
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321764250

Distributed SDN Control: Survey, Taxonomy and Challenges

Article  in  IEEE Communications Surveys & Tutorials · December 2017

DOI: 10.1109/COMST.2017.2782482

CITATIONS

171
READS

5,344

3 authors:

Some of the authors of this publication are also working on these related projects:

Video streaming in vehicular Ad-hoc network View project

Deployment and Control of Wireless Sensor Networks (WSNs) View project

Fetia Bannour

École Nationale Supérieure d’Informatique pour l’Industrie et l’entreprise

8 PUBLICATIONS   195 CITATIONS   

SEE PROFILE

Sami Souihi

Université Paris-Est Créteil Val de Marne - Université Paris 12

45 PUBLICATIONS   312 CITATIONS   

SEE PROFILE

Abdelhamid Mellouk

Université Paris-Est Créteil Val de Marne - Université Paris 12

312 PUBLICATIONS   2,978 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Fetia Bannour on 06 February 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/321764250_Distributed_SDN_Control_Survey_Taxonomy_and_Challenges?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/321764250_Distributed_SDN_Control_Survey_Taxonomy_and_Challenges?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Video-streaming-in-vehicular-Ad-hoc-network?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Deployment-and-Control-of-Wireless-Sensor-Networks-WSNs?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fetia-Bannour?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fetia-Bannour?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ecole-Nationale-Superieure-dInformatique-pour-lIndustrie-et-lentreprise?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fetia-Bannour?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sami-Souihi-2?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sami-Souihi-2?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-Paris-Est-Creteil-Val-de-Marne-Universite-Paris-12?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sami-Souihi-2?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelhamid-Mellouk?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelhamid-Mellouk?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-Paris-Est-Creteil-Val-de-Marne-Universite-Paris-12?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelhamid-Mellouk?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fetia-Bannour?enrichId=rgreq-d54666858a0d3cae955665e02841bae4-XXX&enrichSource=Y292ZXJQYWdlOzMyMTc2NDI1MDtBUzo3MjM0MzUzNDkxMDY2ODhAMTU0OTQ5MTgzNjQwNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


1

Distributed SDN Control:
Survey, Taxonomy and Challenges

Fetia Bannour, Sami Souihi and Abdelhamid Mellouk
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Abstract—As opposed to the decentralized control logic un-
derpinning the devising of the Internet as a complex bundle
of box-centric protocols and vertically-integrated solutions, the
SDN paradigm advocates the separation of the control logic from
hardware and its centralization in software-based controllers.
These key tenets offer new opportunities to introduce innovative
applications and incorporate automatic and adaptive control
aspects, thereby easing network management and guaranteeing
the user’s QoE. Despite the excitement, SDN adoption raises
many challenges including the scalability and reliability issues
of centralized designs that can be addressed with the physical
decentralization of the control plane. However, such physically
distributed, but logically centralized systems bring an additional
set of challenges. This paper presents a survey on SDN with a
special focus on the distributed SDN control. Besides reviewing
the SDN concept and studying the SDN architecture as compared
to the classical one, the main contribution of this survey is a
detailed analysis of state-of-the-art distributed SDN controller
platforms which assesses their advantages and drawbacks and
classifies them in novel ways (physical and logical classifications)
in order to provide useful guidelines for SDN research and
deployment initiatives. A thorough discussion on the major
challenges of distributed SDN control is also provided along with
some insights into emerging and future trends in that area.

Index Terms—Software-Defined Networking (SDN), Dis-
tributed Control, Network Management, Quality of Experi-
ence (QoE), Adaptive and Automatic control approaches, Pro-
grammable Networks.

I. INTRODUCTION

THE unprecedented growth in demands and data traffic,
the emergence of network virtualization along with the

ever-expanding use of mobile equipment in the modern net-
work environment have highlighted major problems that are
basically inherent to the Internet’s conventional architecture.
That made the task of managing and controlling the infor-
mation coming from a growing number of connected devices
increasingly complex and specialized.

Indeed, the traditional networking infrastructure is consid-
ered as highly rigid and static as it was initially conceived
for a particular type of traffic, namely monotonous text-based
contents, which makes it poorly suited to today’s interactive
and dynamic multimedia streams generated by increasingly-
demanding users. Along with multimedia trends, the recent
emergence of the Internet of Things (IoT) has allowed for
the creation of new advanced services with more stringent
communication requirements in order to support its innovative
use cases. In particular, e-health is a typical IoT use case

where the health-care services delivered to remote patients
(e.g. diagnosis, surgery, medical records) are highly intolerant
of delay, quality and privacy. Such sensitive data and life-
critical traffic are hardly supported by traditional networks.

Furthermore, in the traditional architecture where the control
logic is purely distributed and localized, solving a specific
networking problem or adjusting a particular network pol-
icy requires acting separately on the affected devices and
manually changing their configuration. In this context, the
current growth in devices and data has exacerbated scalability
concerns by making such human interventions and network
operations harder and more error-prone.

Altogether, it has become particularly challenging for to-
day’s networks to deliver the required level of Quality of
Service (QoS), let alone the Quality of Experience (QoE)
that introduces additional user-centric requirements. To be
more specific, relying solely on the traditional QoS that is
based on technical performance parameters (e.g. bandwidth
and latency) turns out to be insufficient for today’s advanced
and expanding networks. Additionally, meeting this growing
number of performance metrics is a complex optimization task
that can be treated as an NP-complete problem. Alternatively,
network operators are increasingly realizing that the end-user’s
overall experience and subjective perception of the delivered
services are as important as QoS-based mechanisms. As a
result, current trends in network management are heading
towards this new concept commonly referred to as the QoE
to represent the overall quality of a network service from an
end-user perspective.

That said, this huge gap between, on the one hand, the
advances achieved in both computer and software technologies
and on the other, the traditional non-evolving and hard to
manage [1] underlying network infrastructure supporting these
changes has stressed the need for an automated networking
platform [2] that facilitates network operations and matches
the IoT needs. In this context, several research strategies have
been proposed to integrate automatic and adaptive approaches
into the current infrastructure for the purpose of meeting the
challenges of scalability, reliability and availability for real-
time traffic, and therefore guaranteeing the user’s QoE.

While radical alternatives argue that a brand-new network
architecture should be built from scratch by breaking with the
conventional network architecture and bringing fundamental
changes to keep up with current and future requirements,
other realistic alternatives are appreciated for introducing
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slight changes tailored to specific needs and for making a
gradual network architecture transition without causing costly
disruptions to existing network operations.

In particular, the early Overlay Network alternative intro-
duces an application layer overlay on the top of the con-
ventional routing substrate to facilitate the implementation
of new network control approaches. However, the obvious
disadvantage of Overlay Networks is that they depend on
several aspects (e.g. selected overlay nodes) to achieve the
required performance. Besides, such networks can be criticized
for compounding the complexity of existing networks due to
the additional virtual layers.

On the other hand, the recent Software-Defined Networking
(SDN) paradigm [3] offers the possibility to program the
network and thus facilitates the introduction of automatic
and adaptive control approaches by separating hardware (data
plane) and software (control plane) enabling their independent
evolution. SDN aims for the centralization of the network
control, offering an improved visibility and a better flexibility
to manage the network and optimize its performance. When
compared to the Overlay Network alternative, SDN has the
ability to control the entire network not only a selected set
of nodes and to use a public network for transporting data.
Besides, SDN spares network operators the tedious task of
temporarily creating the appropriate overlay network for a
specific use case. Instead, it provides an inherent programmatic
framework for hosting control and security applications that
are developed in a centralized way while taking into consid-
eration the IoT requirements [4] to guarantee the user’s QoE.

Along with the excitement, there have been several concerns
and questions regarding the widespread adoption of SDN
networks. For instance, research studies on the feasibility of
the SDN deployment have revealed that the physical central-
ization of the control plane in a single programmable software
component, called the controller, is constrained by several
limitations in terms of scalability, availability, reliability, etc.
Gradually, it became inevitable to think about the control plane
as a distributed system [5], where several SDN controllers are
in charge of handling the whole network, while maintaining a
logically centralized network view.

In that respect, networking communities argued about the
best way to implement distributed SDN architectures while
taking into account the new challenges brought by such
distributed systems. Consequently, several SDN solutions have
been explored and many SDN projects have emerged. Each
proposed SDN controller platform adopted a specific archi-
tectural design approach based on various factors such as the
aspects of interest, the performance goals, the deployed SDN
use case, and also the trade-offs involved in the presence of
multiple conflicting challenges.

Despite that great interest in SDN, its deployment in the
industrial context is still in its relative early stages. There
might be indeed a long road ahead before technology matures
and standardization efforts pay off so that the full potential
of SDN can be achieved. At this point, we underline the
importance of conducting a serious analysis of the proposed
SDN solutions in envisioning the potential trends that may
drive future research in this field.

MAIN CONTRIBUTIONS OF THIS SURVEY

Prior surveys [1, 6, 7, 8] have covered different aspects
of the SDN paradigm. In particular, surveys published in
IEEE CST over the last few years elaborated on various
topics within the SDN scope such as the concept, benefits
and historical roots [9, 10], the architecture elements and
the design challenges [9, 10, 11, 12], the SDN programming
languages [13], the virtualization of SDN networks using
hypervisors [14], the security challenge in SDN [15], the
fault management challenge in SDN [16] and the application
of SDN in wireless networks [17]. Despite reviewing the
distributed SDN control topic in some specific sections (e.g.
the future perspective section), none of these surveys has, to
the best of our knowledge, particularly focused on covering
the various aspects of the decentralization problem in SDN.

While the decentralized SDN control may be implemented
using the existing distributed SDN controllers, their great
number along with their particular pros and cons made the
choice extremely difficult for those who attempted to adopt
a distributed SDN architecture in the context of large-scale
deployments. In order to assist and promote recent initiatives
to put into practice the SDN paradigm, this survey proposes
original classifications that make comparisons between the
broad range of SDN controller platform solutions with respect
to various scalability, reliability and performance criteria.

OUTLINE

In this paper, we present a survey on distributed control
in Software-Defined Networking. In Section II, we start by
exposing the promises and solutions offered by SDN as
compared to conventional networking. Then, we elaborate
on the fundamental elements of the SDN architecture. In
subsequent sections, we expand our knowledge of the different
approaches to SDN by exploring the wide variety of existing
SDN controller platforms. In doing so, we intend to place a
special emphasis on distributed SDN solutions and classify
them in two different ways: In Section III, we propose a
physical classification of SDN control plane architectures into
centralized and distributed (Flat or Hierarchical) in order to
highlight the SDN performance, scalability and reliability chal-
lenges. In Section IV, we put forward a logical classification
of distributed SDN control plane architectures into logically
centralized and logically distributed while tackling the associ-
ated consistency and knowledge dissemination issues. Finally,
Section V discusses the emerging challenges, opportunities
and trends facing the distributed control in SDNs.

