
1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

NFV-Bench: A Dependability Benchmark for
Network Function Virtualization Systems

Domenico Cotroneo, Luigi De Simone, Roberto Natella

Abstract—Network Function Virtualization (NFV) envisions
the use of cloud computing and virtualization technology to
reduce costs and innovate network services. However, this
paradigm shift poses the question whether NFV will be able
to fulfill the strict performance and dependability objectives
required by regulations and customers. Thus, we propose a
dependability benchmark to support NFV providers at making
informed decisions about which virtualization, management, and
application-level solutions can achieve the best dependability. We
define in detail the use cases, measures, and faults to be injected.
Moreover, we present a benchmarking case study on two alterna-
tive, production-grade virtualization solutions, namely VMware
ESXi/vSphere (hypervisor-based) and Linux/Docker (container-
based), on which we deploy an NFV-oriented IMS system.
Despite the promise of higher performance and manageability,
our experiments suggest that the container-based configuration
can be less dependable than the hypervisor-based one, and
point out which faults NFV designers should address to improve
dependability.

Index Terms—NFV; Cloud Computing; Dependability; Fault
Injection; Benchmarking; Hypervisors; Container-based Virtu-
alization; Linux; Docker; VMware ESXi; VMware vSphere.

I. INTRODUCTION

NETWORK Function Virtualization (NFV) is an emerging
paradigm to enhance network equipment with the goal of

reducing costs, and fostering competition and innovation [1]–
[3]. NFV will take advantage of virtualization technologies to
turn network functions and services (such as DPI, NAT, VoIP,
etc.) into Virtualized Network Functions (VNFs), which will be
implemented in software and executed as VMs on commodity
hardware in high-performance data centers, namely Network
Function Virtualization Infrastructures (NFVIs), and will pos-
sibly leverage cloud computing technologies.

Despite its recent introduction, NFV has already gained
significant market traction [4]. A recent analysis [5] reports
more than 100 products for VNFs, NFVIs, and MANO (Man-
agement and Orchestration) from more than 70 competing
vendors. Moreover, in the foreseeable future, VNFs and NFVIs
will be provided on a pay-per-use basis, according to the as-
a-service business model [6].

In order to succeed, these NFV solutions have to compete
not only in cost and manageability, but also in performance
and reliability: telecom regulations impose carrier-grade re-
quirements, in terms of extremely high packet processing rates
and availability (99.999% or even higher) [7], [8]. However,
the extensive use of commercial off-the-shelf (COTS) hard-
ware and software components, which can be easily procured

This work has been supported by Huawei Technologies Co., Ltd., and
by UniNA and Compagnia di San Paolo in the frame of Programma STAR
(project FIDASTE).

The authors are with the Department of Electrical Engineering and Infor-
mation Technology (DIETI) of the Federico II University of Naples, Italy, and
with Critiware s.r.l., Italy. E-mail: {name.surname}@unina.it

and replaced, exposes NFV systems to faults that must be
automatically recovered within few seconds [8], [9].

These strict requirements impose accurate and fair proce-
dures to benchmark the quality of service that can be obtained
from competing NFV solutions. Benchmarks are an estab-
lished practice for performance evaluation in the computer
industry since decades. Examples of successful benchmarking
initiatives are the TPC (Transaction Processing Performance
Council [10]) and the SPEC (Standard Performance Evaluation
Corporation [11]). More recently, the research community
developed the notion of dependability benchmarking [12],
[13], which evaluates the quality of service in the presence of
faults, by using fault injection. This form of benchmarking has
quickly matured from both the methodological and technical
point of view, and has been applied on several domains such
as transaction processing and automotive embedded systems
[13]–[15]. The case for dependability benchmarking is es-
pecially compelling for NFV, as denoted by the interest of
standardization bodies to define reliability requirements and
evaluation procedures for the cloud and for NFV [8], [16].

In this work, we propose a dependability benchmark,
namely NFV-Bench, to analyze faulty scenarios and to provide
joint dependability and performance evaluations for NFV
systems. This benchmark is aimed to support NFV service and
infrastructure providers at making informed decisions about
which NFVI, MANO and VNF solutions should be preferred.

To define NFV-Bench, we first review the prospective archi-
tecture of NFV systems, and discuss the potential use cases
for dependability benchmarks in the context of NFV. Then,
we define a set of measures both to evaluate the impact of
faults on service level agreements (by quantifying the loss of
the quality of service in the presence of faults), and to identify
weaknesses in fault management mechanisms (by quantifying
their coverage and latency). Moreover, we define a taxonomy
of faults to be injected (faultload), by revisiting and unifying
existing studies on faults in distributed computing systems.

We present an experimental case study based on the pro-
posed dependability benchmark. We consider the case of an
high-availability VoIP service using an NFV-oriented, open-
source IP Multimedia Subsystem (IMS), namely Clearwater
[17]. This NFV IMS has been deployed on two alternative
NFVI configurations. In the first scenario, we consider an NFV
stack composed by two commercial products (VMware ESXi
and VMware vSphere); in the second scenario, the NFV stack
uses two open-source technologies, namely Linux and Docker.

These scenarios represent two opposing virtualization
paradigms: hypervisor-based and container-based virtualiza-
tion. This dualism poses the question on which virtualization
stack is more suitable for NFV. On the one hand, container-
based virtualization is perceived as a promising solution to
reduce the overhead of virtualization (as it does not emulate

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

a full computer machine), and thus to achieve better perfor-
mance and scalability [18], [19]. On the other hand, traditional
hypervisor-based virtualization enforces a stronger isolation
among virtual machines and the physical machine, and it
is regarded as a more secure and reliable solution [20]. We
adopt the NFV-Bench benchmark to analyze the trade-offs of
these solutions with respect to performance and dependability,
which are both important concerns in the context of NFV. The
experimental results point out that:
• Achieving high-availability is not simply a matter of

quickly restarting VMs or containers. Even if containers
can achieve a quicker restart time, there are other aspects
of fault management that have a stronger impact on the
availability of the NFV system. We found that, when the
state of the hypervisor or VMs becomes unstable (e.g.,
due to internal errors), ESXi forces the shutdown of the
host to trigger a failover on another machine. Instead,
Linux/Docker attempts to ignore errors and continue
execution, thus hindering the fault recovery process.

• Moreover, we found that the hypervisor-based configura-
tion is more effective to protect VNFs from memory con-
tention (e.g., due to a buggy/overloaded VNF on a shared
host), by using memory reservations, a more efficient
memory allocator, and reporting diagnostic information.
Instead, Linux/Docker needs additional monitoring tools
to manage these cases.

• The latency of the recovery process is quite large, and the
NFV designers need to tune fault management (such as
heartbeat mechanisms in VMware) to meet the require-
ments of NFV. Fault injection can be used to evaluate
and validate the latency of fault detection and recovery.

• The robustness of fault management components is itself
a concern. We found that network and storage data
corruptions could not be recovered, due to residual errors
caused by the corruptions. In general, the dependability
benchmark allows to understand the limitations of fault
management products, which are often not well docu-
mented or validated by vendors.

The paper is organized as follows. Section II provides back-
ground about dependability benchmarking and fault injection.
Section III presents our dependability benchmark for NFV
systems, and discusses in detail the use cases, measures and
faultload. In section IV, we introduce the NFV IMS case
study. In section V we provide the experimental results, and
in section VI we discuss them and conclude the paper.

II. BACKGROUND AND RELATED WORK

Basic concepts on dependability benchmarking. The goal
of dependability benchmarking is to quantify the dependability
properties of a computer system or component, in a fair and
trustworthy way [13], [21]. This goal is especially important
for COTS-based systems, since it enables system designers to
make informed purchase and design decisions. The research
efforts in this area culminated with the definition of a general
framework for dependability benchmarking by the DBench
project [12], [13]. In this framework, the benchmark precisely
defines the measures, procedures and conditions, in order to
guide the adoption by its stakeholders (including product ven-
dors, system integrators and providers, and the users). More
recently, these general concepts were integrated in the ISO/IEC

Systems and software Quality Requirements and Evaluation
(SQuaRE) standard [22], which defines an evaluation module
(ISO/IEC 25045) for “recoverability”, which is defined as the
ability of a product to recover affected data and re-establish
the state of the system in the event of a failure.

A dependability benchmark distinguishes between the
Benchmark Target (BT), which is the component or system
to be evaluated, and the System Under Benchmark (SUB),
which includes the BT along with other resources (both
hardware and software) needed to run the BT. The evaluation
process is driven by the benchmark context, which includes
the benchmark user (which takes advantage of the results) and
the benchmark performer (which carries out the experiments),
and the benchmark purpose (such as, the evaluation of fault-
tolerance features supported or claimed by a product, or the
integration and interoperability testing of a larger system).
Finally, the benchmark defines measures for the dependability
and performance of the BT, either qualitative (e.g., supported
fault-tolerance capabilities) or quantitative (e.g., error rate and
response time in the presence of faults).

Dependability benchmarks apply two forms of stimuli on
the system, namely the workload and the faultload. The
workload represents the typical usage profile for the SUB,
and it is defined according to workload characterization tech-
niques that are used for classical performance benchmarks
[23]. For example, dependability benchmarks on DBMSes and
web servers extended the workloads from TPC-C [10] and
SPECweb [11]. The faultload is a peculiarity of dependability
benchmarks: it defines a set of exceptional conditions that are
injected, to emulate the ones that the system will experience
in operation. The definition of a realistic faultload is the
most difficult part of defining a dependability benchmark [12].
The most important source of information is the post-mortem
analysis of failure data in operational systems, which can
be gathered from empirical studies, or from end-users and
providers. Alternatively, the faultload can be identified from a
systematic analysis of system’s components and their potential
faults, based on expert judgment. A common approach is to de-
fine selective faultloads, each addressing different categories:
hardware, software, and operator faults [14], [24]–[28].

