
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

Network Monitoring in Software-Defined
Networking: A Review

Pang-Wei Tsai, Chun-Wei Tsai, Chia-Wei Hsu, and Chu-Sing Yang

Abstract—Monitoring is an important concept in network man-
agement as it helps network operators to determine the behavior
of a network and the status of its components. Traffic engineering,
quality of service, and anomaly detection also depend on moni-
toring for decision making. Software-defined networking (SDN) is
becoming increasingly popular for network provision and man-
agement tasks. This paper surveys the tasks and challenges asso-
ciated with SDN, providing an overview of SDN monitoring devel-
opments. Several design concepts, research directions, and open
issues are also discussed.

Index Terms—Measurement, monitoring, OpenFlow, software-
defined networking (SDN).

I. INTRODUCTION

THE purpose of network monitoring is to support proper
management operations [1]. Monitoring provides a view

of the network status and illustrates network behavior, which
is a basis for further management operations such as traffic
engineering [2], quality of service (QoS) [3], and anomaly de-
tection [4]. In computer networks, the operation model [5] is
a stackable architecture with different layers, linking numerous
hosts for data exchange. To satisfy various management pur-
poses, network monitoring helps network operators to obtain
operation and usage statistics.

As the Internet continues to grow at a fast pace, more and more
network applications are being leveraged by new technologies
to improve our daily life. At present, the traditional network
architecture cannot meet all the requirements of new applica-
tions. For instance, content delivery services usually require

Manuscript received March 24, 2017; revised November 7, 2017 and De-
cember 16, 2017; accepted December 29, 2017. This work was supported
in part by the Ministry of Science and Technology of Taiwan under Con-
tract MOST105-2221-E-005-091, Contract MOST106-2221-E-006-025, Con-
tract MOST106-3114-E-006-003, Contract MOST106-2221-E-005-094, and
Contract MOST106-3114-E-005-001, and in part by the TWAREN SDN Re-
search Team and OF@TEIN Community under Grant Asi@Connect-17-094.
(Corresponding author: Chun-Wei Tsai.)

P.-W. Tsai and C.-S. Yang are with the Institute of Computer and Com-
munication Engineering, Department of Electrical Engineering, National
Cheng Kung University, Tainan 701, Taiwan (e-mail: pwtsai@ee.ncku.edu.tw;
csyang@ee.ncku.edu.tw).

C.-W. Tsai is with the Department of Computer Science and Engineering,
National Chung Hsing University, Taichung 402, Taiwan (e-mail: cwtsai0807@
gmail.com).

C.-W. Hsu was with the Institute of Computer and Communication Engineer-
ing, Department of Electrical Engineering, National Cheng Kung University,
Tainan 701, Taiwan. She is now with the Taiwan Semiconductor Manufac-
turing Company Limited, Hsinchu 300-78, Taiwan (e-mail: winnie148636@
gmail.com).

Digital Object Identifier 10.1109/JSYST.2018.2798060

Fig. 1. Steps for interpreting the review in this paper.

flexible and adaptive controls to ensure high performance in
terms of global and regional network transmission. Live broad-
casting services may suddenly require a large bandwidth ca-
pacity to serve their audiences. After the broadcast has ended,
the network resources are no longer required. According to the
application requirements, network systems must be intelligent
for adaptation and optimization. For this issue, Pras et al. [6]
listed the existing problems of current network structures. They
described the weak scalability of ordinary monitoring methods
and the lack of efficiency in gathering monitoring information.

Software-defined networking (SDN) has been proposed as a
means of gradually eliminating network problems via adapta-
tion and flexibility [7]. SDN improves network programmability
and provides a global view of the entire network by adding sep-
arated control and data planes, which distinguish data transmis-
sion from control operations. In related studies, Sezer et al. [8]
discussed implementation issues of SDN, such as the tradeoff
between data processing, higher costs of communication, and
security issues in the system control. Nunes et al. [9] discussed
alternatives and possible implementations of SDN, whereas
Yassine et al. [10] surveyed issues related to monitoring and dis-
cussed the challenges of traffic measurement within SDN. They
pointed out that balancing resources and providing exact real-
time measurements via SDN are difficult tasks. However, owing
to the changes in network architectures, traditional optimization
methods such as balancing algorithms and traffic matrices may
struggle to implement traffic engineering in SDN. Shu et al.
[11] illustrated this issue and created a research framework for
enabling traffic engineering in SDN. Their approach consists of
two parts: traffic measurement and traffic management. They
also outlined an adaptive optimization method expected to re-
duce the energy consumption of network maintenance.

To provide perspective, our paper surveys developments in
research on SDN monitoring. Fig. 1 outlines the organization
of this paper. Section II briefly reviews the background to net-
work monitoring and compares established network systems

1937-9234 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

Fig. 2. Reference scheme of operation phases in network monitoring.

with those equipped with SDN. Section III introduces the con-
cept and practice of SDN monitoring, explaining the algorithms,
mechanisms, and operation schemes. Section IV collects open
issues for research. Finally, the conclusions and research sug-
gestions of SDN monitoring are given in Section V.