II. SDN ARCHITECTURE

Over the last few years, the need for a new approach to
networking has been expressed to overcome the many issues
associated with current networks. In particular, the main vision
of the SDN approach is to simplify networking operations,
optimize network management and introduce innovation and
flexibility as compared to legacy networking architectures.
In this context and in line with the vision of Kim et al.
[18], four key reasons for the problems encountered in the
management of existing networks can be identified:
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(a) Traditional architecture (b) SDN architecture

Fig. 1: Conventional Networking Versus Software-Defined Networking

(i) Complex and low-level Network configuration
Network configuration is a complex distributed task
where each device is typically configured in a low-level
vendor-specific manner. Additionally, the rapid growth
of the network together with the changing networking
conditions have resulted in network operators constantly
performing manual changes to network configurations,
thereby compounding the complexity of the configuration
process and introducing additional configuration errors.

(ii) Dynamic Network State
Networks are growing dramatically in size, complexity
and consequently in dynamicity. Furthermore, with the
rise of mobile computing trends as well as the advent
of network virtualization [19] and cloud computing
[20, 21], the networking environment becomes even more
dynamic as hosts are continually moving, arriving and
departing due to the flexibility offered by VM migration,
and thus making traffic patterns and network conditions
change in a more rapid and significant way.

(iii) Exposed Complexity
In today’s large-scale networks, network management
tasks are challenged by the high complexity exposed
by distributed low-level network configuration interfaces.
That complexity is mainly generated by the tight cou-
pling between the management, control, and data planes,
where many control and management features are imple-
mented in hardware.

(iv) Heterogeneous Network Devices
Current networks are comprised of a large number of het-
erogeneous network devices including routers, switches
and a wide variety of specialized middle-boxes. Each
of these appliances has its own proprietary configura-
tion tools and operates according to specific protocols,
therefore increasing both complexity and inefficiency in
network management.

All that said, network management is becoming more diffi-
cult and challenging given that the static and inflexible archi-
tecture of legacy networks is ill-suited to cope with today’s
increasingly dynamic networking trends, and to meet the QoE
requirements of modern users. This fact has fueled the need for
the enforcement of complex and high-level policies to adapt
to current networking environments, and for the automation
of network operations to reduce the tedious workload of low-

level device configuration tasks.
In this sense, and to deliver the goals of easing network

management in real networks, operators have considered run-
ning dynamic scripts as a way to automate network configura-
tion settings before realizing the limitations of such approaches
which led to misconfiguration issues. It is, however, worth
noting, that recent approaches to scripting configurations and
network automation are becoming relevant [22].

The SDN initiative led by the Open Networking Foundation
(ONF) [23], on the other hand, proposes a new open architec-
ture to address current networking challenges with the poten-
tial to facilitate the automation of network configurations , and
better yet, fully program the network. Unlike the conventional
distributed network architecture (Figure 1(a)) where network
devices are closed and vertically-integrated bundling software
with hardware, the SDN architecture (Figure 1(b)) raises the
level of abstraction by separating the network data and control
planes. That way, network devices become simple forwarding
switches whereas all the control logic is centralized in soft-
ware controllers providing a flexible programming framework
for the development of specialized applications and for the
deployment of new services.

Such aspects of SDN are believed to simplify and improve
network management by offering the possibility to innovate,
customize behaviors and control the network according to
high-level policies expressed as centralized programs, there-
fore bypassing the complexity of low-level network details
and overcoming the fundamental architectural problems raised
in (i) and (iii). Added to these features is the ability of
SDN to easily cope with the heterogeneity of the underlying
infrastructure (outlined in (iv)) thanks to the SDN Southbound
interface abstraction.

More detailed information on the SDN-based architecture
which is split vertically into three layers (see Figure 2) is
provided in the next subsections:

A. SDN Data plane

The data plane, also known as the forwarding plane, consists
of a distributed set of forwarding network elements (mainly
switches) in charge of forwarding packets. In the context of
SDN, the control-to-data plane separation feature requires the
data plane to be remotely accessible for software-based control
via an open vendor-agnostic Southbound interface.
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Fig. 2: A three-layer distributed SDN architecture

Both OpenFlow [24] and ForCES [25] are well-known
candidate protocols for the Southbound interface. They both
follow the basic principle of splitting the control plane and the
forwarding plane in network elements and they both standard-
ize the communication between the two planes. However, these
solutions are different in many aspects, especially in terms of
network architecture design.

Standardized by IETF, ForCES (Forwarding and Control
Element Separation) [25] introduced the separation between
the control plane and the forwarding plane. In doing so,
ForCES defines two logic entities that are logically kept in
the same physical device: the Control Element (CE) and
the Forwarding Element (FE). However, despite being a ma-
ture standard solution, the ForCES alternative did not gain
widespread adoption by major router vendors.

On the other hand, OpenFlow [24] received major attention
in both the research community and the industry. Standard-
ized by the ONF [23], it is considered as the first widely
accepted communication protocol for the SDN Southbound
interface. OpenFlow enables the control plane to specify in a
centralized way the desired forwarding behavior of the data
plane. Such traffic forwarding decisions reflect the specified
network control policies and are translated by controllers into
actual packet forwarding rules populated in the flow tables of
OpenFlow switches.

In more specific terms, and according to the original version
1.0.0 of the standard defined in [26], an OpenFlow-enabled
Switch consists of a flow table and an OpenFlow secure

channel to an external OpenFlow controller. Typically, the
forwarding table maintains a list of flow entries; Each flow
entry comprises match fields containing header values to match
packets against, counters to update when packets match for
flow statistics collection purposes, and a set of actions to apply
to matching packets.

Accordingly, all incoming packets processed by the switch
are compared against the flow table where flow entries match
packets based on a priority order specified by the controller. In
case a matching entry is found, the flow counter is incremented
and the actions associated with the specific flow entry are
performed on the incoming packet belonging to that flow.
According to the OpenFlow specification [26], these actions
may include forwarding a packet out on a specific port,
dropping the packet, removing or updating packet headers,
etc. If no match is found in the flow table, then the unmatched
packet is encapsulated and sent over the secure channel to the
controller which decides on the way it should be processed.
Among other possible actions, the controller may define a new
flow for that packet by inserting new flow table entries.

Despite the advantages linked to the flexibility and innova-
tion brought to network management, OpenFlow [24] suffers
from scalability and performance issues that stem mainly
from pushing all network intelligence and control logic to the
centralized OpenFlow controller, thus restricting the task of
OpenFlow switches to a dumb execution of forwarding actions.

To circumvent these limitations, several approaches [27, 28,
29, 30] suggest revisiting the delegation of control between
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the controller and switches and introducing new SDN switch
Southbound interfaces.

Notably, DevoFlow [28] claims to minimize switch-to-
controller interactions by introducing new control mechanisms
inside switches. That way, switches can make local control
decisions when handling frequent events, without involving
controllers whose primary tasks will be limited to keeping
centralized control over far fewer significant events that re-
quire network-wide visibility. Despite introducing innovative
ideas, the DevoFlow alternative has been mainly criticized for
imposing major modifications to switch designs [31].

On the other hand, stateful approaches [29, 32, 33], as
opposed to the original stateless OpenFlow abstraction, moti-
vate the need to delegate some stateful control functions back
to switches in order to offload the SDN controller. These
approaches face the challenging dilemma of programming
stateful devices (evolving the data plane) while retaining
the simplicity, generality and vendor-agnostic features offered
by the OpenFlow abstraction. In particular, the OpenState
proposal [29] is a stateful platform-independent data plane
extension of the current OpenFlow match/action abstraction
supporting a finite-state machine (FSM) programming model
called Mealy Machine in addition to the flow programming
model adopted by OpenFlow. That model is implemented
inside the OpenFlow switches using additional state tables in
order to reduce the reliance on remote controllers for applica-
tions involving local states like MAC learning operations and
port-knocking on a firewall.

Despite having the advantage of building on the adaptation
activity of the OpenFlow standard and leveraging its evolution
using the (stateful) extensions provided by recent versions
(version 1.3 and 1.4), OpenState faces important challenges
regarding the implementation of a stateful extension for pro-
gramming the forwarding behaviour inside switches while
following an OpenFlow-like implementation approach. The
feasibility of the hardware implementation of OpenState has
been addressed in [34]. Finally, the same authors extended
their work into a more general and expressive abstraction
of OpenState called OPP [35] which supports a full ex-
tended finite-state machine (XFSM) model, thereby enabling
a broader range of applications and complex stateful flow
processing operations.

In the same spirit, the approach presented in [36] explored
delegating some parts of the controller functions involving
packet generation tasks to OpenFlow switches in order to
address both switch and controller scalability issues. The InSP
API was introduced as a generic API that extends OpenFlow
to allow for the programming of autonomous packet genera-
tion operations inside the switches such as ARP and ICMP
handling. The proposed OpenFlow-like abstractions include
an InSP Instruction for specifying the actions that the switch
should apply to a packet being generated after a triggering
event and a Packet Template Table (PTE) for storing the
content of any packet generated by the switch.

According to [36], the InSP function, like any particular
offloading function, faces the challenging issue of finding the
relevant positioning with respect to the broad design space
for delegation of control to SDN switches. In their opinion,

a good approach to conceiving (eventually standardizing) a
particular offloading function should involve a programming
abstraction that achieves a fair compromise between viability
and flexibility, far from extreme solutions that simply turn on
well-known legacy protocol functions (e.g. MAC learning) or
push a piece of code inside the switches [37, 38].

The authors of FOCUS [39] express the same challenges
but, unlike the above proposals, they reject a performance-
based design choice that requires adding new hardware prim-
itives to OpenFlow switches in the development of the del-
egated control function. Instead, they promote a deployable
software-based solution to be implemented in the switch’s
software stack to achieve a balanced trade-off between the
flexibility and cost of the control function delegation process.

B. SDN Control plane

Regarded as the most fundamental building entity in SDN
architecture, the control plane consists of a centralized soft-
ware controller that is responsible for handling communica-
tions between network applications and devices through open
interfaces. More specifically, SDN controllers translate the
requirements of the application layer down to the underlying
data plane elements and give relevant information up to SDN
applications.
The SDN control layer is commonly referred to as the Network
Operating System (NOS) as it supports the network control
logic and provides the application layer with an abstracted
view of the global network, which contains enough informa-
tion to specify policies while hiding all implementation details.