It is important to remark that dependability benchmarks
separate the BT from the so-called Fault Injection Target
(FIT), that is, the component of the SUB subject to the
injection of faults. This separation is important since it is
desirable not to modify the BT when applying the faultload, in
order to get the benchmark accepted by its stakeholders. For
this reason, fault injection introduces perturbations outside the
BT. Moreover, this approach allows to compare several BTs
with respect to the same set of faults, since the injected faults
are independent from the specific BT.

Once these elements are defined, a dependability bench-
mark entails the execution of a sequence of fault injection
experiments. In each experiment, the SUB is first deployed
and configured; then, the workload is submitted to the SUB
and, during its execution, faults from the faultload are injected;
at the end of the execution, performance and failure data are
collected from the SUB, and the testbed is cleaned-up before
starting the next experiment. This process is repeated several
times, by injecting a different fault while using the same
workload and collecting the same performance and failure
data. The execution of fault injection experiments is typically

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

user
Highlight

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

supported by tools for test automation, workload generation,
and fault injection [29]–[31].

Fault injection can also be leveraged to evaluate per-
formability, which joins performance and availability into
a combined measure. Performability is typically computed
through stochastic modeling, such as using Reward Markov
Models [32], which assign a numeric score to each state to
reflect the quality of service under that state (e.g., < 1 for a
degraded state, in which one of the replicas of a component is
failed). Fault injection is complementary to these approaches,
as it provides parameters for stochastic models, such as the
coverage and latency [33]–[35].

State-of-the-art and open issues. The general principles
of dependability benchmarking, as defined by DBench [12],
[13] and the ISO/IEC 25045 [22], have been specialized for
several different domains. The most well-known benchmarks
have been aimed at OSes (including UNIX and Windows [36]–
[38]), DBMSes [14], web servers [26], and embedded systems
[15]. These studies defined measures to evaluate their specific
target systems, such as throughput, response time, error rate,
and availability for DBMSes and web servers, and reboot
time and failure severity for OSes (e.g., process VS kernel
failures); and specific faultloads, such as invalid configurations
for DBMSes and webservers, and invalid system calls and
device driver bugs for OSes.

Cloud services and infrastructures, such as NFV systems,
still lack mature dependability benchmarks. On the one hand,
the studies on dependability benchmarking focused on other
domains, or generically on traditional IT infrastructures. How-
ever, these proposals did not take into account the peculiarities
of NFV and of cloud computing, and in particular the as-a-
service model, which involves new stakeholders and use cases
(thus requiring to rethink the roles of the benchmark perform-
ers and users, and of benchmark elements) and different fault
types. Moreover, differing from traditional IT infrastructures,
NFV has more stringent performance and dependability re-
quirements inherited from telecom applications, which require
new benchmark measures to account for the QoS under faults.
We address these aspects in this paper, as discussed in § III.

On the other hand, the state-of-the-art of fault injection
in cloud computing is fragmented in many different tools
that only address specific issues of cloud computing and
virtualization software. Well-known solutions in this field
include Fate [39] and its successor PreFail [40] for testing
cloud-oriented software (such as Cassandra, ZooKeeper, and
HDFS) against faults from the environment, by emulating at
API level the unavailability of network, storage, and remote
processes; similarly, Ju et al. [41] and ChaosMonkey [42] test
the resilience of cloud infrastructures by injecting crashes (e.g.,
by killing VMs or service processes), network partitions (by
disabling communication between two subnets), and network
traffic latency and losses; CloudVal [43] and Cerveira et al.
[44] tested the isolation among hypervisors and VMs by
emulating hardware-induced CPU and memory corruptions,
and resource leaks (e.g., induced by misbehaving guests). In
summary, these studies focus fault injection on testing specific
parts of the cloud stack with respect to specific classes of faults
(e.g., network or CPU faults).

We remark that dependability benchmarking goes beyond
the testing of individual components. In fact, the dependability
of NFV systems results from tight interactions among several

components, where fault-tolerance mechanisms are introduced
at several layers (e.g., at application and at MANO level,
as discussed in § III). Therefore, we propose a methodol-
ogy to jointly evaluate performance and dependability from
the perspective of NFV systems as a whole, including both
service-level measures (as in our previous work [45]), and
infrastructure-level measures for evaluating fault management
aspects. Moreover, dependability benchmarking gives empha-
sis to the representativeness and portability of the faultload, in
order to support a fair comparison: thus, we introduce a fault
model that spans the whole NFV stack (including both the
virtualization and physical layers) and that unifies the existing
fault classes in a common framework, not limited to specific
cloud technologies or to specific classes of faults.

III. DEPENDABILITY BENCHMARKING IN NFV
To define a dependability benchmark for NFV, we first

analyze the benchmark elements according to its stakeholders
and use cases (§ III-A). Then, we address the problem of
defining appropriate benchmark measures (§ III-B), faultload
(§ III-C) and workload (§ III-D) for NFV.

A. Benchmark elements
In the ETSI NFV framework [1], the architecture of a

virtualized network service can be decomposed in three layers,
namely the service, virtualization, and physical layers (Fig. 1).
In the service layer, each VNF provides a traffic processing
capability, and several VNFs are combined into a service
function chain (SFC) to provide added-value network services.
Examples are traffic shaping, billing, and deep packet inspec-
tion functions that can be introduced as gateways to provide
security and quality of service. The topology of interconnected
VNFs is represented by a VNF forwarding graph [1], which
is transparently deployed and managed by the NFVI.

VNFs are implemented in software, and are executed within
VMs and networks deployed on the physical resources of
the NFVI. For example, in Fig. 1 each VNF is mapped to
a pool of VM replicas, with an additional VM to perform
load balancing, and a virtual network segment to connect
them. These VMs are scaled out and dynamically mapped
to physical machines (PMs) to achieve high performance and
resource efficiency. These operations are overseen by MANO
software, that deploys and controls the VNFs by interacting
with a Virtualized Infrastructure Manager (VIM) component
inside the NFVI. Moreover, the MANO orchestrates fault
management, by correlating data from the NFVI and the
VNFs, and by reconfiguring the network in the case of faults.

To identify the benchmark elements (SUB, BT, FIT), we
need to consider the potential use cases of the dependability
benchmark. Such use cases involve, as users and performers
of the benchmark, telecom service providers and customers,
NFV software vendors, and NFV infrastructure providers.
. Case #1. A telecom service provider designs a network ser-
vice by composing a VNF service chain, using VNF software
developed in-house or provided by third-party NFV software
vendors. The telecom provider performs the benchmark to
get confidence that the network service as a whole is able
to achieve QoS objectives even in worst-case (faulty) condi-
tions. End-users and other telecom providers, which consume
network services on a pay-per-use basis (VNFaaS), are the

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

PM

PM

PM

PM

SAN

VM

VM

VM

VM

VM
VM

VM

VM

VM

VM

VNF VNF
Service
Layer

Virtualization
Layer

Physical
Layer

M
an

ag
em

en
t a

nd
 O

rc
he

st
ra

tio
n

(M
A

N
O

)

H
yp

er
vi

so
r

switch

vswitch vswitch

Fig. 1: Architectural layers in NFV.

benchmark users: they can demand empirical evidence of high
dependability and performance, to make informed decisions
based on both cost and quality concerns. The telecom provider
can produce this evidence in cooperation with an independent
certification authority, in a similar way to certification schemes
for cloud services [16], [46], [47].

. Case #2. An NFV infrastructure provider setups an envi-
ronment to host VNFs on a pay-per-use basis (NFVIaaS) for
telecom operators, which are the benchmark users. The NFVI
is built by acquiring off-the-shelf, industry-standard hard-
ware and virtualization technologies, and by operating them
through MANO software provided by NFV software vendors.
The NFVI provider performs the dependability benchmark to
get confidence on the dependability of its configuration and
management policies, with respect to faults of hardware and
virtualization components; and revises the configuration and
the MANO according to the feedback of the benchmark.

In both use cases, the SUB must include the service layer,
the infrastructure level (both virtual and physical), and the
MANO. These elements are showed in Fig. 2. The BT is
represented, respectively, by the VNF service chain, and by
the MANO. In the former use case, the benchmark provides
feedback on the robustness of VNF software and of the service
chain. In the latter, the benchmark provides feedback on fault
management mechanisms and policies of the MANO. In both
cases, the FIT is represented by the NFVI (both physical
and virtualization layers): the NFVI is built from COTS
hardware and virtualization components that are relatively
less reliable than traditional telecom equipment, and thus
represent a dependability threat for the NFV system. Thus,
the benchmarking process injects faults in the NFVI, in order
to assess the VNF service QoS in spite of faults in the NFVI,
and to evaluate and tune MANO software.

B. Benchmark measures

The measures are a core part of a dependability bench-
mark, since they represent the main feedback provided to the
benchmark users. According to the previous two use cases, we
identify two groups of benchmark measures:
• Service-level (VNF) measures, which characterize the

quality of service as it is perceived by VNF users, in
terms of performance and availability of VNF services;

System Under Benchmark (SUB)

Fault Injection Target (FIT)

Benchmark Target (BT)

Virtualization Technology
(Hypervisors)

Physical Resources
(CPU, Memory, Storage,

Network)

VNF

Faultload

Workload

Benchmark Target (BT)

Management
and

Orchestration
(MANO)

Virtualized
Infrastructure

Manager
(VIM)

Virtual Network Function Chains

VNF

VNF
VNF

Network Function Virtualization
Infrastructure

Fig. 2: Elements of the dependability benchmark.

• Infrastructure-level (NFVI) measures, which characterize
the NFVI in terms of its ability to detect and to han-
dle faulty conditions caused by hardware and software
components inside the infrastructure.

In practice, infrastructure-level components influence the
service-level measures, since the availability and performance
perceived by VNF users will be better if the infrastructure is
quicker at detecting and handling faults, as more resources
will be available for applications. Thus, the two types of
measures are meant to provide complementary perspectives
to the benchmark stakeholders. The service-level measures
are aimed at telecom service providers and customers, and
should be interpreted as a comprehensive evaluation of the
NFV system as a whole, inclusive of the indirect effects of
fault-tolerance mechanisms on service availability and per-
formance. Instead, the infrastructure-level measures provide
more detailed insights on fault detection and recovery actions
inside the NFV system, regardless of their impact on the
quality of service, and are useful for infrastructure providers
to understand and improve the fault management process.

