow-spec-v1.1.0.pdf.

ONF, 2014. Specification, openflow switch, version 1.5.0. https://
3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/
2014/10/openflow-switch-v1.5.0.pdf.

Pan, H., Guan, H., Liu, J., Ding, W., Lin, C., Xie, G., 2013. The FlowAdapter: Enable
flexible multi-table processing on legacy hardware. In: Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking. ACM,
pp. 85–90.

Panda, A., Scott, C., Ghodsi, A., Koponen, T., Shenker, S., 2013. Cap for networks. In:
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking. ACM, pp. 91–96.

Perešíni, P., Kuzniar, M., Vasić, N., Canini, M., Kostiū, D., 2013. OF. CPP: Consistent
packet processing for OpenFlow. In: Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking. ACM, pp. 97–102.

Pfaff, B., Heller, B., Talayco, D., Erickson, D., Gibb, G., Appenzeller, G., Tourrilhes, J.,
Pettit, J., Yap, K., Casado, M., et al., 2009. Openflow switch specification.

Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A., Rajahalme, J., Gross, J.,
Wang, A., Stringer, J., Shelar, P., et al., 2015. The design and implementation
of open vswitch. In: NSDI, Vol. 15. pp. 117–130.

Phaal, P., Lavine, M., 2004. Sflow version 5. http://sflow.org/sflow_version_5.txt.
Pozo, S., Ceballos, R., Gasca, R.M., 2008. Afpl, an abstract language model for firewall

acls. In: International Conference on Computational Science and Its Applications.
Springer, pp. 468–483.

Priya, I.D., Silas, S., 2019. A survey on research challenges and applications in
empowering the SDN-based internet of things. In: Advances in Big Data and Cloud
Computing. Springer, pp. 457–467.

Qiu, K., Yuan, J., Zhao, J., Wang, X., Secci, S., Fu, X., 2019. Fastrule: Efficient flow
entry updates for TCAM-based openflow switches. IEEE J. Sel. Areas Commun. 37
(3), 484–498.

Rekhter, Y., Li, T., Hares, S., 1994. A border gateway protocol 4 (BGP-4). Internet
Engineering Task Force, RFC 1654.

Riener, H., Testa, E., Haaswijk, W., Mishchenko, A., Amarù, L., De Micheli, G.,
Soeken, M., 2019. Scalable generic logic synthesis: One approach to rule them
all. In: Proceedings of the 56th Annual Design Automation Conference 2019. ACM,
p. 70.

Rojas, E., Doriguzzi-Corin, R., Tamurejo, S., Beato, A., Schwabe, A., Phemius, K., Guer-
rero, C., 2018. Are we ready to drive software-defined networks? A comprehensive
survey on management tools and techniques. ACM Comput. Surv. 51 (2), 27.

Salman, O., Elhajj, I., Chehab, A., Kayssi, A., 2018. IoT survey: An SDN and fog
computing perspective. Comput. Netw. 143, 221–246.

Sanger, R., Luckie, M., Nelson, R., 2019. Identifying equivalent SDN forwarding
behaviour. In: Proceedings of the 2019 ACM Symposium on SDN Research. ACM,
pp. 127–139.

Saraswat, S., Agarwal, V., Gupta, H.P., Mishra, R., Gupta, A., Dutta, T., 2019. Challenges
and solutions in Software Defined Networking: A survey. J. Netw. Comput. Appl.
141, 23–58.

Shin, M.-K., Kang, M., Choi, J.-Y., Nam, K.-H., 2013. Formal specification for
software-defined networks (SDN). https://tools.ietf.org/html/draft-shin-sdn-formal-
specification-01.

Shin, M.-K., Nam, K.-H., Kim, H.-J., 2012. Software-defined networking (SDN): A ref-
erence architecture and open APIs. In: ICT Convergence (ICTC), 2012 International
Conference on. IEEE, pp. 360–361.

Skalka, C., Ring, J., Darias, D., Kwon, M., Gupta, S., Diller, K., Smolka, S., Foster, N.,
2019. Proof-carrying network code. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. ACM, pp. 1115–1129.

Smith, M., Dvorkin, M., Laribi, Y., Pandey, V., Garg, P., Weidenbacher, N., 2014. OpFlex
control protocol. IETF, Apr.

Son, S., Shin, S., Yegneswaran, V., Porras, P., Gu, G., 2013. Model checking invariant se-
curity properties in OpenFlow. In: Communications (ICC), 2013 IEEE International
Conference on. IEEE, pp. 1974–1979.

Souri, A., Norouzi, M., Asghari, P., Rahmani, A.M., Emadi, G., 2019. A systematic
literature review on formal verification of software-defined networks. Trans. Emerg.
Telecommun. Technol..