Typically, the control plane is logically centralized and yet
implemented as a physically distributed system for scalability
and reliability reasons as discussed in Sections III and IV. In a
distributed SDN control configuration, East-Westbound APIs
[40] are required to enable multiple SDN controllers to com-
municate with each other and exchange network information.
Despite the many attempts to standardize SDN protocols, there
has been to date no standard for the East-West API which
remains proprietary for each controller vendor. Although a
number of East-Westbound communications happen only at
the data-store level and do not require additional protocol
specifics, it is becoming increasingly advisable to standardize
that communication interface in order to provide wider interop-
erability between different controller technologies in different
autonomous SDN networks.

On the other hand, an East-Westbound API standard re-
quires advanced data distribution mechanisms and involves
other special considerations. This brings about additional SDN
challenges, some of which have been raised by the state-of-
the art distributed controller platforms discussed in Sections
III and IV, but have yet to be fully addressed.

C. SDN Application plane

The SDN application plane comprises SDN applications
which are control programs designed to implement the net-
work control logic and strategies. This higher-level plane
interacts with the control plane via an open Northbound API.
In doing so, SDN applications communicate their network



6

requirements to the SDN controller which translates them into
Southbound-specific commands and forwarding rules dictating
the behavior of the individual data plane devices. Routing,
Traffic Engineering (TE), firewalls and load balancing are
typical examples of common SDN applications running on
top of existing controller platforms.

In the context of SDN, applications leverage the decoupling
of the application logic from the network hardware along with
the logical centralization of the network control, to directly ex-
press the desired goals and policies in a centralized high-level
manner without being tied to the implementation and state-
distribution details of the underlying networking infrastructure.
Concurrently, SDN applications make use of the abstracted
network view exposed through the Northbound interface to
consume the network services and functions provided by the
control plane according to their specific purposes.

That being said, the Northbound API implemented by SDN
controllers can be regarded as a network abstraction interface
to applications, easing network programmability, simplifying
control and management tasks and allowing for innovation. In
contrast to the Southbound API, the Northbound API is not
supported by an accepted standard.
Despite the broad variety of Northbound APIs adopted by the
SDN community (see Figure 2), we can classify them into two
main categories:

• The first set involves simple and primitive APIs that are
directly linked to the internal services of the controller
platform. These implementations include:

– Low-level ad-hoc APIs that are proprietary and
tightly dependent on the controller platform. Such
APIs are not considered as high-level abstractions
as they allow developers to directly implement
applications within the controller in a low-level
manner. Deployed internally, these applications are
tightly coupled with the controller and written in its
native general-purpose language. NOX in C++ and
POX in Python are typical examples of controllers
that use their own basic sets of APIs.

– APIs based on Web services such as the widely-used
REST API. This group of programming interfaces
enables independent external applications (Clients)
to access the functions and services of the SDN
controller (Server). These applications can be written
in any programming language and are not run inside
the bundle hosting the controller software. Floodlight
is an example of an SDN controller that adopts an
embedded Northbound API based on REST.

• The second category contains higher level APIs that
rely on domain-specific programming languages such as
Frenetic [41], Procera [42] and Pyretic [43] as an indirect
way for applications to interact with the controller. These
APIs are designed to raise the level of abstraction in order
to allow for the flexible development of applications and
for the specification of high-level network policies.

III. PHYSICAL CLASSIFICATION OF SDN CONTROL PLANE
ARCHITECTURES

Despite the undeniable strengths of SDN, there have always
been serious concerns about the ability to extend SDN to large-
scale networks.

Some argue that these scalability limits are basically linked
to the protocol standards being used for the implementation
of SDN. OpenFlow [24] in particular, although recognized as
a leading and widely-deployed SDN Southbound technology,
is currently being rethought for potentially causing excessive
overheads on switches (switch bottleneck). Scalable alterna-
tives to the OpenFlow standard which propose to revisit the
delegation of control between the controller and the switches
with the aim of reducing the reliance on SDN the control
plane, have been discussed in II-A.

Another entirely different approach to addressing the SDN
scalability and reliability challenges, which is advocated by
the present paper, is to physically distribute the SDN control
plane. This has led to a first categorization of existing con-
troller platforms into centralized and distributed architectures
(see Figure 3). Please note that, in Figure 3 and Figure 4,
controllers that present similar characteristics for the discussed
comparison criteria are depicted in the same color.

A. Centralized SDN control

A physically-centralized control plane consisting of a single
controller for the entire network is a theoretically perfect de-
sign choice in terms of simplicity. However, a single controller
system may not keep up with the growth of the network. It is
likely to become overwhelmed (controller bottleneck) while
dealing with an increasing number of requests and concur-
rently struggling to achieve the same performance guarantees.

Obviously, a centralized SDN controller does not meet
the different requirements of large-scale real-world network
deployments. Data Centers and Service Provider Networks
are typical examples of such large-scale networks presenting
different requirements in terms of scalability and reliability.

More specifically, a Data Center Network involves tens of
thousands of switching elements. Such a great number of
forwarding elements which can grow at a fast pace is expected
to generate a huge number of control events that are enough to
overload a single centralized SDN controller [44, 45]. Studies
conducted in [46] show important scalability implications (in
terms of throughput) for centralized controller approaches.
They demonstrate that multiple controllers should be used to
scale the throughput of a centralized controller and meet the
traffic characteristics within realistic data centers.

Unlike data centers, Service Provider Networks are char-
acterized by a modest number of network nodes. However,
these nodes are usually geographically distributed making the
diameter of these networks very large [44]. This entails a
different type of controller scalability issues for centralized
controller approaches, more specifically, high latencies. In
addition to latency requirements, service provider networks
have large numbers of flows that may generate overhead and
bandwidth issues.
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Fig. 3: Physical classification of SDN control plane architectures

In general, Wide Area Network (WAN) deployments typi-
cally impose strict resiliency requirements. In addition, they
present higher propagation delays as compared to data center
networks. Obviously, a centralized controller design in a SD-
WAN cannot achieve the desired failure resiliency and scale-
out behaviors [47]. Several studies have emphasized the need
for a distributed control plane in a SD-WAN architecture: They
indeed focused on placing multiple controllers on real WAN
topologies to benefit both control plane latency and fault-
tolerance [48, 49].

That said, the potential scalability, reliability and vulnerabil-
ity concerns associated with centralized controller approaches
have been further confirmed through studies [7, 50] on the
behavior of state-of-the-art centralized SDN controllers such
as NOX [51], Beacon [52] and Floodlight [53] in different
networking environments.

In particular, NOX classic [51], the world’s first-generation
OpenFlow controller with an event-based programming model,
is believed to be limited in terms of throughput. Indeed, it
cannot handle a large number of flows, namely a rate of 30k
flow initiation events per second [7, 54]. Such a flow setup
throughput may sound sufficient for an enterprise network,
but, it could be arguable for data-center deployments with
high flow initiation rates [46]. Improved versions of NOX have
been consequently developed by the same community (Nicira

Networks) such as NOX-MT [55] for better performance and
POX [56] for a more developer-friendly environment.

However, while none of these centralized designs is believed
to meet the above scalability and reliability requirements of
large-scale networks, they have gained greater prominence as
they were widely used for research and educational purposes.

Additionally, Floodlight [53] which is a very popular Java-
based OpenFlow controller from Big Switch Networks, suffers
from serious security and resiliency issues. For instance,
Dhawan et al. [57] have reported that the centralized SDN
controller is inherently susceptible to Denial-of-Service (DoS)
attacks. Another subsequent version of Floodlight, called SE-
Floodlight, has therefore been released to overcome these
problems by integrating security applications. However, de-
spite the introduced security enhancements aimed at shielding
the centralized controller, the latter remains a potential weak-
ness compromising the whole network. In fact, the controller
still maintains a single point of failure and bottlenecks even
if its latest version is less vulnerable to malicious attacks.

On the other hand, given its obvious performance and
functionality advantages, the open-source Floodlight has been
extensively used to build other SDN controller platforms
supporting distributed architectures such as ONOS [58] and
DISCO [59].
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B. Distributed SDN control

Alternatively, physically-distributed control plane
architectures have received increased research attention
in recent years since they appeared as a potential solution
to mitigate the issues brought about by centralized SDN
architectures (poor scalability, Single Point of Failure
(SPOF), performance bottlenecks, etc). As a result, various
SDN control plane designs have been proposed in recent
literature. Yet, we discern two main categories of distributed
SDN control architectures based on the physical organization
of SDN controllers: A flat SDN control architecture and a
hierarchical SDN control architecture (see Figure 3).

1) Flat SDN control:
The flat structure implies the horizontal partitioning of

the network into multiple areas, each of which is handled
by a single controller in charge of managing a subset of
SDN switches. There are several advantages to organizing
controllers in such a flat style, including reduced control
latency and improved resiliency.

Onix [60], Hyperflow [61] and ONOS [58] are typical exam-
ples of flat physically-distributed controller platforms which
are initially designed to improve control plane scalability
through the use of multiple interconnected controllers sharing
a global network-wide view and allowing for the development
of centralized control applications. However, each of these
contributions takes a different approach to distribute controller
states and providing control plane scalability.

For example, Onix provides a good scalability through
additional partitioning and aggregation mechanisms. To be
more specific, Onix partitions the NIB (Network Information
Base) giving each controller instance responsibility for a
subset of the NIB and it aggregates by making applications
reduce the fidelity of information before sharing it between
other Onix instances within the cluster. Similar to Onix, each
ONOS instance (composing the cluster) that is responsible for
a subset of network devices holds a portion of the network
view that is also represented in a graph. Different from Onix
and ONOS, every controller in HyperFlow has the global
network view, thus getting the illusion of control over the
whole network. Yet, HyperFlow can be considered as a
scalable option for specific policies in which a small number
of network events affect the global network state. In that case,
scalability is ensured by propagating these (less frequent)
selected events through the event propagation system.

Furthermore, different mechanisms are put in place by these
distributed controller platforms to meet fault-tolerance and
reliability requirements in the event of failures or attacks.

Onix [60] uses different recovery mechanisms depending
on the detected failures. Onix instance failure is most of the
time handled by distributed coordination mechanisms among
replicas whereas network element/link failures are under the
full responsibility of applications developed atop Onix. Be-
sides, Onix is assumed reliable when it comes to connectivity
infrastructure failures as it can dedicate the failure recovery

task to a separate management backbone that uses a multi-
pathing protocol.

Likewise, Hyperflow [61] focuses on ensuring resiliency
and fault tolerance as a means for achieving availability.
When a controller failure is discovered by the failure detection
mechanisms deployed by its publish/subscribe WheelFS [62]
system, HyperFlow reconfigures the affected switches and
redirects them to another nearby controller instance (from a
neighbor’s site). Alongside this ability to tackle component
failures, HyperFlow is resilient to network partitioning thanks
to the partition tolerance property of WheelFS. In fact, in
the presence of a network partitioning, WheelFS partitions
continue to operate independently, thus favoring availability.