1) Service-level measures: We define service-level mea-
sures to connect the results of the dependability benchmark
to SLA (Service Level Agreement) requirements of the VNF
services. Typically, SLA requirements impose constraints on
service performance in terms of latency and throughput, and
on service availability in terms of outage duration.

The service-level measures of the benchmark include the
VNF latency and the VNF throughput. It is important to note
that, while latency and throughput are widely adopted for
performance characterization, we specifically evaluate latency
and throughput in the presence of faults in the underlying
NFVI. We introduce these measures to quantify the impact
of faults on performance, and evaluate whether the impact is
small enough to be acceptable. In fact, it can be expected that
performance will degrade in the presence of faults, leading to
higher latency and/or lower throughput, since less resources
will be available (due to the failure of components in the
NFVI) until fault management completes.
. VNF Latency. In general terms, network latency is the delay
that a message “takes to travel from one end of a network to

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

another” [48]. A similar notion can also be applied to network
traffic processed by a VNF, or, more generally, by a chain of
interconnected VNFs, as in Fig. 1. Latency can be evaluated
by measuring the time between the arrival of a unit of traffic
(such as a packet or a service request) at the boundary of the
chain, and the time at which the processing of that unit of
traffic is completed (e.g., a packet is routed after inspection;
or a response is provided to the source of a request).

The VNF latency is represented by percentiles of the empiri-
cal cumulative distribution function (CDF) of traffic processing
times, and denoted by L(x) = P(l < x), where l is the latency
between the request and the response for a network traffic unit.
We compute the CDF by considering all traffic units sent after
that a fault has been injected in the NFV system (tinjection),
and until the end of the execution of the experiment (tend).
Thus, the CDF denotes the ability of the NFV system to
provide high performance despite the occurrence of a fault.
For evaluation purposes, SLAs typically consider the 50th and
the 90th percentiles of the CDF (i.e., L(50) and L(90)) to
characterize the average and the worst-case performance of
telecommunication systems [49].
. VNF Throughput. In general, throughput is the rate of suc-
cessful operations completed within an observation interval.
In our context, the VNF throughput is represented by the rate
of processed traffic (e.g., packets or requests per second) by
VNF services in presence of faults. The VNF throughput of
an experiment is given by T = N

tend−tinjection
, where N is the

total number of traffic units between the injection and the end
of the experiment.

The dependability benchmark aggregates VNF latency per-
centiles and throughput values from several fault injection
experiments. Different experiments can inject different types
of faults (as discussed later in section III-C) in different parts
of the NFV system (i.e., at each experiment, the same fault
type can be injected on different instances of a resource). From
these experiments, the overall performance of the NFV system
can be summarized by statistics such as the maximum and
minimum value among latency percentiles, and the average
value among throughput values, which quantify the extent
of performance degradation under faults. These aggregated
values can be computed over the entire set of fault injection
experiments to get an overall evaluation of NFV systems. An-
other approach is to divide the set of experiments into subsets,
with respect to the injected fault type, or with respect to the
component targeted by fault injection, and then to compute
aggregate values for each subset. Among these experiments,
benchmark users are interested to know in which ones the
latency percentiles and throughput exceeded their reference
values, which point out the specific faults or parts that expose
VNFs to performance issues.

Finally, we introduce the VNF unavailability to evaluate the
ability of VNFs to avoid, or to quickly recover from service
outages. Differing from latency and throughput, which assess
whether faults cause performance degradation, this measure
evaluates whether faults escalate into user-perceived outages.
SLAs require that service requests must succeed with a high
probability, which is typically expressed in nines. It is not
unusual that telecom services must achieve an availability not
lower than 99.999%, i.e., the monthly “unavailability budget”
amounts to few tens of seconds per month [49]. For example,

the ETSI “NFV Resiliency Requirements” [8] report that voice
call users and real-time interactive services do not tolerate
more than 6 seconds of service interruption, while the TL-
9000 forum [7] has specified a service interruption limit of 15
seconds for traditional telecom services. Service disruptions
longer than a few tens of seconds are likely to worsen the
user experience (as they impact not only on isolated service
requests, but also on the user retries [49]), thus accruing the
perceived downtime. Therefore, we introduce a benchmark
measure to evaluate the duration of VNF service outages.

. VNF Unavailability. A VNF service is considered unavail-
able if either traffic is not processed within a maximum time
limit (i.e., it is timed-out), or errors are signaled to the user.
The VNF Unavailability is defined as the amount of time
during which VNF users experience this behavior.

During an experiment, after the injection of a fault, the
VNF service may become unavailable (i.e., the rate of service
errors exceeds a reference limit), and return available when
the service is recovered. Moreover, a service may oscillate
from availabile to unavailable, and viceversa, for several times
during an experiment (e.g., there are residual effects of the
fault that cause sporadic errors). Thus, the VNF Unavailability
is given by the sum of the “unavailability periods” (denoted
with i) occurred during an experiment:

U =
∑

i tavaili − tunavaili

where:

tinjection < tunavaili < tavaili < tend, ∀i

error-rate(t) > error-ratereference, ∀t ∈ [tunavaili , tavaili], ∀i.

If the VNF service does not experience any user-perceived
failure, the VNF Unavailability is assumed to be U = 0. If
the VNF service is unable to recover within the duration of
the experiment (say, ten minutes), we conclude that the VNF
cannot automatically recover from the fault, and that it needs
to be manually repaired by a human operator. In this case,
recovery takes orders of magnitude more time than required
by SLAs: we mark this case by assigning U = ∞.

The dependability benchmark aggregates VNF Unavailabil-
ity values from fault injection experiments, by identifying the
experiments in which VNFs cannot be automatically recovered
(i.e., VNF Unavailability is a finite value), which points out
the scenarios that need to be addressed by the NFV system
designers. Moreover, the maximum and the average of (finite)
VNF Unavailability values indicate how much the VNF is able
to mask the faults. In a similar way to performance measures,
the aggregated values of VNF Unavailability can be computed
over subsets of fault injection experiments (e.g., divided by
type or target of injected faults) for a more detailed analysis.

2) Infrastructure-level measures: Infrastructure-level mea-
sures are aimed at providing insights to NFVI providers
on fault-tolerance algorithms and mechanisms (FTAMs) of
their infrastructure [33]. Several fault-tolerance strategies are
available to NFV system designers, and are discussed in
the ETSI document on “NFVI Resiliency Requirements” [8].
These FTAMs are provided at hypervisor and MANO level,
and VNF services should be designed and configured to take
advantage of them. FTAMs are broadly grouped in two areas:
• Fault Detection: FTAMs that notice a faulty state of

a component (such as a VM or a physical device) as

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

soon as a fault occurs, to timely start the fault recovery
process. Examples of fault detection are: heartbeats and
watchdogs, which periodically poll the responsiveness of
a service or of a component; performance and resource
consumption monitors; internal checks performed inter-
nally in each component (such as the hypervisor) to report
on anomalous states, such as failed I/O operations and
resource allocations; data integrity checks.

• Fault Recovery: FTAMs that perform actions to counter-
act a faulty component. An example of recovery action
for NFVIs include the (de-)activation of VM instances
and their migration to different hosts, or retrying a failed
operation. Moreover, VMs and physical hosts can be
reconfigured, e.g., by updating a virtual network config-
uration or deactivating a faulty network interface card.

Since implementing all these solutions in the fault manage-
ment process can be a complex task, we introduce benchmark
measures to quantitatively evaluate their effectiveness. These
measures are complementary to service-level measures, as they
provide feedback to NFVI providers about individual FTAMs
(heartbeats, watchdogs, logs, etc.).

. Fault Detection Coverage and Latency. We define the
Fault Detection Coverage (FDC) as the percentage of fault
injection tests in which the NFV system issues a fault notifi-
cation, either on individual nodes of the infrastructure (e.g.,
hypervisor logs), or on MANO software. A recovery action
can only be triggered after that a fault has been detected.
The FDC is computed by counting both the number of tests
in which the injected fault is reported by the NFV system
(#Ffault_detected), and tests in which the injected fault
is not reported but causes service failures or performance
degradations (#Ffault_undetected):

FDC =
#Ffault_detected

#Ffault_undetected+#Ffault_detected
.

The Fault Detection Latency (FDL) is the time between the
injection of a fault (tinjection), and the occurrence of the first
fault notification (tdetection). The Fault Detection Latency is
computed for the subset of experiments in which a fault has
actually been detected. The FDL is given by:

FDL = tdetection − tinjection

. Fault Recovery Coverage and Latency. The Fault Recovery
Coverage (FRC) is the percentage of tests in which a recovery
action (triggered by fault detection) is successfully completed.
For example, in the case of a VM restart, the recovery is
considered successful if a new VM is allocated, and VNF
software is correctly started and executed. The FRC is rep-
resented by the ratio between the number of tests in which
faults were detected (#Ffault_detected), and the number of
tests in which the recovery action is successfully completed
(#Ffault_recovered):

FRC =
#Ffault_recovered
#Ffault_detected

.
For those experiments in which the NFV system is able

to perform a recovery action, we define the Fault Recovery
Latency (FRL) as:

FRL = trecovered − tdetected

where trecovered denotes the time when the NFV system
concludes a recovery action.

C. Faultload
The faultload is the set of faults and exceptional conditions

that are injected to evaluate dependability properties [12].
The definition of a “good” faultload is a tricky task, since
the fault model needs to be complete and representative
with respect to real faults that the system will experience
during operation [12], [13]. Moreover, the faultload should
be generic enough to be applicable to different NFV systems
(e.g., it should be independent from specific virtualization and
hardware products). Finally, the design of the faultload should
be supplied with practical indications on how these faults
should be emulated in the context of a concrete system.