Stephens, B., Cox, A.L., Rixner, S., 2016. Scalable multi-failure fast failover via
forwarding table compression. In: Proceedings of the Proceedings of the Symposium
on SDN Research. SOSR. pp. 1–12.

Su, J., Wang, W., Liu, C., 2019. A survey of control consistency in Software-Defined
Networking. CCF Trans. Netw. 1–16.

Sultana, N., Chilamkurti, N., Peng, W., Alhadad, R., 2019. Survey on SDN based net-
work intrusion detection system using machine learning approaches. Peer-to-Peer
Netw. Appl. 12 (2), 493–501.

http://refhub.elsevier.com/S1084-8045(20)30402-1/sb51
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb51
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb51
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb51
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb51
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb51
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb51
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb52
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb52
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb52
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb52
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb52
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb52
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb52
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb53
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb53
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb53
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb54
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb54
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb54
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb54
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb54
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb55
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb55
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb55
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb55
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb55
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb56
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb56
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb56
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb56
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb56
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb58
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb58
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb58
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb58
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb58
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb59
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb59
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb59
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb60
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb60
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb60
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb61
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb61
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb61
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb62
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb62
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb62
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb62
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb62
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb63
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb64
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb64
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb64
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb64
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb64
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb64
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb64
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb65
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb65
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb65
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb65
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb65
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb66
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb66
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb66
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb67
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb67
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb67
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb67
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb67
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb68
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb68
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb68
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb69
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb69
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb69
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb70
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb70
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb70
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb71
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb71
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb71
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb71
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb71
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb71
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb71
http://www.crmarsh.com/static/pdf/Charles_Marsh_SDN.pdf
http://www.crmarsh.com/static/pdf/Charles_Marsh_SDN.pdf
http://www.crmarsh.com/static/pdf/Charles_Marsh_SDN.pdf
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb74
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb74
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb74
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb75
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb75
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb75
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb75
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb75
http://isa-afp.org/entries/Routing.shtml
http://isa-afp.org/entries/Routing.shtml
http://isa-afp.org/entries/Routing.shtml
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb77
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb77
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb77
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb78
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb78
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb78
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb79
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb79
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb79
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb80
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb80
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb80
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb82
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb82
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb82
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb83
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb83
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb83
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb83
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb83
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb84
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb84
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb84
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb84
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb84
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb84
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb84
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-switch-v1.5.0.pdf
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb87
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb87
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb87
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb87
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb87
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb87
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb87
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb88
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb88
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb88
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb88
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb88
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb89
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb89
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb89
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb89
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb89
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb90
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb90
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb90
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb91
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb91
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb91
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb91
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb91
http://sflow.org/sflow_version_5.txt
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb93
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb93
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb93
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb93
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb93
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb94
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb94
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb94
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb94
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb94
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb95
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb95
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb95
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb95
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb95
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb96
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb96
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb96
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb97
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb97
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb97
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb97
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb97
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb97
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb97
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb98
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb98
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb98
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb98
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb98
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb99
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb99
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb99
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb100
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb100
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb100
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb100
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb100
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb101
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb101
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb101
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb101
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb101
https://tools.ietf.org/html/draft-shin-sdn-formal-specification-01
https://tools.ietf.org/html/draft-shin-sdn-formal-specification-01
https://tools.ietf.org/html/draft-shin-sdn-formal-specification-01
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb103
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb103
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb103
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb103
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb103
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb104
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb104
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb104
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb104
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb104
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb105
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb105
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb105
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb106
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb106
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb106
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb106
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb106
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb107
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb107
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb107
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb107
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb107
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb109
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb109
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb109
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb110
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb110
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb110
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb110
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb110

Journal of Network and Computer Applications 176 (2021) 102947L. Yang et al.
Tootoonchian, A., Ganjali, Y., 2010. HyperFlow: A distributed control plane for
OpenFlow. In: Proceedings of the 2010 Internet Network Management Conference
on Research on Enterprise Networking. USENIX Association, pp. 1–3.

Ullman, J., 1994. Chapter 14 predicate logic. http://infolab.stanford.edu/~ullman/
focs/ch14.pdf.

Vardi, G., Kupferman, O., 2019. Flow logic. Log. Methods Comput. Sci. 15.
Voellmy, A., Wang, J., Yang, Y.R., Ford, B., Hudak, P., 2013. Maple: Simplifying SDN

programming using algorithmic policies. ACM SIGCOMM Comput. Commun. Rev.
43 (4), 87–98.

Wang, Y., Bi, J., Lin, P., Lin, Y., Zhang, K., 2016. SDI: a multi-domain SDN mechanism
for fine-grained inter-domain routing. Ann. Telecommun. 1–13.