Similarly, ONOS [58] considers fault-tolerance as a prereq-
uisite for adopting SDN in Service Provider networks. ONOS’s
distributed control plane guards against controller instance
failures by connecting, from the onset, each SDN switch to
more than one SDN controller; its master controller and other
backup controllers (from other domains) that may take over
in the wake of master controller failures. Load balancing
mechanisms are also provided to balance the mastership of
switches among the controllers of the cluster for scalability
purposes. Besides, ONOS incorporates additional recovery
protocols, such as the Anti-Entropy protocol [63], for healing
from lost updates due to such controller crashes.

Recent SDN controller platform solutions [64, 65, 66, 67,
68, 69] focused specifically on improving fault-tolerance in
the distributed SDN control plane. Some of these works
assumed a simplified flat design where the SDN control was
centralized. However, since the main focus was placed at the
fault-tolerance aspect, we believe that their ideas and their
fault-tolerance approaches can be leveraged in the context of
medium to large scale SDNs where the network control is
physically distributed among multiple controllers.

In particular, Botelho et. al [70] developed a hybrid SDN
controller architecture that combines both passive and ac-
tive replication approaches for achieving control plane fault-
tolerance. SMaRtLight adopts a simple Floodlight [53]-based
multi-controller design following OpenFlow 1.3, where one
main controller (the primary) manages all network switches,
and other controller replicas monitor the primary controller
and serve as backups in case it fails.

This variant of a traditional passive replication system relies
on an external data store that is implemented using a modern
active Replicated State Machine (RSM) built with a Paxos-
like protocol (BFT-SMaRt [71]) to ensure fault-tolerance and
strong consistency. This shared data store is used for storing
the network and application state (the common global NIB)
and also for coordinating fault detection and leader election
operations between controller replicas that run a lease man-
agement algorithm.

In case of a failure of the primary controller, the elected
backup controller starts reading the current state from the
shared consistent data store in order to mitigate the cold-start
(empty state) issue associated with traditional passive replica-
tion approaches, and thereby ensure a smoother transition to
the new primary controller role.
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The limited feasibility of the deployed controller fault-
tolerance strategy is warranted by the limited scope of the
SMaRtLight solution which is only intended for small to
medium-sized SDN networks. On the other hand, in large-scale
deployments, adopting a simplified Master-Slave approach,
and more importantly, assuming a single main controller
scheme where one controller replica must retrieve all the
network state from the shared data store in failure scenarios,
have major disadvantages in terms of increased latency and
failover time.

Similarly, the Ravana controller platform proposal [66]
addresses the issue of recovering from complete fail-stop
controller crashes. It offers the abstraction of a fault-free
centralized SDN controller to unmodified control applications
which are relieved of the burden of handling controller failures.
Accordingly, network programmers write application pro-
grams for a single main controller and the transparent master-
slave Ravana protocol takes care of replicating, seamlessly and
consistently, the control logic to other backup controllers for
fault-tolerance.

The Ravana approach deploys enhanced Replicated State
Machine (RSM) techniques that are extended with switch-
side mechanisms to ensure that control messages are pro-
cessed transactionally with ordered and exactly-once semantics
even in the presence of failures. The three Ravana prototype
components, namely the Ryu [72]-based controller runtime,
the switch runtime, and the control channel interface, work
cooperatively to guarantee the desired correctness and robust-
ness properties of a fault-tolerant logically centralized SDN
controller.

More specifically, when the master controller crashes, the
Ravana protocol detects the failure within a short failover
time and elects the standby slave controller to take over using
Zookeeper [73]-like failure detection and leader election
mechanisms. The new leader finishes processing any logged
events in order to catch up with the failed master controller
state. Then, it registers with the affected switches in the role
of the new master before proceeding with normal controller
operations.

2) Hierarchical SDN control:
The hierarchical SDN control architecture assumes that the

network control plane is vertically partitioned into multiple
levels (layers) depending on the required services. According
to [74], a hierarchical organization of the control plane can
improve SDN scalability and performance.

To improve scalability, Kandoo [31] assumes a hierarchical
two-layer control structure that partitions control applications
into local and global. Contrary to DevoFlow [28] and DIFANE
[27], Kandoo proposes to reduce the overall stress on the
control plane without the need to modify OpenFlow switches.
Instead, it establishes a two-level hierarchical control plane,
where frequent events occurring near the data path are handled
by the bottom layer (local controllers with no interconnection
running local applications) and non-local events requiring a
network-wide view are handled by the top layer (a logically
centralized root controller running non-local applications and
managing local controllers).

Despite the obvious scalability advantages of such a control
plane configuration where local controllers can scale linearly
as they do not share information, Kandoo did not envision
fault-tolerance and resiliency strategies to protect itself from
potential failures and attacks in the data and control planes.
Besides, from a developer perspective, Kandoo imposes
some kandoo-specific conditions on the control applications
developed on top of it, in such a way that makes them aware
of its existence.

On the other hand, Google’s B4 [75, 76], a private intra-
domain software-defined WAN connecting their data centers
across the planet, proposes a two-level hierarchical control
framework for improving scalability. At the lower layer,
each data-center site is handled by an Onix-based [60] SDN
controller hosting local site-level control applications. These
site controllers are managed by a global SDN Gateway that
collects network information from multiple sites through site-
level TE services and sends them to a logically centralized TE
server which also operates at the upper layer of the control
hierarchy. Based on an abstract topology, the latter enforces
high-level TE policies that are mainly aimed at optimizing
bandwidth allocation between competing applications across
the different data-center sites. That being said, the TE server
programs these forwarding rules at the different sites through
the same gateway API. These TE entries will be installed into
higher-priority switch forwarding tables alongside the standard
shortest-path forwarding tables. In this context, it is worth
mentioning that the topology abstraction which consists in
abstracting each site into a super-node with an aggregated
super-trunk to a remote site is key to improving the scalability
of the B4 network. Indeed, this abstraction hides the details
and complexity from the logically centralized TE controller,
thereby allowing it to run protocols at a coarse granularity
based on a global controller view and, more importantly
preventing it from becoming a serious performance bottleneck.

Unlike Kandoo [31], B4 [75] deploys robust reliability
and fault-tolerance mechanisms at both levels of the control
hierarchy in order to enhance the B4 system availability. These
mechanisms have been especially enhanced after experiencing
a large-scale B4 outage. In particular, Paxos [77] is used for
detecting and handling the primary controller failure within
each data-center site by electing a new leader controller
among a set of reachable standby instances. On the other
hand, network failures at the upper layer are addressed by
the logically centralized TE controller which adapts to failed
or unresponsive site controllers in the bandwidth allocation
process. Additionally, B4 is resilient against other failure
scenarios where the upper-level TE controller encounters
major problems in reaching the lower-level site controllers
(e.g. TE operation/session failures). Moreover, B4 guards
against the failure of the logically centralized TE controller by
geographically replicating TE servers across multiple WAN
sites (one master TE server and four secondary hot standbys).
Finally, another fault recovery mechanism is used in case
the TE controller service itself faces serious problems. That
mechanism stops the TE service and enables the standard
shortest-path routing mechanism as an independent service.
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In the same spirit, Espresso [78] is another interesting SDN
contribution that represents the latest and more challenging
pillar of Google’s SDN strategy. Building on the previous
three layers of that strategy (the B4 WAN [75], the Andromeda
NFV stack and the Jupiter data center interconnect), Espresso
extends the SDN approach to the peering edge of Google’s
network where it connects to other networks worldwide.
Considered as a large-scale SDN deployment for the public
Internet, Espresso, which has been in production for more
than two years, routes over 22% of Google’s total traffic to
the Internet. More specifically, the Espresso technology allows
Google to dynamically choose from where to serve content for
individual users based on real-time measurements of end-to-
end network connections.

To deliver unprecedented scale-out and efficiency, Espresso
assumes a hierarchical control plane design split between
Global controllers and Local controllers that perform differ-
ent functions. Besides, Espresso’s software programmability
design principle externalizes features into software thereby
exploiting commodity servers for scale.

Moreover, Espresso achieves higher availability (reliability)
when compared to existing router-centric Internet protocols.
Indeed, it supports a fail static system, where the local
data plane keeps the last known good state to allow for
control plane unavailability without impacting data plane and
BGP peering operations. Finally, another important feature of
Espresso is that it provides full interoperability with the rest
of the Internet and the traditional heterogeneous peers.

IV. LOGICAL CLASSIFICATION OF DISTRIBUTED SDN
CONTROL PLANE ARCHITECTURES

Apart from the physical classification, we can categorize
distributed SDN control architectures according to the way
knowledge is disseminated among controller instances (the
consistency challenge) into logically centralized and logically
distributed architectures (see Figure 4). This classification has
been recently adopted by [79].

A. Logically centralized SDN control

Onix and SMaRtLight:
Both Onix [60] and SMaRtLight [70] are logically central-

ized controller platforms that achieve controller state redun-
dancy through state replication. But the main difference is that
Onix uses a distributed data store while SMartLight uses a
centralized data store for replicating the shared network state.
They also deploy different techniques for sharing knowledge
and maintaining a consistent network state.

Onix is a distributed control platform for large-scale pro-
duction networks that stands out from previous proposals
by providing a simple general-purpose API, a central NIB
abstraction and standard state distribution primitives for easing
the implementation of network applications.

In more specific terms, Onix uses the NIB data structure
to store the global network state (in the form of a network
graph) that is distributed across running Onix instances and

synchronized through Onix’s built-in state distribution tools
according to different levels of consistency as dictated by
application requirements. In fact, besides interacting with the
NIB at run-time, network applications on top of Onix initially
configure their own data storage and dissemination mech-
anisms by choosing among two data-store options already
implemented by Onix in the NIB: A replicated transactional
database that guarantees strong consistency at the cost of good
performance for persistent but slowly-changing data (state),
and a high-performance memory-only distributed hash table
(DHT) for volatile data that does not require strict consistency.

While the main advantage of Onix is its programmatic
framework created for the flexible development of control
applications with desired trade-offs between performance and
state consistency (strong/eventual), it carries the limitations
of eventually consistent systems which rely on application-
specific logic to detect network state inconsistencies for
the eventually-consistent data and provide conflict resolution
methods for handling them.

As mentioned in Section III-B1, SMaRtLight is a fault-
tolerant logically centralized Master-Slave SDN controller
platform, where a single controller is in charge of all network
decisions. This main controller is supported by backup con-
troller replicas that should have a synchronized network view
in order to take over the network control in case of the primary
failure. All controller replicas are coordinated through a shared
data store that is kept fault-tolerant and strongly consistent
using an implementation of Replicated State Machine (RSM).