We follow a systematic approach to address these properties
in the faultload. To cover the complete architecture of an NFV
system [50], and to be generic enough to apply faults on
different NFV implementations, we define a fault model for
the four domains of the NFV architecture: network, storage,
CPU, and memory. These elements are present both as virtual
resource abstractions, and as physical resources of the NFVI
(Fig. 1). The benchmark performer can use the fault model for
defining the faultload for the target NFVI, by first enumerating
the resources in the NFVI, and then by systematically applying
the fault model on each resource. The fault model includes
physical and virtual CPU and memory faults, to be applied on
each physical and virtual machine in the NFVI. Moreover, the
fault model includes physical and virtual storage and network
faults, to be applied on each virtual and physical storage
interface, disk, network interface, or switch in the NFVI.

For each domain of NFV (CPU, memory, disk and network),
the fault model defines three categories of faults: unavailability
(the resource becomes inaccessible or unresponsive); delay
(the resource is overcommitted and slowed down); corrup-
tion (the stored or processed information is incorrect). These
categories broadly include all the possible faulty states of a
component, and are inclusive of failure categories defined in
previous studies [21], [51], [52]. We specialize these general
fault categories, and get a set of representative faults, by
analyzing which hardware, software, and human faults are
likely to occur for each category and for each domain [12],
[13], by revisiting the scientific literature on fault injection and
failure analysis in cloud computing infrastructures [39]–[44],
[53], [54], well-known cloud computing incidents [55], [56],
and the analysis of the prospective architecture and products
for NFVIs [1], [5].

The fault mode has been summarized in TABLE I, which
shows, for each domain and for each fault type, the possi-
ble root causes of the faults (from software, hardware, and
operators), and the fault effects to be injected. The analysis
identified the following fault types.
Physical CPUs and memory: These physical resources can
become abruptly broken due to wear-out and electrical issues.
If these faults are detected by machine checks, they lead to
CPU exceptions and to the de-activation of failed CPU and
memory banks. Otherwise, these faults cause silent corruptions
of random bytes in CPU registers and memory banks; even
in the case of ECC memory, data can become corrupted
before it is stored in memory (e.g., when flowing through

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

TABLE I: Overview of the fault model.

Root	cause	 Fault	Model

Ph
ys
ica

l	m
em

or
y	

Memory	page	corruption	in	the	
virtualization	layer	context	

Elecromagn.	interferences,	virtualization	
layer	bugs	[hw.,	sw.]	

Corruption	

Memory	thrashing	in	the	
virtualization	layer	context

Virtual	machine	is	overloaded	[op.,	sw.]	Delay	

Memory	hog	in	the	virtualization	
layer	context	

Physical	memory	bank	permanently	
broken	[hw.]	

Unavailability	

Ph
ys
ica

l	C
PU

	

Virtual	CPU	disabled	Insufficient	capacity	planning	[op.]	

Memory	page	corruption	in	virtual	
node	context	

Elecromagn.	interferences,	virtualization	
layer	bugs	[hw.,	sw.]	

Memory	hog	in	the	virtual	node	
context	

Insufficient	capacity	planning	[op.]	

Vi
rt
ua

l	m
em

or
y	

Corruption	

Memory	thrashing	in	the	virtual	
node	context

Virtual	machine	is	overloaded	[op.,	sw.]	Delay	

Unavailability	

Unavailability	

Vi
rt
ua

l	C
PU

	

CPU	register	corruption	in	VM	
context	

EMIs,	virtualization	layer	bugs	[sw.,	hw.]	Corruption	

CPU	hog	in	VM	context	Virtual	machine	is	overloaded	[op.,	sw.]	Delay	

Delay	

Physical	CPU	disabled	Physical	CPU	permanently	broken	[hw.]	Unavailability	

CPU	register	corruption	in	the	
virtualization	layer	context	

Electromagn.	interferences,	
virtualization	layer	bugs	[hw.]	

Corruption	

CPU	hog	in	the	virtualization	layer	
context	

Physical	machine	is	overloaded	[op.,	sw.]	

Network	frames	delayed	on	virtual	
NIC	

Corruption	
Elecromagn.	interferences,	virtualization	

layer	bugs	[hw.,	sw.]	
Network	frames	corrupted	on	

virtual	NIC	

Ph
ys
ica

l	n
et
w
or
k	

Unavailability	
NIC	or	network	cable	permanently	

broken	[hw.]	
Physical	NIC	interface	disabled	

Delay	 Network	link	saturated	[op.]	
Network	frames	delayed	on	physical	

NIC	

Corruption	
Elecromagn.	interferences,	virtualization	

layer	bugs	[hw.,	sw.]	
Network	frames	corrupted	on	

physical	NIC	

Ph
ys
ica

l	s
to
ra
ge
	

Unavailability	
HBA	or	storage	cable	permanently	

broken	[hw.]	
Physical	HBA	interface	disabled	

Vi
rt
ua

l	n
et
w
or
k	 Unavailability	 Misconfiguration	[op.]	 Virtual	NIC	interface	disabled	

Elecromagn.	interferences,	virtualization	
layer	bugs	[hw.,	sw.]	

Physical	storage	I/O	corrupted	

Delay	 Storage	link	saturated	[op.]	 Physical	storage	I/O	delayed	

Corruption	

Delay	
The	virtualization	layer	is	overloaded	

[op.,	sw.]	

Vi
rt
ua

l	s
to
ra
ge
	

Unavailability	 Misconfiguration	[op.]	 Virtual	HBA	interface	disabled	

Delay	
The	virtualization	layer	is	overloaded	

[op.,	sw.]	
Virtual	storage	delayed	

Corruption	
Elecromagn.	interferences,	virtualization	

layer	bugs	[hw.,	sw.]	
Virtual	storage	corrupted	

the CPU or the bus). Software faults in the VMM (Virtual
Machine Monitor) may cause the corruption of entire memory
pages, due to buggy memory management mechanisms (such
as page sharing and compression) or to generic memory
management bugs at VMM level (such as buffer overruns and
race conditions). Finally, physical CPUs and memory can be
overloaded by an excessive number of VMs, or by buggy
services running in the VMM; in turn, CPU and memory
contention leads to scheduling and allocation delays.

Virtual CPUs and memory: The virtual CPUs and virtual
memory of VMs may not be allocated due to insufficient
resources reserved for a VM. Moreover, software and operator
faults inside the VM may overload virtual CPUs and memory.
Finally, in a similar way to physical CPUs and memory,
electrical issues and VMM bugs may lead to data corruptions,
but in the context of VM (e.g., corrupting the state of the guest
OS or VNF software).

Physical storage and network: Storage and network links
(respectively, HBA and NIC interfaces, and connections be-
tween machines, and network switches and storage) may fail

due to wear-out and electrical issues. Moreover, electrical
issues and software bugs in device drivers may cause the
corruption of block I/O and network frames. The storage and
network bandwidth may get saturated due to excessive load
and insufficient capacity, causing I/O delays.
Virtual storage and network: Storage and network interfaces
of individual VMs, and virtual switch and storage connections,
may become unavailable due to human faults in their configu-
ration. In a similar way to physical storage and network, wear-
out and electrical issues may affect the I/O traffic of specific
VMs, and the I/O traffic may be delayed due to bottlenecks
caused by the emulation of virtual switches and storage.

These faults are feasible to implement using established
fault injection techniques [31]. Corruption faults can be imple-
mented with SWIFI techniques (Software-Implemented Fault
Injection), which emulate hardware and software faults by
injecting the expected effects produced by these faults on the
target software [33]. This approach is practically convenient
since it avoids to simulate the actual root cause (such as, a
broken CPU or electromagnetic interference), which would
entail excessive costs and efforts. For example, simulations and
empirical studies [57]–[61] showed that physical CPU faults
can accurately be emulated by corrupting the state of CPU reg-
isters through bit-flipping. A similar approach can be applied
to unavailability and delay faults, by saturating a resource with
artificial load, by turning it off, or by intercepting API calls
(e.g., on the device drivers’ interface) and forcing their failure.
We developed a custom fault injection tool suite that applies
these techniques in Linux and VMware ESXi. The tool suite
provides a set of modules to be loaded in the hypervisor or
guest OS, which modify the state of resources at run-time;
implementation details are described in [62].

The benchmark users and performers can selectively use
only part of the faultload, if they need to focus the bench-
mark according business priorities, or want to leverage their
knowledge of faults that are more likely in their specific
NFV system. For example, software faults in the VMM (in
particular, bugs in device drivers and in other VMM extensions
developed by untrusted third-parties) may not be injected,
depending on the integrity and maturity of a VMM product.
Overloads may be omitted in the case that resources are
overprovisioned, or in the case that capacity planning has been
carefully performed. Human operator faults may be omitted in
the case that configuration of the virtualization layer is fully
automated, or that configuration policies are carefully checked.
Moreover, benchmark users may give different weights to
faults when aggregating the results from different faults [45].

D. Workload
The definition of the workload specifies how to exercise

the NFV system while the faultload is injected. In order
to obtain reasonable and realistic results from dependability
benchmarks, these workloads should be representative of the
workload that the NVF will face once deployed. Typical
workloads for testing networks follow pre-defined patterns
or statistical distributions [63]. A realistic workload for NFV
systems can be automatically generated using load generators
for performance benchmarking. Note that the selection of
workloads also depends on the kind of network service that
is hosted on the NFVI. For this reason, we refer the reader to

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

existing network performance benchmarks and network load
generators. Relevant examples of workloads for NFVIs are
represented by performance benchmarks designed for cloud
computing systems [64]–[66] and by network load testing tools
such as Netperf.

IV. CASE STUDY

To better understand how to apply the dependability bench-
mark, and to showcase the results that can be obtained from
it, we perform an experimental analysis on an NFV system
running a virtualized IP Multimedia Subsystem (IMS). We
deploy the IMS on two NFVIs based on different virtualization
technologies: a commercial hypervisor-based virtualization
platform (VMware ESXi), and an open-source container-based
solution (Linux containers). The ETSI envisions the use of both
hypervisor-based and container-based virtualization for NFV
[67], and these two products are going to be extensively used
in NFVIs [68], [69]. Moreover, we consider two virtualization
management solutions, VMware vSphere and Docker, paired
respectively with VMware ESXi and Linux.