Wang, A., Moarref, S., Loo, B.T., Topcu, U., Scedrov, A., 2013. Automated synthesis of
reactive controllers for software-defined networks. In: Network Protocols (ICNP),
2013 21st IEEE International Conference on. IEEE, pp. 1–6.

Whitesitt, J.E., 1995. Boolean Algebra and Its Applications. Courier Corporation.
Williams, D., Jamjoom, H., 2013. Cementing high availability in OpenFlow with

RuleBricks. In: Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking. ACM, pp. 139–144.

Wong, M.K., Gajjar, Y.V., Kumar, R., 2010. Efficient ACL lookup algorithms. Google
Patents. US Patent 7, 808, 929.

Xie, J., Yu, F.R., Huang, T., Xie, R., Liu, J., Wang, C., Liu, Y., 2018. A survey of machine
learning techniques applied to software defined networking (SDN): Research issues
and challenges. IEEE Commun. Surv. Tutor. 21 (1), 393–430.

Yan, B., Xu, Y., Chao, H.J., 2018. Bigmac: Reactive network-wide policy caching for
SDN policy enforcement. IEEE J. Sel. Areas Commun. 36 (12), 2675–2687.

Yan, B., Xu, Y., Xing, H., Xi, K., Chao, H.J., 2014a. CAB: a reactive wildcard
rule caching system for software-defined networks. In: Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking. ACM, pp. 163–168.

Yang, L., Ng, B., Seah, W.K.G., 2016a. Heavy hitter detection and identification in
software defined networking. In: 2016 25th International Conference on Computer
Communication and Networks. ICCCN. pp. 1–10.

Yang, L., Ng, B., Seah, W.K., 2016b. Heavy hitter detection and identification in
software defined networking. In: 2016 25th International Conference on Computer
Communication and Networks. ICCCN, IEEE, pp. 1–10.

Yang, L., Ng, B., Seah, W.K.G., Groves, L., 2017a. Equivalent forwarding set evaluation
in software defined networking. In: 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management. IM. pp. 576–579.

Yang, L., Ng, B., Seah, W.K., Groves, L., 2017b. Deterministic confidence interval
estimation of networking traffic in SDN. In: 2017 IEEE 42nd Conference on Local
Computer Networks. LCN, IEEE, pp. 120–127.

Yang, R., Yu, F.R., Si, P., Yang, Z., Zhang, Y., 2019. Integrated blockchain and edge
computing systems: A survey, some research issues and challenges. IEEE Commun.
Surv. Tutor. 21 (2), 1508–1532.

Yu, M., Jose, L., Miao, R., 2013. Software defined traffic measurement with opensketch.
In: Presented As Part of the 10th USENIX Symposium on Networked Systems Design
and Implementation. NSDI 13. pp. 29–42.

Yu, Y., Li, X., Leng, X., Song, L., Bu, K., Chen, Y., Yang, J., Zhang, L., Cheng, K.,
Xiao, X., 2018. Fault management in software-defined networking: A survey. IEEE
Commun. Surv. Tutor. 21 (1), 349–392.

Yu, C., Lumezanu, C., Madhyastha, H.V., Jiang, G., 2016. Characterizing rule com-
pression mechanisms in software-defined networks. In: International Conference on
Passive and Active Network Measurement. Springer, pp. 302–315.

Yu, Y., Qian, C., Li, X., 2014. Distributed and collaborative traffic monitoring in
software defined networks. In: Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking. HotSDN ’14, ACM, New York, NY, USA, pp. 85–90.

Yu, M., Rexford, J., Freedman, M.J., Wang, J., 2011. Scalable flow-based networking
with DIFANE. ACM SIGCOMM Comput. Commun. Rev. 41 (4), 351–362.

Yuan, L., Chuah, C.-N., Mohapatra, P., 2011. ProgME: Towards programmable network
measurement. IEEE/ACM Trans. Netw. 19 (1), 115–128.

Yuan, Y., Ivančić, F., Lumezanu, C., Zhang, S., Gupta, A., 2014a. Generating consistent
updates for software-defined network configurations. In: Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking. ACM, pp. 221–222.

Zeng, H., Zhang, S., Ye, F., Jeyakumar, V., Ju, M., Liu, J., McKeown, N., Vahdat, A.,
2014. Libra: Divide and conquer to verify forwarding tables in huge networks. In:
Proceedings of NSDI, Vol. 14. pp. 87–99.

Zhang, Y., 2013. An adaptive flow counting method for anomaly detection in SDN. In:
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies. CoNEXT ’13, ACM, New York, NY, USA, pp. 25–30.

Zhang, Y., 2013b. An adaptive flow counting method for anomaly detection in sdn. In:
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies. ACM, pp. 25–30.