Consistency between the master and backup controllers
is guaranteed by replicating each change in the network
image (NIB) of the master into the shared data store
before modifying the state of the network. However, such
synchronization updates generate additional time overheads
and have a drastic impact on the controller’s performance.
To address this issue, the controllers keep a local cache
(maintained by one active primary controller at any time) to
avoid accessing the shared data store for read operations. By
keeping the local cache and the data store consistent even
in the presence of controller failures, the authors claim that
their simple Master-Slave structure achieves, in the context
of small to medium-sized networks, a balance between
consistency and fault-tolerance while keeping performance at
an acceptable level.

HyperFlow and Ravana:
Both HyperFlow [61] and Ravana [66] are logically central-

ized controller platforms that achieve state redundancy through
event replication. Despite their similarities in building the
application state, one difference is that the Ravana protocol
is completely transparent to control applications while Hyper-
Flow requires minor modifications to applications. Besides,
while HyperFlow is eventually consistent favoring availability,
Ravana ensures strong consistency guarantees.

More specifically, Hyperflow [61] is an extension of NOX
into a distributed event-based control plane where each NOX-
based controller manages a subset of OpenFlow network
switches. It uses an event-propagation publish/subscribe mech-
anism based on the distributed WheelFS [62] file system
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Fig. 4: Logical classification of distributed SDN control plane architectures

for propagating selected network events and maintaining the
global network-wide view across controllers. Accordingly, the
Hyperflow controller application instance running on top of an
individual NOX controller selectively publishes relevant events
that affect the network state and receives events on subscribed
channels to other controllers. Then, other controllers locally
replay all the published events in order to reconstruct the state
and achieve the synchronization of the global view.

By this means, all controller instances make decisions
locally and individually (without contacting remote controller
instances): They indeed operate based on their synchronized
eventually-consistent network-wide view as if they are in
control of the entire network. Through this synchronization
scheme, Hyperflow achieves the goal of minimizing flow
setup times and also congestion, in other words, cross-site
traffic required to synchronize the state among controllers.

However, the potential downside of Hyperflow is related to
the performance of the publish/subscribe system which can
only deal with non-frequent events. Besides, HyperFlow does
not guarantee a strict ordering of events and does not handle
consistency problems. This makes the scope of HyperFlow
restricted to applications that does not require a strict event
ordering with strict consistency guarantees.

To correctly ensure the abstraction of a ”logically central-
ized SDN controller”, an elaborate fault-tolerant controller
platform called Ravana [66] extended beyond the requirements
for controller state consistency to include that for switch state
consistency under controller failures.

Maintaining such strong levels of consistency in both con-
trollers and switches in the presence of failures, requires
handling the entire event-processing cycle as a transaction
in accordance with the following properties: (i) events are
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processed in the same total order at all controller replicas
so that controller application instances would reach the same
internal state, (ii) events are processed exactly-once across all
the controller replicas, (iii) commands are executed exactly-
once on the switches.

To achieve such design goals, Ravana follows a Replicated
State Machine (RSM) approach, but extends its scope to deal
with switch state consistency under failures. Indeed, while
Ravana permits unmodified applications to run in a transparent
fault-tolerant environment, it requires modifications to the
OpenFlow protocol, and it makes changes to current switches
instead of involving them in a complex consensus protocol.

To be more specific, Ravana uses a two-stage replication
protocol that separates the reliable logging of the master’s
event delivery information (stage 1) from the logging of the
master’s event-processing transaction completion information
(stage 2) in the shared in-memory log (using Viewstamped
Replication [80]) in order to guarantee consistency under
joint switch and controller failures. Besides, it adds explicit
acknowledgement messages to the OpenFlow 1.3 protocol and
implements buffers on existing switches for event retrans-
mission and command filtering. The main objective of the
addition of these extensions and mechanisms is to guarantee
the exactly-once execution of any event transaction on the
switches during controller failures.

Such strong correctness guarantees for a logically central-
ized controller under Ravana come at the cost of generat-
ing additional throughput and latency overheads that can be
reduced to a quite reasonable extent with specific perfor-
mance optimizations. Since the Ravana runtime is completely
transparent and oblivious to control applications, achieving
relaxed consistency requirements for the sake of improved
availability as required by some specific applications, entails
considering new mechanisms that consider relaxing some of
the correctness constraints on Ravana’s design goals.

A similar approach to Ravana [66] was adopted by Mantas
et. al [81] to achieve a consistent and fault-tolerant SDN
controller platform. In their ongoing work, the authors claim to
retain the same requirements expressed by Ravana, namely the
transparency, reliability, consistency and performance guaran-
tees, but without requiring changes to the OpenFlow protocol
or to existing switches.

Likewise, Kandoo [31] falls in this category of logically
centralized controllers that distribute the control state by
propagating network events. Indeed, Kandoo assumes, at the
top layer of its hierarchical design, a logically centralized
root controller for handling global and rare network events.
Since the main aim was to preserve scalability without
changing the OpenFlow devices, Kandoo did not focus on
knowledge distribution mechanisms for achieving network
state consistency.

ONOS and OpenDayLight:
ONOS and OpenDayLight [82] represent another category

of logically centralized SDN solutions that set themselves
apart from state-of-the-art distributed SDN controller plat-
forms by offering community-driven open-source frameworks
as well as providing the full functionalities of Network Oper-

ating Systems. Despite their obvious similarities, these promi-
nent Java-based projects present major differences in terms of
structure, target customers, focus areas and inspirations.

Dissimilar to OpenDayLight [83] which is applicable to
different domains, ONOS [58] from ON.LAB is specifically
targeted towards service providers and is thus architected to
meet their carrier-grade requirements in terms of scalability,
high-availability and performance. In addition to the high-
level Northbound abstraction (a global network view and an
application intent framework) and the pluggable Southbound
abstraction (supporting multiple protocols), ONOS, in the
same way as Onix and Hyperflow, offers state dissemination
mechanisms [84] to achieve a consistent network state across
the distributed cluster of ONOS controllers, a required or
highly desirable condition for network applications to run
correctly.

More specifically, ONOS’s distributed core eases the state
management and cluster coordination tasks for application
developers by providing them with an available set of core
building blocks for dealing with different types of distributed
control plane state, including a ConsistentMap primitive for
state requiring strong consistency and an EventuallyConsis-
tentMap for state tolerating weak consistency.

In particular, applications that favor performance over con-
sistency store their state in the shared eventually-consistent
data structure that uses optimistic replication assisted by the
gossip-based Anti-Entropy protocol [63]. For example, the
global network topology state which should be accessible to
applications with minimal delays is managed by the Network
Topology store according to this eventual consistency model.
Recent releases of ONOS treat the network topology view
as an in-memory state machine graph. The latter is built and
updated in each SDN controller by applying local topology
events and replicating them to other controller instances in
the cluster in an order-aware fashion based on the events’
logical timestamps. Potential conflicts and loss of updates due
to failure scenarios are resolved by the anti-entropy approach
[63] where each controller periodically compares its topology
view with that of another randomly-selected controller in
order to reconcile possible differences and recover from stale
information.

On the other hand, state imposing strong consistency guar-
antees is managed by the second data structure primitive built
using RAFT [85], a protocol that achieves consensus via an
elected leader controller in charge of replicating the received
log updates to follower controllers and then committing these
updates upon receipt of confirmation from the majority. The
mapping between controllers and switches which is handled
by ONOS’s Mastership store is an example of a network state
that is maintained in a strongly consistent manner.

Administered by the Linux Foundation and backed by
the industry, OpenDayLight (ODL) [83] is a generic and
general-purpose controller framework which, unlike ONOS,
was conceived to accommodate a wide variety of applications
and use cases concerning different domains (e.g. Data Center,
Service Provider and Enterprise). One important architectural
feature of ODL is its YANG-based Model-Driven Service
Abstraction Layer (MD-SAL) that allows for the easy and



13

flexible incorporation of network services requested by the
higher layers via the Northbound Interface (OSGi framework
and the bidirectional RESTful Interfaces) irrespective of the
multiple Southbound protocols used between the controller
and the heterogeneous network devices.

The main focus of ODL was to accelerate the integration
of SDN in legacy network environments by automating the
configuration of traditional network devices and enabling
their communication with OpenFlow devices. As a result, the
project was perceived as adopting vendor-driven solutions that
mainly aim at preserving the brands of legacy hardware. This
represents a broad divergence from ONOS which envisions a
carrier-grade SDN platform with enhanced performance capa-
bilities to explore the full potential of SDN and demonstrate
its real value.

The latest releases of ODL provided a distributed SDN
controller architecture referred to as ODL clustering.
Differently from ONOS, ODL did not offer various
consistency models for different types of network data.
All the data shared across the distributed cluster of ODL
controllers for maintaining the logically centralized network
view is handled in a strongly-consistent manner using the
RAFT consensus algorithm [85] and the Akka framework [86].

B4 and SWAN:
Google’s B4 [75] network leverages the logical centraliza-

tion enabled by the SDN paradigm to deploy centralized TE
in coexistence with the standard shortest-path routing for the
purpose of increasing the utilization of the inter-data-center
links (near 100%) as compared to conventional networks and
thereby enhancing network efficiency and performance. As
previously explained in Section III-B2, the logically central-
ized TE server uses the network information collected by
the centralized SDN Gateway to control and coordinate the
behavior of site-level SDN controllers based on an abstracted
topology view. The main task of the TE server is indeed to
optimize the allocation of bandwidth among competing ap-
plications (based on their priority) across the geographically-
distributed data-center sites.

That being said, we implicitly assume the presence of
a specific consistency model used by the centralized SDN
Gateway for handling the distributed network state across the
data-center site controllers and ensuring that the centralized
TE application runs correctly based on a consistent network-
wide view. However, there has been very little information
provided on the level of consistency adopted by the B4 system.
As a matter of fact, one potential downside of the SDN
approach followed by Google could be the fact that it is too
customized and tailored to their specific network requirements
as no general control model has been proposed for future use
by other SDN projects.

Similarly, Microsoft has presented SWAN [87] as an intra-
domain software-driven WAN deployment that takes advan-
tage of the logically-centralized SDN control using a global TE
solution to significantly improve the efficiency, reliability and
fairness of their inter-DC WAN. In the same way as Google,
Microsoft did not provide much information about the control
plane state consistency updates.

B. Logically distributed SDN control

The potential of the SDN paradigm has been properly
explored within single administrative domains like data cen-
ters, enterprise networks, campus networks and even WANs
as discussed in Section IV-A. Indeed, the main pillars of
SDN – the decoupling between the control and data planes
together with the consequent ability to program the network
in a logically centralized manner – have unleashed productive
innovation and novel capabilities in the management of such
intra-domain networks. These benefits include the effective
deployment of new domain-specific services as well as the
improvement of standard control functions following the SDN
principles like intra-domain routing and TE. RCP [88] and
RouteFlow [89] are practical examples of successful intra-
AS platforms that use OpenFlow to provide conventional IP
routing services in a centralized manner.