A. The Clearwater IMS

The VNF software comes from the Clearwater project [17],
which is an open-source implementation of an IMS for cloud
computing platforms. Its main components are:
• Bono: the SIP edge proxy, which provides both SIP IMS

Gm and WebRTC interfaces to clients. The Bono node
is the first point of contact between clients and the IMS.
Clients are linked to a specific Bono node at registration.

• Sprout: the SIP registrar and authoritative routing proxy,
which handles client authentication, and provides the bulk
of I-CSCF and S-CSCF functions.

• Homestead: handles authentication credentials and user
profiles, using a Cassandra datastore [70].

• Homer: XML Document Management Server that stores
MMTEL service settings, using a Cassandra datastore.

• Ralf : a component that provides billing services.

B. Testbed

Figure 3 shows the testbed used for the experimental eval-
uation of the IMS NFV system. The same testbed has been
used for experiments with both virtualization technologies, by
switching between VMware ESXi with vSphere, and Linux
containers with Docker, and using the same IMS VNF software
in both configurations. The testbed includes:
• Host 1: A machine equipped with an Intel Xeon 4-core

3.70GHz CPU and 16 GB of RAM. In the hypervisor-
based scenario, this machine runs the VMware ESXi
hypervisor v6.0, and hosts VMs running the VNFs of
Clearwater (one VM for each VNF). In the container-
based scenario, this machine runs Ubuntu Linux 14.04
OS and Docker v1.12, and hosts containers running the
VNFs (one container for each VNF). Faults are injected
in the resources (virtual and physical) of this host.

• Host 2: A machine with the same hardware and software
configuration of Host 1. Moreover, this machine hosts
active replicas of the same VNFs of Host 1, to provide
redundancy to tolerate faults in the other host.

ISCSI

HA Management
Node

Tester
Node

Host 1 Host 2

SIP session
SIP REGISTER
SIP INVITE
SIP UPDATE
SIP BYE

SIP session
SIP REGISTER
SIP INVITE
SIP UPDATE
SIP BYE

Clearwater IMS

Bono-2
(P-CSCF)

Sprout-2
(I/S-CSCF)

Homestead-2
(HSS Mirror)

Homer-2
(XDMS)

Ralf-2
(Rf CTF)

Clearwater IMS

Homer-1
(XDMS)

Sprout-1
(I/S-CSCF)

Ralf-1
(Rf CTF)

Bono-1
(P-CSCF)

Homestead-1
(HSS Mirror)

Fig. 3: The IMS NFV testbed.

• Name, Time and Storage Server: A machine that hosts
network services (DNS, NTP) to support the execution
of VNFs. Moreover, this machine hosts a shared storage
service with iSCSI. The shared storage holds the persis-
tent data of Cassandra managed by the Homestead and
Homer VNFs, and the virtual disk images of the VNFs.

• High-Availability (HA) Management Node: A machine
that runs management software: in the hypervisor-based
configuration, this machine runs the VMware HA service
of VMware vSphere; in the container-based configura-
tion, this machine runs the Docker Swarm master node.

• Tester Host: A Linux-based computer that runs an IMS
workload generator. Moreover, this machine runs a set
of tools for managing the experimental workflow. These
tools interact with the NFVI to deploy the VNFs, to
control fault injection tools installed on the target Host
1, and to collect performance and failure data both from
the workload generator and from the nodes of the NFVI.

• Load Balancer: A machine that forwards and balances
IMS requests to Bono VNFs on the two host machines.

• A Gigabit Ethernet LAN connecting all the machines.
The workload set-ups several SIP sessions (calls) between

end-users of the IMS. Each SIP session includes a sequence
of requests for registering, inviting other users, updating the
session, and terminating the session. This workload is gen-
erated by SIPp [71], an open-source tool for load testing of
SIP systems. An experiment exercises the IMS by simulating
10,000 users and 10,000 calls.

We consider a high-availability configuration, where each
VNF is replicated across the hosts (Fig. 3). The Clearwater
VNFs are designed to be stateless and horizontally scalable,
and to balance SIP messages between replicas with round-
robin DNS. We also enable fault-tolerance capabilities pro-
vided by MANO software. In VMware vSphere, the HA
cluster [72] capability automatically restarts a VM (in the
case of VM failures) or migrates it on another node (in the
case of physical host failures). In the Docker configuration, we
enabled Docker Swarm [73] to provide failure detection and
automated restart of containers. To allow migration in VMware
HA, we stored all VNF data (including the VM disk image) on
the shared iSCSI storage; in Docker, the iSCSI storage is used
to store the Cassandra datastores of Homer and Homestead.

Faults are injected in the Host 1 and its VNF replicas. We
focus on injecting faults in the physical host and in Homestead
and Sprout, as these are the two main VNFs strictly required

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

by the use cases of the IMS. Each experiment lasts for 300s.
We inject a fault after 80s from the start the workload, and
remove the fault after 60s. As discussed in § III-C, we con-
sider both I/O and CPU/memory faults. Network and storage
corruptions, drops, and delays are injected in the network and
storage interfaces of the host, and on the virtual network and
storage interfaces of Homestead and Sprout. We performed
five repeated experiments for each type of fault. Overall, for
each testbed configuration (hypervisor- and container-based),
we perform 180 experiments (60 on the physical layer, 120
on the virtual layer), for a total of 360 experiments.

V. EXPERIMENTAL RESULTS

We computed the measures defined by our dependability
benchmark using experimental data on performance and fail-
ures. As basis for comparison, we computed the latency and
throughput of the IMS NFV system in fault-free conditions,
and compare them to the measures in faulty conditions to
quantify the performance loss of the IMS. Moreover, as basis
to compare the IMS unavailability, we consider that the service
cannot be unavailable for more 30 seconds. This choice is an
optimistic bound for the unavailability of network services, as
the budget can be even stricter for highly-critical services; but,
as we will see in our analysis, achieving this goal using IT
virtualization technologies is still a challenging problem.

In the following, we divide the analysis in three parts:
service-level evaluation with fault injection at the physical
layer; service-level evaluation with fault injection at the virtu-
alization layer; and infrastructure-level evaluation.

A. Service-level evaluation, faults in the physical layer

Fig. 4, Fig. 5, and Fig. 6 show respectively the VNF
unavailability, VNF throughput (for both SIP REGISTERs and
INVITEs) and VNF latency (for SIP REGISTERs) computed
from fault injection experiments, for both the ESXi/vSphere
and the Linux/Docker testbed. On the x-axis, the plots show
the fault types of the fault model (§ III-C).

The experiments pointed out that physical faults have a no-
ticeable impact in terms of unavailability of the NFV system.
The extent of the unavailability varies across the fault types;
moreover, there are also differences between the ESXi/vSphere
and the Linux/Docker test configurations.

The NFV system was able to automatically recover from
faults in all but two cases. We found that when injecting
network and storage corruptions in the ESXi/vSphere scenario,
the recovery process does not complete due to residual effects
of the faults on fault management components, with a sig-
nificant loss of availability. In these cases, the NFV system
would need the manual intervention of a human administrator
to restore the failed replicas. These problems are further
investigated in the infrastructure-level evaluation (§ V-C).

The other fault types show that, in the worst case, the system
experiences about 100s of unavailability, while in the best
cases the VNF unavailability is within the reference value
of 30s. In particular, in the ESXi/vSphere scenario, storage
delay faults have little impact on the system. This behavior is
explained by the fact that the virtual disks of VMs are located
on a shared iSCSI storage partition, thus, the I/O load on the
local physical disk is small, and delay faults are well masked.

CPU delay and unavailability faults show different effects
between the ESXi/vSphere and Linux/Docker test configura-
tions. Despite that Linux containers are expected to restart
faster (as containers are a lightweight alternative to VMs),
the unavailability is higher than ESXi/vSphere. In this case,
the recovery time is dominated by a long time-out period
that Docker waits for before declaring a node failed. The gap
is even worse for CPU corruption faults. In VMware ESXi,
any internal kernel error is handled by forcing a crash of the
hypervisor, in order to trigger a migration of the workload.
Instead, in Linux/Docker, corruption faults did not crash the
Linux host, but instead the host continued to execute as much
as possible, even in the presence of tasks stalled in kernel space
and other internal errors (according to log messages recorded
by the kernel). However, the IMS requests on the faulty host
experienced errors, and this behavior hinders the migration of
containers on the healthy host.

We found another case of incorrect error handling when
injecting memory faults. The Linux/Docker scenario shows
higher unavailability than ESXi/vSphere, especially in the
case of memory delay faults, which overload the memory
management subsystem with memory allocations. In this case,
the NFVI should protect the VNFs by assuring them enough
memory for execution despite the interference of the “hog”.
Instead, we found that the hog can degrade the performance
of the VNFs. Once the injection ends, the NFVI slowly
recovers its original performance. The ESXi hypervisor is
more robust to these faults since it makes memory reservations
for VMs, which cannot be preempted by the hog. Instead,
Linux/Docker has a weaker isolation among containers, since
it relies on simpler memory management mechanisms, and
exposes them to delays caused by excessive swapping and
thrashing. Furthermore, during memory unavailability faults,
the Linux kernel triggers the out-of-memory killer (OOM),
which forces the restart of VNFs.

The two NFV configurations also differ with respect to
network and storage faults, due to their different architectures:
ESXi/vSphere is a more complex configuration, with a higher
volume of management traffic over the network (e.g., manag-
ing datastores liveness and locking, handling heartbeats, and
so on), while Linux/Docker is a more lightweight technology.
Furthermore, ESXi and Linux provide different implementa-
tions (and thus different vulnerability surfaces) for the TCP/IP
protocol, and their log messages denote different reactions to
network faults (e.g., packet parsing failures, SYN flooding
warnings). Similar considerations also apply for the storage
stack, where corruption faults hinder the ESXi hypervisor
from creating new threads and performing I/O on the VMFS
filesystem. Instead, in Linux/Docker the VNF unavailability
is smaller: even if faults cause the crash of some application
processes, the system reacts by remounting the filesystem in
read-only mode, thus preventing an escalation of the faults.
However, Linux/Docker experiences a higher unavailability
in the case of storage delays/unavailability, since it generates
more I/O traffic on the local disks.