Zhang, Y., Cui, L., Wang, W., Zhang, Y., 2018a. A survey on software defined
networking with multiple controllers. J. Netw. Comput. Appl. 103, 101–118.
13
Zhang, H., Lumezanu, C., Rhee, J., Arora, N., Xu, Q., Jiang, G., 2014. Enabling layer
2 pathlet tracing through context encoding in software-defined networking. In:
Proceedings of the Third Workshop on Hot Topics in Software Defined Networking.
HotSDN. pp. 169–174.

Zhang, P., Zhang, C., Hu, C., 2018b. Fast data plane testing for software-defined
networks with rulechecker. IEEE/ACM Trans. Netw. 27 (1), 173–186.

Zhou, Z., Benson, T.A., 2019. Composing SDN controller enhancements with mozart.
In: Proceedings of the ACM Symposium on Cloud Computing. ACM, pp. 351–363.

Liang Yang received the Dr.Eng. degree from Victoria
University of Wellington, New Zealand, in 2018. He is a
senior software engineer and data scientist. Prior to this, he
has worked for more than 15 years in commercial research
laboratories such as Motorola, Ericsson and IBM. His lat-
est research interests include cloud computing, networking
virtualization, data visualisation and data analysis.

Bryan Ng completed his Ph.D. (2010) in the area of commu-
nication and networking. He held teaching & research posi-
tions in Malaysia and France in addition to attachments to
commercial research laboratories Intel, Motorola, Panasonic
and Orange Labs. His research interests include performance
analysis of communication networks, modelling networking
protocols and software defined networking.

Winston K.G. Seah received the Dr.Eng. degree from Kyoto
University, Kyoto, Japan, in 1997. He is currently Professor
of Network Engineering in the School of Engineering and
Computer Science, Victoria University of Wellington, New
Zealand. Prior to this, he has worked for more than 16 years
in mission-oriented industrial research, taking ideas from
theory to prototypes, most recently, as a Senior Scientist
in the Institute for Infocomm Research, Singapore. His latest
research interests include Internet of Things, wireless sensor
networks powered by ambient energy harvesting, wireless
multi-hop networks, software defined networking, and 5G
access protocols for machine-type communications.

Lindsay Groves is currently Associate Professor in the
School of Engineering and Computer Science, Victoria
University of Wellington, New Zealand. His current re-
search is concerned with formal software development,
with emphasis on structuring formal specifications, tool
support for the refinement calculus, and techniques for
combining and adapting formal derivations. He also has
more general interests in software engineering, includ-
ing program visualisation, program understanding, program
maintenance/evolution and safety-critical systems.

Deepak Kumar Singh received the Dr.Eng. degree from
Victoria University of Wellington, New Zealand, in 2019.
He is currently working as a Research Assistant in Victoria
University of Wellington, New Zealand. His research focuses
on modelling of Software-Defined Network, data modelling
and recommendation system.

http://refhub.elsevier.com/S1084-8045(20)30402-1/sb111
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb111
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb111
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb111
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb111
http://infolab.stanford.edu/~ullman/focs/ch14.pdf
http://infolab.stanford.edu/~ullman/focs/ch14.pdf
http://infolab.stanford.edu/~ullman/focs/ch14.pdf
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb113
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb114
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb114
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb114
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb114
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb114
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb115
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb115
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb115
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb116
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb116
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb116
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb116
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb116
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb117
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb118
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb118
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb118
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb118
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb118
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb120
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb120
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb120
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb120
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb120
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb121
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb121
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb121
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb122
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb122
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb122
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb122
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb122
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb124
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb124
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb124
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb124
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb124
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb126
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb126
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb126
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb126
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb126
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb127
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb127
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb127
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb127
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb127
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb129
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb129
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb129
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb129
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb129
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb130
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb130
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb130
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb130
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb130
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb131
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb131
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb131
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb131
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb131
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb132
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb132
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb132
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb133
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb133
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb133
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb134
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb134
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb134
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb134
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb134
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb136
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb136
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb136
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb136
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb136
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb137
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb137
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb137
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb137
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb137
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb138
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb138
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb138
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb140
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb140
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb140
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb141
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb141
http://refhub.elsevier.com/S1084-8045(20)30402-1/sb141

	A survey on network forwarding in Software-Defined Networking
	Introduction
	SDN: Overview
	Forwarding pipeline
	Forwarding tables in traditional networking and SDN
	Existing works on characterising forwarding behaviour
	Regulating forwarding behaviour by ACL
	Regulating forwarding behaviour by IP routing table
	Regulating forwarding behaviour by FTE

	Pipelines: a common denominator for packet forwarding

	FTE representation
	Logical connective (LC)
	Algebra (AL)
	Set theory (ST)
	Formal representations (FR)
	Symbolic logic
	Mathematical logic

	FTE representation in practice
	Optimising FTE
	Traffic monitoring

	Conclusion
	Declaration of competing interest
	Acknowledgements
	References