However, that main feature of logically-centralized control
which has been leveraged by most SDN solutions to improve
network management at the intra-domain level, cannot be fully
exploited for controlling heterogeneous networks involving
multiple Autonomous Systems (ASes) under different
administrative authorities (e.g. the Internet). In this context,
recent works have considered extending the SDN scheme to
such inter-domain networks while remaining compatible with
their distributed architecture. In this section, we shed light
on these SDN solutions which adopted a logically distributed
architecture in accordance with legacy networks. For that
reason, we place them in the category of logically distributed
SDN platforms as opposed to the logically centralized ones
mainly used for intra-domain scenarios.

DISCO and D-SDN:
For instance, the DISCO project [59] suggests a logically

distributed control plane architecture that operates in such
multi-domain heterogeneous environments, more precisely
WANs and overlay networks. Built on top of Floodlight [53],
each DISCO controller administers its own SDN network
domain and interacts with other controllers to provide end-to-
end network services. This inter-AS communication is ensured
by a unique lightweight control channel to share summary
network-wide information.

The most obvious contribution of DISCO lies in the sepa-
ration between intra-domain and inter-domain features of the
control plane, while each type of features is performed by
a separate part of the DISCO architecture. The intra-domain
modules are responsible for ensuring the main functions of
the controller such as monitoring the network and react-
ing to network issues, and the inter-domain modules (Mes-
senger, Agents) are designed to enable a message-oriented
communication between neighbor domain controllers. Indeed,
the AMQP-based Messenger [90] offers a distributed pub-
lish/subscribe communication channel used by agents which
operate at the inter-domain level by exchanging aggregated
information with intra-domain modules. DISCO was assessed
on an emulated environment according to three use cases:
inter-domain topology disruption, end-to end service priority
request and Virtual Machine Migration.
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The main advantage of the DISCO solution is the possibility
to adapt it to large-scale networks with different ASes such
as the Internet [79]. However, we believe that there are also
several drawbacks associated with such a solution including
the static non-evolving decomposition of the network into
several independent entities, which is in contrast to emerging
theories such as David D. Clark’s theory [91] about the
network being manageable by an additional high-level entity
known as the Knowledge Plane. Besides, following the DISCO
architecture, network performance optimization becomes a
local task dedicated to local entities with different policies,
each of which acts in its own best interest at the expense of
the general interest. This leads to local optima rather than the
global optimum that achieves the global network performance.
Additionally, from the DISCO perspective, one SDN controller
is responsible for one independent domain. However, an AS is
usually too large to be handled by a single controller. Finally,
DISCO did not provide appropriate reliability strategies suited
to its geographically-distributed architecture. In fact, in the
event of a controller failure, one might infer that a remote
controller instance will be in charge of the subset of affected
switches, thereby resulting in a significant increase in the con-
trol plane latency. In our opinion, a better reliability strategy
would involve local per-domain redundancy; Local controller
replicas should indeed take over and serve as backups in case
the local primary controller fails.

In the same spirit, INRIA’s D-SDN [92] enables a logical
distribution of the SDN control plane based on a hierarchy
of Main Controllers and Secondary Controllers, matching
the organizational and administrative structure of current
and future Internet. In addition to dealing with levels of
control hierarchy, another advantage of D-SDN over DISCO
is related to its enhanced security and fault tolerance features.

SDX-based Controllers:
Different from DISCO which proposes per-domain SDN

controllers with inter-domain functions for allowing au-
tonomous end-to-end flow management across SDN domains,
recent trends have considered deploying SDN at Internet
eXchange Points (IXPs) thus, giving rise to the concept of
Software-Defined eXchanges (SDXes). These SDXes are used
to interconnect participants of different domains via a shared
software-based platform. That platform is usually aimed at
bringing innovation to traditional peering, easing the imple-
mentation of customized peering policies and enhancing the
control over inter-domain traffic management.

Prominent projects adopting that vision of software-defined
IXPs and implementing it in real production networks include
Google’s Cardigan in New Zealand [93], SDX at Princeton
[94], CNRS’s French TouIX [95] (European ENDEAVOUR
[96]) and the AtlanticWave-SDX [97]. Here we chose to
focus on the SDX project at Princeton since we believe in its
potential for demonstrating the capabilities of SDN to innovate
IXPs and for bringing answers to deploying SDX in practice.

The SDX project [94] takes advantage of SDN-enabled
IXPs to fundamentally improve wide-area traffic delivery
and enhance conventional inter-domain routing protocols that
lack the required flexibility for achieving various TE tasks.

Today’s BGP is indeed limited to destination-based routing,
it has a local forwarding influence restricted to immediate
neighbors, and it deploys indirect mechanisms for controlling
path selection. To overcome these limitations, SDX relies
on SDN features to ensure fine-grained, flexible and direct
expression of inter-domain control policies, thereby enabling
a wider range of valuable end-to-end services such as Inbound
TE, application-specific peering, server load balancing, and
traffic redirection through middle-boxes.

The SDX architecture consists of a smart SDX controller
handling both SDX policies (Policy compiler) and BGP routes
(Route Server), conventional Edge routers, and an OpenFlow-
enabled switching fabric. The main idea behind this imple-
mentation is to allow participant ASes to compose their own
policies in a high-level (using Pyretic) and independent manner
(through the virtual switch abstraction), and then send them to
the SDX controller. The latter is in charge of compiling these
policies to SDN forwarding rules while taking into account
BGP information.

Besides offering this high-level softwarized framework that
is easily integrated into the existing infrastructure while main-
taining good interoperability with its routing protocol, SDX
also stands out from similar solutions like Cardigan [93] by
the efficient mechanisms used for optimizing control and data
plane operations. In particular, the scalability challenges faced
by SDX under realistic scenarios have been further investi-
gated by iSDX [98], an enhanced Ryu [72]-based version of
SDX intended to operate at the scale of large industrial IXPs.

However, one major drawback of the SDX contribution is
that it is limited to the participant ASes being connected via
the software-based IXP, implying that non-peering ASes would
not benefit from the routing opportunities offered by SDX.
Besides, while solutions built on SDX use central TE policies
for augmenting BGP and promote a logical centralization of
the routing control plane at the IXP level, SDX controllers
are still logically decentralized at the inter-domain level since
no information is shared between them about their respective
interconnected ASes. This brings us back to the same problem
we pointed out for DISCO [59] about end-to-end traffic
optimization being a local task for each part of the network.

To remedy this issue, some recent works [99] have consid-
ered centralizing the whole inter-domain routing control plane
to improve BGP convergence by outsourcing the control logic
to a multi-AS routing controller that has a ”Bird’s-eye view”
over multiple ASes.

It is also worth mentioning that SDX-based controllers face
several limitations in terms of both security and reliability.

Because the SDX controller is the central element in the
SDX architecture, security strategies must focus on securing
the SDX infrastructure by protecting the SDX controller
against cyber attacks and by authenticating any access to it. In
particular, Chung et al. [100] argue that SDX-based controllers
are subjected to the potential vulnerabilities introduced by
SDN in addition to the common vulnerabilities associated with
classical protocols. In that respect, they distinguish three types
of current SDX architectures and discuss the involved security
concerns. In their opinion, Layer-3 SDX [93, 94] will inherit
all BGP vulnerabilities, Layer-2 SDX [101] will get the vul-
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nerabilities of a shared Ethernet network, and SDN SDX [40]
will also bring controller vulnerabilities like DDoS attacks,
comprised controllers and malicious controller applications.
Moreover, the same authors of [100] point out that SDX-
based controllers require security considerations with respect
to Policy isolation between different SDX participants.

Finally, since the SDX controller becomes a potential single
point of failure, fault-tolerance and resiliency measures should
be taken into account when building an SDX architecture.
While the distributed peer-to-peer SDN SDX architecture
[102] is inherently resilient, centralized SDX approaches
should incorporate fault-tolerance mechanisms like that dis-
cussed in Section V-B and should also leverage the existing
fault-tolerant distributed SDN controller platforms [58].

V. SUMMARY AND FUTURE PERSPECTIVES

While offering a promising potential to transform and im-
prove current networks, the SDN initiative is still in the early
stages of addressing the wide variety of challenges involving
different disciplines. In particular, the distributed control of
SDNs faces a series of pressing challenges that require our
special consideration. These include the issues of (1) Scala-
bility (2) Reliability (3) Consistency (4) Interoperability, (5)
Monitoring and (6) Security).

In this paper, we surveyed the most prominent state-of-the
art distributed SDN controller platforms and more importantly
we discussed the different approaches adopted in tackling the
above challenges and proposing potential solutions. Table I
gives a brief summary of the main features and KPIs of the
discussed SDN controllers. Physically-centralized controllers
such as NOX [51], POX [56] and FloodLight [53] suffer from
scalability and reliability issues. Solutions like DevoFlow [28]
and DIFANE [27] attempted to solve these scalability issues by
rethinking the OpenFlow protocol whereas most SDN groups
geared their focus towards distributing the control plane. While
some of the distributed SDN proposals such as Kandoo [31]
promoted a hierarchical organization of the control plane to
further improve scalability, other alternatives opted for a flat
organization for increased reliability and performance (la-
tency). On the other hand, distributed platforms like Onix [60],
HyperFlow [60], ONOS [58] and OpenDaylight [83], focused
on building consistency models for their logically centralized
control plane designs. In particular, Onix [60] chose DHT and
transactional databases for network state distribution over the
Publish/Subscribe system used by HyperFlow [61]. Another
different class of solutions has been recently introduced by
DISCO which promoted a logically distributed control plane
based on existing ASs within the Internet.

In previous sections, we classified these existing controllers
according to the physical organization of the control plane
(Physical classification) and, alternatively, according to the
way knowledge is shared in distributed control plane designs
(Logical classification). Furthermore, within each of these
classifications, we performed another internal classification
based on the similarities between competing SDN controllers
(The color classification shown in Figure 3 and Figure 4).

In light of the above, it is obvious that there are various
approaches to building a distributed SDN architecture; Some

of these approaches met some performance criteria better
than others but failed in some other aspects. Clearly, none of
the proposed SDN controller platforms met all the discussed
challenges and fulfilled all the KPIs required for an optimal
deployment of SDN. At this stage, and building on these
previous efforts, we communicate our vision of a distributed
SDN control model by going through these open challenges,
identifying the best ways of solving them, and envisioning
future opportunities:

A. Scalability

Scalability concerns in SDN may stem from the decoupling
between the control and data planes [103] and the central-
ization of the control logic in a software-based controller.
In fact, as the network grows in size (e.g. switches, hosts,
etc.), the centralized SDN controller becomes highly solicited
(in terms of events/requests) and thus overloaded (in terms
of bandwidth, processing power and memory). Furthermore,
when the network scales up in terms of both size and diameter,
communication delays between the SDN controller and the
network switches may become high, thus affecting flow-setup
latencies. This may also cause congestion in both the control
and data planes and may generate longer failover times [7].