The performance measures, in terms of latency and through-
put (Fig. 5 and 6), follow a similar pattern to VNF Un-
availability, as the most severe faults (such as network and
storage corruptions, and memory delay faults) cause the largest
degradation of performance. Moreover, there are differences
between ESXi/vSphere and Linux/Docker in terms of perfor-

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

20

40

60

80

100

120

140

160

180

200
Un

av
ai

la
bi

lity
 [s

]
Unavailability Time
Unavailability budget (30s)

(a) VMware ESXi/vSphere.

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

20

40

60

80

100

120

140

160

180

200

Un
av

ai
la

bi
lity

 [s
]

Unavailability Time
Unavailability budget (30s)

(b) Linux/Docker.

Fig. 4: VNF Unavailability under fault injection in the physical layer.

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

20

40

60

80

100

120

140

160

180

200

Th
ro

ug
hp

ut
 [r

eq
ue

st
s

/ s
]

REGISTER Throughput
INVITE Throughput
REGISTER Throughput Fault Free
INVITE Throughput Fault Free

(a) VMware ESXi/vSphere.

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

20

40

60

80

100

120

140

160

180

200

Th
ro

ug
hp

ut
 [r

eq
ue

st
s

/ s
]

REGISTER Throughput
INVITE Throughput
REGISTER Throughput Fault Free
INVITE Throughput Fault Free

(b) Linux/Docker.

Fig. 5: VNF throughput under fault injection in the physical layer.

mance. Overall, ESXi/vSphere exhibits better performance in
the case of CPU and memory faults. This behavior is due
to the ability of hypervisor-based virtualization to guarantee
stronger isolation among virtual machines and services. How-
ever, Docker provides lower latencies and higher throughput
against network faults, since its network stack is more robust
and able to quickly recover a good quality of service after
fault injection. Regarding storage faults, the performance of
ESXi/vSphere is more robust to storage delays/unavailability,
but it is exposed to degradation in the case of corruptions.

B. Service-level evaluation, faults in the virtual layer

In this section, we evaluate performance and unavailability
with respect to faults in the virtual layer of NFVI. Fig. 7 shows
the unavailability computed from fault injection experiments
respectively on the Homestead and Sprout VNFs, for both
the ESXi/vSphere and Linux/Docker testbeds. For the sake of
brevity, we omit the full plots of VNF throughput and latency
and include the most relevant observations in the discussion.

Virtual CPU unavailability faults have a higher impact in
the case of ESXi/vSphere. Linux/Docker is very quick at
recovering from virtual CPU unavailability (i.e., the crash of
the VM/container that runs the VNF). As soon as the crash is
injected, both Docker and VMware HA recover the VNF by
detecting its termination (e.g., an exit with a non-zero status
in Linux), and automatically restart it. Restarting a container
takes less time than a VM, since it entails to restart a process
rather than recreating all the hardware abstractions emulated
by the hypervisor and rebooting a full guest OS.

However, different considerations apply for virtual CPU and
memory corruption. In the Linux/Docker scenario, these cor-
ruptions interfere with the execution of application processes
(as the fault corrupts the internal state of VNF software), but
the OS does not force the processes to terminate; thus, no
recovery is attempted. Instead, in the ESXi/vSphere scenario,
a failure is detected as soon as the corruption is perceived by
the ESXi hypervisor, and the VM is restarted properly.

As in the case of faults in the physical layer, the
Linux/Docker test configuration is more vulnerable to memory

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

100

101

102

103

104
Ti

m
e

[m
s]

REGISTER Latency 50th Perc.
REGISTER Latency 90th Perc.
REGISTER Latency 50th Perc Fault Free
REGISTER Latency 90th Perc Fault Free

(a) VMware ESXi/vSphere.

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

100

101

102

103

104

Ti
m

e
[m

s]

REGISTER Latency 50th Perc.
REGISTER Latency 90th Perc.
REGISTER Latency 50th Perc Fault Free
REGISTER Latency 90th Perc Fault Free

(b) Linux/Docker.

Fig. 6: VNF Latency under fault injection in the physical layer.

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

20

40

60

80

100

120

140

160

180

200

Un
va

ila
bi

lity
 [s

]

Homestead Unavailabliity
Sprout Unavailability
Unavailability Budget (30 s)

(a) VMware ESXi/vSphere.

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

20

40

60

80

100

120

140

160

180

200

Un
va

ila
bi

lity
 [s

]

Homestead Unavailabliity
Sprout Unavailability
Unavailability Budget (30 s)

(b) Linux/Docker.

Fig. 7: VNF Unavailability under fault injection in the Homestead and Sprout VNFs.

faults. In ESXi/vSphere, when a VMs overloads the memory
management subsystem, the hypervisor is able to provide a
better isolation among VMs than Linux Docker, thanks to
memory reservations and a more efficient memory allocator.
Instead, in Linux/Docker, a buggy/overloaded VNF can prop-
agate the performance degradation to other VNFs, as also
confirmed by the analysis of throughput and latency of the
NFV system as a whole. However, it is worth to point out
that ESXi/vSphere is still vulnerable to CPU and memory
contention caused by a buggy/overloaded VNF, as the VNF
unavailability exceeds in some cases the reference value.

Fault injection in the virtual network shows that the Home-
stead VNF is critical to deliver IMS services. Faults in this
VNF cause a noticeable period of unavailability, both in
ESXi/vSphere and in Linux/Docker. By analyzing the logs
from the infrastructure, we found that the service unavailability
was due to disruption of TCP communication (e.g., in the
calibration of the TCP window). Network delay faults impact
differently on ESXi/vSphere and Linux/Docker due to the
different TCP/IP implementations, as ESXi exhibits a higher

NIC loss rate due to packets parse failures. Network unavail-
ability faults had a small impact on unavailability (about 3s)
compared to network corruption faults since, once the injector
does not drop packets anymore, the service performance is
restored almost immediately. These considerations also apply
for experiments on the Sprout node, except that Docker is less
affected by network corruptions.

As for corruption and unavailability faults in the virtual
storage, the results do not show differences between the
ESXi/vSphere and Linux/Docker scenarios in terms of unavail-
ability (Fig. 7), but Linux/Docker has higher VNF latencies
(not showed for brevity). This result is the opposite of the
case of physical corruption faults: this time, the Linux guest
OS inside the ESXi VMs tolerated the fault by remounting the
virtual disk as read-only; instead, in the case of Linux/Docker,
the partition was managed by Docker, which was not able
to remount it. Storage delay faults have a greater impact on
ESXi: in this scenario, the VNF generates more load on the
virtual disk, as it stores the full VM image with the root
filesystem; instead, in Linux/Docker, the virtual disk only

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

stores the partition with the Cassandra datastore. Finally,
storage unavailability faults do not have an impact neither
in ESXi/vSphere nor in Linux/Docker. The logs from these
experiments show that the Cassandra instance on the injected
virtual node detects an I/O error, and stops itself to prevent
further service degradation, leaving the Cassandra replica on
the other host to serve the requests.

C. Infrastructure-level evaluation

We analyze in detail fault management in the two configu-
rations, by evaluating coverage and latency of fault detection
and recovery. These measures are complementary to service-
level measures: after a fault, while the network traffic is
forwarded to the healthy replicas of the VNFs, the detection
and recovery are performed in background to restore the
capacity of the NFV system. We use the logs collected from
VMware HA and the VMkernel in the ESXi/vSphere scenario,
and from the Linux kernel and Docker Swarm in the other
one. A fault is detected when there is at least an occurrence
of log message related to fault management and to internal
errors (e.g., unusual high-severity messages, and messages
with specific keywords); and it is considered recovered when
there is any specific message that denotes the completion of a
recovery action (e.g., restart and migration) and reports that a
VM or container is in a running state. The detailed results are
summarized in Tables II and III. We focus on fault injection
in the physical layer because of space limitations.

TABLE II: Fault detection and fault recovery coverage.

MANO NFVI MANO NFVI
CPU CORRUPT 5 5 5 0 2 0 5
CPU DELAY 5 0 0 5 0 0 5
CPU UNAVAILABILITY 5 5 5 0 5 0 5
MEM CORRUPT 5 5 5 0 5 0 5
MEM DELAY 5 0 0 5 0 0 5
MEM UNAVAILABILITY 5 5 1 4 0 5 5
NET CORRUPT 3 5 1 0 5 0 5
NET DELAY 5 5 1 4 0 5 5
NET UNAVAILABILITY 5 5 0 5 0 5 5
STO CORRUPT 4 5 2 0 3 1 5
STO DELAY 5 0 0 5 0 0 5
STO UNAVAILABILTY 5 5 0 5 5 0 5

Total 57 45 20 33 25 16 60

Percentage 95.00% 75.00% 92.98% 91.11%

Fault Type ESXi Docker Tot.
Exps

DETECTED # RECOVERED

ESXi Docker

In the ESXi/vSphere scenario, the fault detection coverage
is about 95%, within a detection latency of 38.7s on average.
The fault recovery coverage (successful execution of recovery
actions) is also high, except for the cases of storage and
network corruptions. In some of the experiments, the fault
was tolerated or recovered locally by an NFVI node, with
no interaction with the HA manager (these cases are counted
in the “NFVI” column of TABLE II, and labeled as local
recovery in TABLE III). This behavior was observed in the
case of CPU and memory delay faults, in which ESXi/vSphere
detects an anomalous state during VM operations, by logging
that it received intermittent heartbeats from VMs; after fault in-
jection, the nodes are able to locally recover a correct service.
The experiments with storage delays and unavailability showed

TABLE III: Fault detection and fault recovery latency.