That said, since control plane scalability in SDN is com-
monly assessed in terms of both throughput (the number of
flow requests handled per second) and flow setup latency (the
delay to respond flow requests) metrics [7], a single physically-
centralized SDN controller may not particularly fulfill the
performance requirements (with respect to these metrics) of
large-scale networks as compared to small or medium scale
networks (see Section III-A).

One way to alleviate some of these scalability concerns is
to extend the responsibilities of the data plane in order to
relieve the load on the controller (see Section II-A). The main
drawback of that method is that it imposes some modifications
to the design of OpenFlow switches.

The second way, which we believe to be more effective, is
to model the control plane in a way that mitigates scalability
limitations. In a physically-centralized control model, a single
SDN controller is in charge of handling all requests coming
from SDN switches. As the network grows, the latter is likely
to become a serious bottleneck in terms of scalability and
performance [104]. On the other hand, a physically-distributed
control model uses multiple controllers that maintain a logi-
cally centralized network view. This solution is appreciated
for handling the controller bottleneck, hence ensuring a better
scale of the network control plane while decreasing control-
plane latencies.

Even though the distributed control model is considered as
a scalable option when compared to the centralized control
model, achieving network scalability while preserving good
performance requires a relevant control distribution scheme
that takes into account both the organization of the SDN con-
trol plane and the physical placement of the SDN controllers.
In this context, we recommend a hierarchical organization
of the control plane over a flat organization for increased
scalability and improved performance. We also believe that



16

Control Plane
Architecture

Control Plane
Design

Programming
language Scalability Reliability Consistency

NOX [51] Physically Centralized – C++ Very
Limited Limited Strong

POX [56] Physically Centralized – Python Very
Limited Limited Strong

Floodlight [53] Physically Centralized – Java Very
Limited Limited Strong

SMaRtLight [70] Physically Centralized – Java Very
Limited

Very
Good

Strong

Ravana [66] Physically Centralized – Python Limited Very
Good

Strong

ONIX [60] Physically Distributed
Logically Centralized Flat Python

C
Very
Good Good

Weak
Strong

HyperFlow [61] Physically Distributed
Logically Centralized Flat C++ Good Good Eventual

ONOS [58] Physically Distributed
Logically Centralized Flat Java Very

Good Good
Weak
Strong

OpenDayLight [83] Physically Distributed
Logically Centralized Flat Java Very

Good Good Strong

B4 [75] Physically Distributed
Logically Centralized Hierarchical Python

C Good Good N/A

Kandoo [31] Physically Distributed
Logically Centralized Hierarchical

C
C++
Python

Very
Good Limited N/A

DISCO [59] Physically Distributed
Logically Distributed Flat Java Good Limited

Strong
(inter-domain)

SDX [94] Physically Distributed
Logically Distributed Flat Python Limited N/A Strong

DevoFlow [28] Physically Distributed
Logically Centralized N/A Java Good N/A N/A

DIFANE [27] Physically Distributed
Logically Centralized N/A – Good N/A N/A

TABLE I: Main Characteristics of the discussed SDN controllers

the placement of controllers should be further investigated and
treated as an optimization problem that depends on specific
performance metrics [48].

Finally, by physically distributing the SDN control plane
for scalability (and reliability V-B) purposes, it is worth
mentioning that new kinds of challenges may arise. In par-
ticular, to maintain the logically centralized view, a strongly-
consistent model can be used to meet certain application
requirements. However, as discussed in Section V-C, a strongly
consistent model may introduce new scalability issues. In fact,
retaining strong consistency when propagating frequent state
updates might block the state progress and cause the network
to become unavailable, thus increasing switch-to-controller
latencies.

B. Reliability

Concerns about reliability have been considered as serious
in SDN. The data-to-control plane decoupling has indeed a
significant impact on the reliability of the SDN control plane.
In a centralized SDN-based network, the failure of the central
controller may collapse the overall network. In contrast, the
use of multiple controllers in a physically distributed (but
logically centralized) controller architecture alleviates the issue
of a single point of failure.

Despite not providing information on how a distributed SDN
controller architecture should be implemented, the OpenFlow
standard gives (since version 1.2) the ability for a switch to si-
multaneously connect to multiple controllers. That OpenFlow
option allows each controller to operate in one of three roles
(master, slave, equal) with respect to an active connection to



17

the switch. Leveraging on these OpenFlow roles which refer to
the importance of controller replication in achieving a highly
available SDN control plane, various resiliency strategies have
been adopted by different fault-tolerant controller architec-
tures. Among the main challenges faced by these architectures
are control state redundancy and controller failover.

Controller redundancy can be achieved by adopting dif-
ferent approaches for processing network updates. In the
Active replication approach [69], also known as State Machine
Replication, multiple controllers process the commands issued
by the connected clients in a coordinated and deterministic
way in order to concurrently update the replicated network
state. The main challenge of that method lies in enforcing
a strict ordering of events to guarantee strong consistency
among controller replicas. That approach for replication has
the advantage of offering high resilience with an insignificant
downtime, making it a suitable option for delay-intolerant
scenarios. On the other hand, in passive replication, referred
to as primary/backup replication, one controller (the primary)
processes the requests, updates the replicated state, and period-
ically informs the other controller replicas (the backups) about
state changes. Despite offering simplicity and lower overhead,
the passive replication scheme may create (controller and
switch) state inconsistencies and generate additional delay in
case the primary controller fails.

Additional concerns that should be explored are related to
the kind of information to be replicated across controllers.
Existing controller platform solutions follow three approaches
for achieving controller state redundancy [16]: state replication
[60, 70], event replication [61, 66] and traffic replication [105].

Moreover, control distribution is a central challenge when
designing a fault tolerant controller platform. The centralized
control approach that follows the simple Master/Slave concept
[66, 70] relies on a single controller (the master) that keeps the
entire network state and takes all decisions based on a global
network view. Backup controllers (the slaves) are used for
fault-tolerance purposes. The centralized alternative is usually
considered in small to medium-sized networks. On the other
hand, in the distributed control approach [58, 60], the network
state is partitioned across many controllers that simultaneously
take control of the network while exchanging information to
maintain the logically centralized network view. In that model,
controller coordination strategies should be applied to reach
agreements and solve the issues of concurrent updates and
state consistency. Mostly effective in large-scale networks, the
distributed alternative provides fault tolerance by redistributing
the network load among the remaining active controllers.

Finally, the implementation aspect is another important
challenge in designing a replication strategy [69]. While some
approaches opted for replicating controllers that store their
network state locally and communicate through a specific
group coordination framework [106], other approaches went
for replicating the network state by delegating state storage,
replication and management to external data stores [58, 60, 61]
like distributed data structures and distributed file systems.

Apart from controller redundancy, other works focused on
failure detection and controller recovery mechanisms. Some of
these works considered reliability criteria from the outset in

the placement of distributed SDN controllers. Both the number
and locations of controllers were determined in a reliability-
aware manner while preserving good performance. Reliability
was indeed introduced in the form of controller placement
metrics (switch-to-controller delay, controller load) to prevent
worst-case switch-to-controller re-assignment scenarios in the
event of failures. Other works elaborated on efficient controller
failover strategies that consider the same reliability criteria.
Strategies for recovering from controller failures can be split
into redundant controller strategies (with backups) and non-
redundant controller strategies (without backups) [107].

The redundant controller strategy assumes more than one
controller per controller domain; One primary controller ac-
tively controls the network domain and the remaining con-
trollers (backups) automatically take over the domain in case it
fails. Despite providing a fast failover technique, this strategy
depends on the associated standby methods (cold, warm or
hot) which have different advantages and drawbacks [108]. For
instance, the cold standby method imposes a full initialization
process on the standby controller given the complete loss of
the state upon the primary controller failure. This makes it an
adequate alternative for stateless applications. In contrast, the
hot standby method is effective in ensuring a minimum recov-
ery time with no controller state loss, but it imposes a high
communication overhead due to the full state synchronization
requirements between primary and standby controllers. The
warm standby method reduces that communication overhead
at the cost of a partial state loss.

On the other hand, the non-redundant controller strategy
requires only one controller per controller domain. In case it
fails, controllers from other domains extend their domains to
adopt orphan switches, thereby reducing the network overhead.
Two well-known strategies for non-redundant controllers are
the greedy failover and the pre-partitioning failover [109].
While the former strategy relies on neighbor controllers to
adopt orphan switches at the edge of their domains and
from which they can receive messages, the latter relies on
controllers to proactively exchange information about the list
of switches to take over in controller failure scenarios.

All things considered, a number of challenges and key de-
sign choices based on a set of requirements are involved when
adopting a specific controller replication and failover strategy.
In addition to reliability and fault-tolerance considerations,
scalability, consistency and performance requirements should
be properly taken into account when designing a fault-tolerant
SDN controller architecture.

C. Consistency

Contrary to physically centralized SDN designs, distributed
SDN controller platforms face major consistency challenges
[110, 111]. Clearly, physically distributed SDN controllers
must exchange network information and handle the consis-
tency of the network state being distributed across them and
stored in their shared data structures in order to maintain a
logically centralized network-wide view that eases the devel-
opment of control applications. However, achieving a conve-
nient level of consistency while keeping good performance
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in software-defined networks facing network partitions is a
complex task. As claimed by the CAP theorem applied to
networks [112], it is generally impossible for SDN networks
to simultaneously achieve all three of Consistency (C), high
Availability (A) and Partition tolerance (P). In the presence of
network partitions, a weak level of consistency in exchange
for high availability (AP) results in state staleness causing
an incorrect behavior of applications whereas a strong level
of consistency serving the correct enforcement of network
policies (CP) comes at the cost of network availability.

The Strong Consistency model used in distributed file sys-
tems implies that only one consistent state is observed by
ensuring that any read operation on a data item returns the
value of the latest write operation that occurred on that data
item. However, such consistency guarantees are achieved at the
penalty of increased data store access latencies. In SDNs, the
strong consistency model guarantees that all controller replicas
in the cluster have the most updated network information,
albeit at the cost of increased synchronization and communi-
cation overhead. In fact, if certain data occurring in different
controllers are not updated to all of them, then these data are
not allowed to be read, thereby impacting network availability
and scalability.
Strong consistency is crucial for implementing a wide range
of SDN applications that require the latest network informa-
tion and that are intolerant of network state inconsistencies.
Among the distributed data store designs that provide strong
consistency properties are the traditional SQL-based relational
databases like Oracle [113] and MySQL [114].