Fault Type ESXi Docker ESXi Docker
CPU CORRUPT 11.3 14.8 66.7 213.8 *

CPU DELAY 58.0 no detection local recovery not detected

CPU UNAVAILABILITY 36.8 39.7 48.0 126.8

MEM CORRUPT 45.7 14.8 60.0 104.8

MEM DELAY 49.2 no detection local recovery not detected

MEM UNAVAILABILITY 34.7 17.4 136.3 local recovery

NET CORRUPT 32.3 18.6 156.7 * 30.2

NET DELAY 92.5 no detection 144.5 local recovery

NET UNAVAILABILITY 35.2 17.8 local recovery local recovery

STO CORRUPT 36.8 15.3 296.2 * 99.7 *

STO DELAY 27.6 no detection local recovery not detected

STO UNAVAILABILTY 4.2 16.2 local recovery 102.8

Average 38.7 19.3 129.8 91.2

DETECTION LATENCY [s] RECOVERY LATENCY [s]

* Latency has been computed only for the recoved cases

a similar behavior. When injecting storage delays, the Storage
I/O Control (SIOC) module in ESXi reports errors during the
usage of the datastore; for storage unavailability faults, ESXi
detects that the host datastore is inaccessible. In both cases,
the system autonomously recovers after the injection.

Instead, the other experiments required a recovery action
from the HA manager, but the recovery could not succeed
in some cases. In particular, during network corruption and
unavailability fault injection experiments, the injected host
is unable to communicate with the other one, and VMware
HA detects a partitioned state. Then, VMware HA tries to
migrate the VMs to the healthy node, but it is forced to
cancel the migration (as denoted by log messages such as
“CancelVmPlacement”), due to residual data corruptions in the
persistent state of VMs. In a similar way, in storage corruption
faults, the migration of VMs failed to due the corruption
of VM data and metadata, which could not be started after
the power-off. To avoid these problems, the services and
protocols for fault management should be made more robust
against corrupted data (e.g., by recognizing invalid data; and
by using replicated data to retry migration). Moreover, since
these mechanisms are provided by a third-party OTS product,
it is important for the designers of the NFV system to discover
this kind of vulnerability through fault injection.

It is important to remark that the latency of the recovery
process is quite large for ESXi/vSphere, taking on average
129.8s. Part of this long time can be attributed to the policy
of VMware HA that several heartbeats should be unanswered
before declaring a node as failed (in the VMware HA termi-
nology, the node goes from green to yellow state, and then to
red [72]). Then, VMware HA takes a long time to restart the
VMs due to the need for accessing to the shared storage, and
to allocate, initialize, and power-on the VM. Unfortunately,
this process is too slow for carrier-grade NFV.

In the Linux/Docker scenario, we observe a fault detection
coverage of 75%, with a detection latency of 19.3s on average.
Compared to ESXi/vSphere, there is an improvement with re-
spect to the fault detection latency, but a worse result in terms
of fault detection coverage. The reason is that Docker Swarm
uses a simpler fault detection mechanism, which monitors the
network reachability with the hosts, while VMware vSphere
combines both network and storage heartbeats and collects
diagnostic information from the hosts. Thus, in Linux/Docker,

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

most of the burden of fault detection is on the host on Linux
kernel, which unfortunately provides little information about
anomalous states (e.g., as in the case of memory overloads
and other delay faults, see § V-A).

Linux/Docker was able to recover most of the faults that
were detected, as the fault recovery coverage is 91.11% with
a latency of 91.2s on average. There are cases in which
the fault has been detected but not recovered, such as the
CPU corruption experiments: in this case, the injected host
is in an anomalous state, but it is not crashed, thus Docker
Swarm does not trigger the restart of the containers. In storage
corruption fault injection, Docker Swarm did not migrate the
containers because the fault did not impact on the host network
communication, thus the host was considered alive even if the
fault impacted on service availability (see also Fig. 4b).

VI. DISCUSSION AND CONCLUSION

Delivering a reliable NFV system is a challenging problem,
as it entails several design decisions for configuring fault
management policies and selecting third-party virtualization
and management products. Often, it is not clear how a choice
will impact on performance and availability, and how to get a
good trade-off. Thus, we proposed a dependability benchmark
for the direct measurement of dependability and performance
of an NFV system, and presented a case study on two major
virtualization paradigms.

Our experiments point out several useful findings. De-
spite the promise of higher performance and manageability,
container-based virtualization can be less dependable than
the hypervisors. The ESXi/vSphere configuration showed a
higher fault detection coverage, due to more sophisticated
fault management mechanisms than Linux/Docker Swarm,
which is a relatively less mature technology. The NFV system
designers should compensate for these limitations, by pairing
Docker with additional solutions for detecting problems not
reported by the OS, such as memory overloads, and by
configuring recovery actions for specific symptoms, such as
internal kernel errors and I/O errors. For example, cloud
monitoring dashboards, such as Datadog [74] and Librato [75],
allow to setup and customize policies to detect fault symptoms
(such as resource utilization peaks and trends) and to trigger
maintenance tasks (e.g., scaling or rebooting); the Linux kernel
can be configured (e.g., at compile time) to adopt a more
conservative behavior in the case of internal errors, by forcing
a reboot in order to trigger the fault management process; I/O
errors can be prevented by adopting redundant or more reliable
I/O interfaces.

Another advantage of the benchmark is that it allows NFV
designers to tune the configuration, and to repeat experiments
to measure and validate improvements in terms of coverage
and latency of fault detection and recovery. For example, our
experiments pointed out that the speed of fault management
in ESXi/vSphere could be improved by tuning the heartbeat
period and the time-to-reboot of VMs.

In this work, we have focused on comparing two dif-
ferent NFV setups using alternative virtualization paradigms
(container- and hypervisor-based), but the dependability
benchmark is also applicable for other types of comparisons,
such as: to compare different VNFs (e.g., alternative IMS
products) using the same NFVI and virtualization technology;

to consider different virtualization technologies that adopt the
same virtualization paradigm (such as VMware ESXi versus
Xen or KVM), or different physical setups (e.g., by varying
the number and type of hardware machines); and to compare
different MANO products. The purpose of this work has been
to provide a general and flexible methodology suitable for
benchmarking different NFV designs.

REFERENCES

[1] ETSI, “Network Functions Virtualization - An Introduction, Benefits,
Enablers, Challenges & Call for Action,” Tech. Rep., 2012.

[2] ——, “Network Functions Virtualisation (NFV) - Network Operator
Perspectives on Industry Progress,” Tech. Rep., 2013.

[3] A. Manzalini, R. Minerva, E. Kaempfer, F. Callegari et al., “Manifesto
of edge ICT fabric,” in Proc. ICIN, 2013.

[4] Technavio, Global Network Function Virtualization Market 2016-2020.
, 2016.

[5] SDNCentral LLC., 2016 Mega NFV Report. https://www.sdxcentral.
com/reports/nfv-vnf-2016-download/, 2016.

[6] ETSI, “Network Function Virtualisation (NFV) - Use Cases,” Tech. Rep.,
2013.

[7] Quality Excellence for Suppliers of Telecommunications Forum (QuEST
Forum), “TL 9000 Quality Management System Measurements Hand-
book 4.5,” Tech. Rep., 2010.

[8] ETSI, “GS NFV-REL 001 - V1.1.1 - Network Functions Virtualisation
(NFV); Resiliency Requirements,” 2015.

[9] H. S. Gunawi, A. Laksono, R. O. Suminto, M. Hao et al., “Why Does the
Cloud Stop Computing? Lessons from Hundreds of Service Outages,”
in Proc. SoCC, 2016.

[10] TPC Council. Homepage. http://www.tpc.org/.
[11] SPEC. Homepage. https://www.spec.org/.
[12] DBench Project, “Project website,” http://www.laas.fr/DBench/, 2004.
[13] K. Kanoun and L. Spainhower, Dependability Benchmarking for Com-

puter Systems. Wiley-IEEE Computer Society, 2008.
[14] M. Vieira and H. Madeira, “Benchmarking the Dependability of Differ-

ent OLTP Systems,” in Proc. DSN, 2003.
[15] J.-C. Ruiz, P. Yuste, P. Gil, and L. Lemus, “On benchmarking the

dependability of automotive engine control applications,” in Proc. DSN,
2004.

[16] ENISA, “Cloud computing certification.” [Online]. Available: https:
//resilience.enisa.europa.eu/cloud-computing-certification

[17] Clearwater, “Project Clearwater - IMS in the Cloud,” 2014. [Online].
Available: http://www.projectclearwater.org/

[18] C. Rotter, L. Farkas, G. Nyı́ri, G. Csatári, L. Jánosi, and R. Springer,
“Using Linux Containers in Telecom Applications,” Proc. ICIN, 2016.

[19] R. Cziva, S. Jouet, K. J. White, and D. P. Pezaros, “Container-based
network function virtualization for software-defined networks,” in Proc.
ISCC, 2015.

[20] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 3, 2007.

[21] A. Mukherjee and D. Siewiorek, “Measuring software dependability by
robustness benchmarking,” IEEE TSE, vol. 23, no. 6, 1997.

[22] ISO/IEC, “ISO/IEC 25010:2011, Systems and software Quality Require-
ments and Evaluation (SQuaRE),” 2011.

[23] R. Jain, The art of computer systems performance analysis. John Wiley
& Sons, 1990.

[24] J. Gray, “Why Do Computers Stop and What Can Be Done About It?”
in Proc. SRDS, 1985.

[25] M. Sullivan and R. Chillarege, “Software Defects and their Impact on
System Availability: A Study of Field Failures in Operating Systems,”
in Proc. FTCS, 1991.

[26] J. Durães and H. Madeira, “Generic Faultloads based on Software Faults
for Dependability Benchmarking,” in Proc. DSN, 2004.

[27] A. B. Brown, L. C. Chung, and D. A. Patterson, “Including the human
factor in dependability benchmarks,” in Proc. DSN, 2002.

[28] D. Oppenheimer, A. Ganapathi, and D. Patterson, “Why Do Internet
Services Fail, and What Can Be Done About It?” in USENIX Symp. on
Internet Technologies and Systems, 2003.