On the other hand, as opposed to the strong consistency
model, the Eventual Consistency model (sometimes referred
to as a Weak Consistency model) implies that concurrent reads
of a data item may return values that are different from the
actual updated value for a transient time period. This model
takes a more relaxed approach to consistency by assuming
that the system will eventually (after some period) become
consistent in order to gain in network availability. Accordingly,
in a distributed SDN scenario, reads of some data occurring in
different SDN controller replicas may return different values
for some time before eventually converging to the same global
state. As a result, SDN controllers may temporarily have
an inconsistent network view and thus cause an incorrect
application behavior.
Eventually-consistent models have also been extensively used
by SDN designers for developing inconsistency-tolerant ap-
plications that require high scalability and availability. These
control models provide simplicity and efficiency of imple-
mentation but they push the complexity of resolving state
inconsistencies and conflicts to the application logic and the
consensus algorithms being put in place by the controller
platform. Cassandra [115], Riak [116] and Dynamo [117] are
popular examples of NoSQL databases that have adopted the
eventual consistency model.

All things considered, maintaining state consistency across
logically centralized SDN controllers is a significant SDN
design challenge that involves trade-offs between policy en-
forcement and network performance [118]. The issue is that
achieving strong consistency in an SDN environment that

is prone to network failures is almost impossible without
compromising availability and without adding complexity to
network state management. Panda et. al [112] proposed new
ways to circumvent these impossibility results but their ap-
proaches can be regarded as specific to particular cases.

In a more general context, SDN designers need to leverage
the flexibility offered by SDN to select the appropriate consis-
tency models for developing applications with various degrees
of state consistency requirements and with different policies.
In particular, adopting a single consistency model for handling
different types of shared states may not be the best approach
to coping with such a heterogeneous SDN environment. As a
matter of fact, recent works on SDN have stressed the need for
achieving consistency at different levels. So far, two levels of
consistency models have been applied to SDNs and adopted by
most distributed SDN controller platforms: strong consistency
and eventual consistency.

In our opinion, a hybrid approach that merges various
consistency levels should be considered to find the optimal
trade-off between consistency and performance. Unlike the
previously-mentioned approaches which are based on static
consistency requirements where SDN designers decide which
consistency level should be applied for each knowledge upon
application development, we argue that an SDN application
should be able to assign a priority for each knowledge and, de-
pending on the network context (.i.e. instantaneous constraints,
network load, etc), select the appropriate consistency level that
should be enforced.

In that sense, recent approaches [119] introduced the con-
cept of adaptive consistency in the context of distributed
SDN controllers, where adaptively-consistent controllers can
tune their consistency level to reach the desired level of
performance based on specific metrics. That alternative has the
advantage of sparing application developers the tedious task of
selecting the appropriate consistency level and implementing
multiple application-specific consistency models. Furthermore,
that approach can be efficient in handling the issues associated
with eventual consistency models [120].

Finally, in the same way as scalability and reliability, we
believe that consistency should be considered while investigat-
ing the optimal placement of controllers. In fact, minimizing
inter-controller latencies (distances) which are critical for
system performance facilitates controller communications and
enhances network state consistency.

D. Interoperability

Alongside the concerns about the SDN network interoper-
ability with legacy networks, there is the challenge of ensuring
interoperability between disparate distributed SDN controllers
belonging to different SDN domains and using different con-
troller technologies in order to foster the development and
adoption of SDN.

In today’s multi-vendor environments, the limited interop-
erability between SDN controller platforms is mainly due to
a lack of open standards for inter-controller communications.
Apart from the standardization of the Southbound interface—
OpenFlow being the most popular Southbound standard, there



19

is to date no open standard for the Northbound and East-
Westbound interfaces to provide compatibility between Open-
Flow implementations.

Despite the emerging standardization efforts underway by
SDN organizations, we argue that there are many barriers
to effective and rapid standardization of the SDN East-
Westbound interfaces, including the heterogeneity of the data
models being used by SDN controller vendors. Accordingly,
we emphasize the need for common data models to achieve
interoperability and facilitate the tasks of standardization in
SDNs. In this context, YANG [121] has emerged as a solid
data modeling language used to model configuration and
state data for standard representation. This NETCONF-based
contribution from IETF is intended to be extended in the future
and it is, more importantly, expected to pave the way for the
emergence of standard data models driving interoperability in
SDN networks.

Among the recent initiatives taken in that direction, we
can mention OpenConfig’s [122] effort on building a vendor-
neutral data model written in YANG for configuration and
management operations. Also worth mentioning is ONF’s OF-
Config protocol [123] which implements a YANG-based data
model referred to as the Core Data Model. That protocol
was introduced to enable remote configuration of OpenFlow-
capable equipments.

E. Other Challenges

An efficient network monitoring is required for the devel-
opment of control and management applications in distributed
SDN-based networks. However, collecting the appropriate data
and statistics without impacting the network performance is
a challenging task. In fact, the continuous monitoring of
network data and statistics may generate excessive overheads
and thus affect the network performance whereas the lack of
monitoring may cause an incorrect behavior of management
applications. Current network monitoring proposals have de-
veloped different techniques to find the appropriate trade-offs
between data accuracy and monitoring overhead. In particu-
lar, IETF’s NETCONF Southbound protocol provides some
effective monitoring mechanisms for collecting statistics and
configuring network devices. In the near future, we expect
the OpenFlow specification to be extended to incorporate new
monitoring tools and functions.

Like network monitoring, network security is another cru-
cial challenge that should be studied. The decentralization of
the SDN control reduces the risk associated with a single point
of failure and attacks (e.g. the risk of a DDoS attack). How-
ever, the integrity of data flows between the SDN controllers
and switches is still not safe. For instance, we can imagine
that an attacker can corrupt the network by acting as an SDN
controller. In this context, new solutions and strategies (e.g.
based on TLS/SSL) have been introduced with the aim of
guaranteeing security in SDN environments.
Another aspect related to SDN security is the isolation of flows
and networks through network virtualization. In the case of
an underlying physical SDN network, this could be imple-
mented using an SDN network hypervisor that creates multiple

logically-isolated virtual network slices (called vSDNs), each
is managed by its own vSDN controller [14]. At this point,
care should be taken to design and secure the SDN hypervisor
as an essential part of the SDN network.

VI. CONCLUSION

Software-Defined Networking has increasingly gained trac-
tion over the last few years in both academia and research.
The SDN paradigm builds its promises on the separation of
concerns between the network control logic and the forwarding
devices, as well as the logical centralization of the network
intelligence in software components. Thanks to these key
attributes, SDN is believed to work with network virtualization
to fundamentally change the networking landscape towards
more flexible, agile, adaptable and highly automated Next
Generation Networks.

Despite all the hype, SDN entails many concerns and
questions regarding its implementation and deployment. For
instance, current SDN deployments based on physically-
centralized control architectures raised several issues of scal-
ability and reliability. As a result, distributed SDN control
architectures were proposed as a suitable solution for over-
coming these problems. However, there are still ongoing
community debates about the best and most optimal approach
to decentralizing the network control plane in order to harness
the full potential of SDN.

The novel aspect of this survey is the special focus placed
on studying the wide variety of existing SDN controller
platforms. These platforms are categorized in two ways: based
on a physical classification or a logical classification. Our
thorough analysis of these proposals allowed us to achieve
an extensive understanding of their advantages and drawbacks
and to develop a critical awareness of the challenges facing
the distributed control in SDNs.

The scalability, reliability, consistency, and interoperability
of the SDN control plane are among the key competing
challenges faced in designing an efficient and robust high-
performance distributed SDN controller platform. Although
considered as the main limitations of fully centralized SDN
control designs, scalability and reliability are also major
concerns that are expressed in the case of distributed SDN
architectures as they are highly impacted by the structure of
the distributed control plane (e.g. flat, hierarchical or hybrid
organization) as well as the number and placement of the
multiple controllers within the SDN network. Achieving such
performance and availability requirements usually comes at
the cost of guaranteeing a consistent centralized network view
that is required for the design and correct behavior of SDN
applications. Consistency considerations should therefore be
explored among the trade-offs involved in the design process
of an SDN controller platform. Last but not least, the interoper-
ability between different SDN controller platforms of multiple
vendors is another crucial operational challenge surrounding
the development, maturity and commercial adoption of SDN.
Overcoming that challenge calls for major standardization
efforts at various levels of inter-controller communications (e.g
Data models, Northbound and East-Westbound interfaces).
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Furthermore, such interoperability guarantees with respect to
different SDN technology solutions represent an important step
towards easing the widespread interoperability of these SDN
platforms with legacy networks and, effectively ensuring the
gradual transition towards softwarized network environments.

Giving that rich variety of promising SDN controller plat-
forms with their broad range of significant challenges, we
argue that developing a brand-new one may not be the best
solution. However, it is essential to leverage the existing plat-
forms by aggregating, merging and improving their proposed
ideas in order to get as close as possible to a common standard
that could emerge in the upcoming years. That distributed
SDN controller platform should meet the emerging challenges
associated with next generation networks (e.g. IoT [124] and
Fog Computing [125]).

With these considerations in mind, we intend, as part of
our future work, to shed more light on the complex problem
of distributed SDN control. We propose to split that prob-
lem into two manageable challenges which are correlated:
The controller placement problem and the knowledge sharing
problem. The first problem investigates the required number of
controllers along with their appropriate locations with respect
to the desired performance and reliability objectives and de-
pending on the existing constraints. The second one is related
to the type and amount of information to be shared among the
controller instances given a desired level of consistency.
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C. N. A. Corrêa, S. Cunha de Lucena, and R. Raszuk,
“Revisiting routing control platforms with the eyes and
muscles of software-defined networking,” in Proceed-
ings of the First Workshop on Hot Topics in Software
Defined Networks, ser. HotSDN ’12. New York, NY,
USA: ACM, 2012, pp. 13–18.

[90] AMQP. [Online]. Available: http://www.amqp.org/
[91] D. D. Clark, C. Partridge, J. C. Ramming, and J. T.

Wroclawski, “A knowledge plane for the internet,” in
Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communications, ser. SIGCOMM ’03. New
York, NY, USA: ACM, 2003, pp. 3–10.

[92] M. A. S. Santos, B. A. A. Nunes, K. Obraczka,
T. Turletti, B. T. de Oliveira, and C. B. Margi, “Decen-
tralizing sdn’s control plane,” in IEEE 39th Conference
on Local Computer Networks, LCN 2014, Edmonton,
AB, Canada, 8-11 September, 2014, 2014, pp. 402–405.

[93] J. P. Stringer, D. Pemberton, Q. Fu, C. Lorier, R. Nel-
son, J. Bailey, C. N. A. Corrêa, and C. E. Rothen-
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