[29] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, 1997.

[30] S. Winter, T. Piper, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo,
“GRINDER: on reusability of fault injection tools,” in Proc. AST, 2015.

[31] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability
with software fault injection: A survey,” ACM Computing Surveys
(CSUR), vol. 48, no. 3, 2016.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

http://www.technavio.com/report/global-data-center-global-network-function-virtualization-market-2016-2020
https://www.sdxcentral.com/reports/nfv-vnf-2016-download/
https://www.sdxcentral.com/reports/nfv-vnf-2016-download/
http://www.tpc.org/
https://www.spec.org/
http://www.laas.fr/DBench/
https://resilience.enisa.europa.eu/cloud-computing-certification
https://resilience.enisa.europa.eu/cloud-computing-certification
http://www.projectclearwater.org/

1932-4537 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2017.2733042, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

[32] K. Wolter, A. Avritzer, M. Vieira, and A. Van Moorsel, Resilience
assessment and evaluation of computing systems. Springer, 2012.

[33] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie, E. Martins,
and D. Powell, “Fault injection for dependability validation: A method-
ology and some applications,” IEEE TSE, vol. 16, no. 2, 1990.

[34] K. Kanoun, M. Kaâniche, and J.-P. Laprie, “Qualitative and quantitative
reliability assessment,” IEEE Software, vol. 14, no. 2, pp. 77–87, 1997.

[35] W. H. Sanders and J. F. Meyer, “Stochastic activity networks: Formal
definitions and concepts,” in Lectures on Formal Methods and Perfor-
manceAnalysis. Springer Berlin Heidelberg, 2001, pp. 315–343.

[36] P. Koopman and J. DeVale, “The Exception Handling Effectiveness of
POSIX Operating Systems,” IEEE TSE, vol. 26, no. 9, 2000.

[37] J. Durães, M. Vieira, and H. Madeira, “Multidimensional Characteriza-
tion of the Impact of Faulty Drivers on the Operating Systems Behavior,”
IEICE Trans. on IS, vol. 86, no. 12, 2003.

[38] A. Albinet, J. Arlat, and J. Fabre, “Characterization of the Impact of
Faulty Drivers on the Robustness of the Linux Kernel,” in Proc. DSN,
2004.

[39] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, K. Sen, and D. Borthakur, “FATE and
DESTINI: A Framework for Cloud Recovery Testing,” in Proc. NSDI,
2011.

[40] P. Joshi, H. S. Gunawi, and K. Sen, “Prefail: A programmable tool for
multiple-failure injection,” in Proc. OOPSLA, 2011.

[41] X. Ju, L. Soares, K. G. Shin, K. D. Ryu, and D. Da Silva, “On fault
resilience of OpenStack,” in Proc. SoCC, 2013.

[42] Netflix, “The Chaos Monkey.” [Online]. Available: https://github.com/
Netflix/SimianArmy/wiki/Chaos-Monkey

[43] C. Pham, D. Chen, Z. Kalbarczyk, and R. K. Iyer, “CloudVal: A
framework for validation of virtualization environment in cloud infras-
tructure,” in Proc. DSN, 2011.

[44] F. Cerveira, R. Barbosa, H. Madeira, and F. Araujo, “Recovery for
Virtualized Environments,” in Proc. EDCC, 2015, pp. 25–36.

[45] D. Cotroneo, L. De Simone, A. K. Iannillo, A. Lanzaro, and R. Natella,
“Dependability evaluation and benchmarking of network function virtu-
alization infrastructures,” in Proc. NetSoft, 2015.

[46] A. Sunyaev and S. Schneider, “Cloud services certification,” Communi-
cations of the ACM, vol. 56, no. 2, 2013.

[47] Cloud Watch HUB, “Cloud certification guidelines and
recommendations.” [Online]. Available: www.cloudwatchhub.eu

[48] L. L. Peterson and B. S. Davie, Computer Networks: A Systems
Approach, 5th ed. Morgan Kaufmann Publishers Inc., 2011.

[49] E. Bauer and R. Adams, Reliability and Availability of Cloud Computing,
1st ed. Wiley-IEEE Press, 2012.

[50] ETSI, “Network Function Virtualisation Infrastructure Architecture -
Overview,” Tech. Rep., 2014.

[51] F. Cristian, “Understanding fault-tolerant distributed systems,” Commu-
nications of the ACM, vol. 34, no. 2, 1991.

[52] D. Powell, “Failure mode assumptions and assumption coverage,” in
FTCS, vol. 92, 1992.

[53] M. Le and Y. Tamir, “Fault injection in virtualized systems—challenges
and applications,” IEEE TDSC, vol. 12, no. 3, 2015.

[54] N. Amit, D. Tsafrir, A. Schuster, A. Ayoub, and E. Shlomo, “Virtual
CPU validation,” in Proc. SOSP, 2015.

[55] Amazon.com, Inc. (2011, Apr.) Summary of the Amazon EC2 and
Amazon RDS Service Disruption in the US East Region. [Online].
Available: http://aws.amazon.com/message/65648/

[56] A. Warren. (2011, Sep.) What Happened to Google Docs on
Wednesday. [Online]. Available: http://googleenterprise.blogspot.it/
2011/09/what-happened-wednesday.html

[57] J. Barton, E. Czeck, Z. Segall, and D. Siewiorek, “Fault Injection
Experiments using FIAT,” IEEE Trans. Comp., vol. 39, no. 4, 1990.

[58] G. Kanawati, N. Kanawati, and J. Abraham, “FERRARI: A tool for the
validation of system dependability properties,” in Proc. FTCS.

[59] T. Tsai and R. Iyer, “Measuring Fault Tolerance with the FTAPE Fault
Injection Tool,” in Proc. MMB, 1995.

[60] S. Han, K. Shin, and H. Rosenberg, “DOCTOR: An IntegrateD SOftware
Fault InjeCTiOn EnviRonment,” in Proc. CPDS, 1995.

[61] J. Arlat, J. Fabre, M. Rodrı́guez, and F. Salles, “Dependability of COTS
Microkernel-Based Systems,” IEEE TC, 2002.

[62] L. De Simone, “Dependability Benchmarking of Network Function
Virtualization,” Ph.D. dissertation, Univ. of Naples Federico II, 2017.

[63] ETSI, “Network Functions Virtualisation (NFV); Assurance; Report on
Active Monitoring and Failure Detection ,” Tech. Rep., 2016.

[64] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. SoCC,
2010.

[65] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the Weather
Tomorrow?: Towards a Benchmark for the Cloud,” in Proc. DBTest,
2009.

[66] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web
2.0,” in Proc. CCA, 2008.

[67] ETSI, “Report on the application of Different Virtualization Technolo-
gies,” Tech. Rep., 2016.

[68] VMware Inc., “Delivering High Availability in Carrier Grade NFV
Infrastructures,” White Paper. VMware vCloud NFV, 2010.

[69] J. Anderson, H. Hu, U. Agarwal, C. Lowery, H. Li, and A. Apon,
“Performance considerations of network functions virtualization using
containers,” in Proc. ICNC, 2016.

[70] A. Lakshman and P. Malik, “Cassandra,” SIGOPS Operating Systems
Review, vol. 44, no. 2, Apr. 2010.

[71] Gayraud, R. and Jacques, O. and Day, R. and Wright, C. P. SIPp. http:
//sipp.sourceforge.net/.

[72] VMware Inc. (2016) vSphere Virtual Machine Administration. https:
//www.vmware.com/support/pubs/.

[73] Docker Inc. Docker Swarm. https://www.docker.com/products/
docker-swarm.

[74] Datadog Inc. DatadogHQ Homepage. https://www.datadoghq.com/.
[75] Librato Inc. Librato Homepage. https://www.librato.com/.

Domenico Cotroneo (Ph.D.) is associate professor
at the Federico II University of Naples. His main
interests include software fault injection, dependabil-
ity assessment, and field measurement techniques.
He has been member of the steering committee and
general chair of the IEEE Intl. Symp. on Software
Reliability Engineering (ISSRE), PC co-chair of the
46th IEEE/IFIP Intl. Conf. on Dependable Systems
and Networks (DSN), and PC member for several
scientific conferences on dependable computing in-
cluding SRDS, EDCC, PRDC, LADC, SafeComp.

Luigi De Simone received his MSc degree with hon-
ors in Computer Engineering in 2013, and the PhD
degree from the Federico II University of Naples,
Italy, working on reliability evaluation of Network
Function Virtualization infrastructures, within the
Dependable Systems and Software Engineering Re-
search Team (DESSERT) group. His research ac-
tivity focuses on fault injection and dependabil-
ity benchmarking of operating systems and cloud
computing infrastructures. He received the ”Best
Student Presentation Award” from the ISSRE 2014

Conference, and the ”Best Paper Award” from the NetSoft 2015 Conference.

Roberto Natella (Ph.D.) is a postdoctoral researcher
at the Federico II University of Naples, Italy, and
co-founder of the Critiware s.r.l. spin-off company.
His research interests include dependability bench-
marking, software fault injection, and software aging
and rejuvenation, and their application in operating
systems and virtualization technologies. He has been
involved in projects with Leonardo-Finmeccanica,
CRITICAL Software, and Huawei Technologies. He
contributed, as author and reviewer, to several lead-
ing journals and conferences on dependable comput-

ing and software engineering, and he has been organizing the workshop on
software certification (WoSoCer) within the IEEE ISSRE conference.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
www.cloudwatchhub.eu
http://aws.amazon.com/message/65648/
http://googleenterprise.blogspot.it/2011/09/what-happened-wednesday.html
http://googleenterprise.blogspot.it/2011/09/what-happened-wednesday.html
http://sipp.sourceforge.net/
http://sipp.sourceforge.net/
https://www.vmware.com/support/pubs/
https://www.vmware.com/support/pubs/
https://www.docker.com/products/docker-swarm
https://www.docker.com/products/docker-swarm
https://www.datadoghq.com/
https://www.librato.com/