II. BACKGROUND AND RELATED WORK

To introduce the process of network monitoring, this section
briefly reviews some basic notions. To differentiate currently
used network systems from those equipped with SDN, we refer
to the former as legacy networks. The different monitoring as-
pects and implementations between legacy and SDN networks
are also compared and discussed.

A. Basic Notions of Network Monitoring

The procedure of network monitoring is classified in [12].
The first step is measurement, followed by the aggregation and
preprocessing of raw datasets. The datasets are then subjected
to various analytics for investigation. Finally, the data can be vi-
sualized to enable network operators to realize the status. To in-
terpret the detailed process of network monitoring, Williamson
[13] reviewed the fundamental properties of modern networks.
Lee et al. [14] also analyzed monitoring technologies and iden-
tified possible problems. Generally, network monitoring can
be roughly classified into data measurement and data process-
ing. Data measurement includes obtaining and preserving data.
Based on previous research, we further divide the measurement
operation into collection, preprocessing, and transmission. Data
processing is responsible for organizing the data as readable in-
formation, and we split this into analysis and presentation. The
processing scheme is shown in Fig. 2.

1) Collection: In this phase, there are three basic consider-
ations: means, target, and frequency. The means refers
to how the data are to be collected. The target refers to
the devices to be observed, and the frequency denotes the
time period before updating information. Furthermore,
the measurement methods can be divided [15] into ac-
tive and passive. In active measurement, agents gener-
ate probe instructions to perform a network feature eval-
uation. The measurement results can provide network
behavior information instantly, although there is also a
chance of increasing the system load if this operation is
performed frequently. In contrast, passive measurement
does not add artificial actions. The agents measure net-
work statistics indirectly by receiving output data from
network components.

2) Preprocessing: In this phase, the raw data are aggregated
and turned into some statistical format. The data pro-
cessing mechanism is helpful in itemizing and tracking
the measurement results. For example, the management
information base (MIB) [16] is a hierarchical structure
that provides such a format to handle the collected infor-
mation. Each MIB is addressed or identified by a unique
object identifier in the MIB hierarchy. In this way, the data
collected from each device can be separately itemized.

3) Transmission: This phase is responsible for carrying
itemized data to the analytics station. For example, the
simple network management protocol (SNMP) is a typi-
cal protocol used to exchange messages in transmission. It
provides a data delivery interaction between agents and
the station. Syslog [17] is another example of efficient
system message transmission, which uses the connec-
tionless method for log delivery.

4) Analysis: This phase generates statistics and identifies
particular events. Some methods perform traffic classifi-
cation based on the payload or host behavior, whereas
other methods examine communication patterns [18].
The analysis results provide network status information
to traffic engineering and fault management applications.

5) Presentation: This phase is used to export the analysis re-
sults. For example, MRTG [19] and RRDtool [20] provide
data visualization via traffic graphs. Graphing solutions
such as Cacti [21] are commonly used to present both
long- and short-term traffic statistics. Furthermore, pre-
senting the status of the network topology is important for
monitoring the network. The network reachability can be
pictured by analyzing routing tables and protocols [22].

B. Differences Between Legacy Network and SDN Monitoring

With SDN monitoring, a network can perform different mon-
itoring tasks at multiple spatial and temporal scales [23]. At
the spatial scale, SDN can divide larger traffic and aggregate
smaller traffic based on address prefixes and port numbers. At
the temporal scale, statistics can be collected in different periods
of time. Semicentralized agents can also share the overheads.
Table I compares the phases of a legacy network with those of
SDN monitoring. The details are as follows.

1) Collection: In a legacy network, developing agents to
collect measurement data from heterogeneous devices is
trivial. The agents pull data from devices periodically
and store them for further investigation. To improve this,
according to a designed scheduler with a global view,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TSAI et al.: NETWORK MONITORING IN SOFTWARE-DEFINED NETWORKING: A REVIEW 3

TABLE I
COMPARISON OF LEGACY NETWORK AND SDN IN EACH MONITORING PHASE

Phase Legacy network SDN Comparison

Collection Managed objects are equipped with
agent functions

SDN devices can record traffic
information using collecting
functions

SDN devices (such as OpenFlow switch) can record traffic
information. Additionally, forwarding devices are combined with
customized software to record information, offering more
flexibility than agent functions.

Preprocessing Using a standard format for filtering Using flexible ways to
aggregate and examine
collection

SDN methods can directly read information kept by forwarding
devices rather than simplifying the mathematical and statistical
assumptions used in the past

Transmission Using transmission protocols Supporting protocols and APIs SDN replaces legacy network control methods with southbound
APIs and SDN protocols

Analysis Analysis function Supporting extended module
through extensions

The extended modules in SDN are able to support analysis and
adaptation functions to automatically adjust SDN devices. Legacy
network operators can only manually change the network
configuration after analyzing the network status.

Presentation Visual data/reachability map Interactive interface/global
view

SDN can deploy an interactive interface for further operations
using northbound APIs. Additionally, the traditional method of
visualizing a network depends on discovery and analysis results,
whereas the SDN controller offers an initial global view.

SDN is able to decide which devices should be observed
and the precise polling time through the controller.

2) Preprocessing: In this phase, the filtering and itemization
methods for SDN are similar to those in a legacy network.
Because data flows may cross multiple SDN devices in
the network, it is necessary to distinguish valid from in-
valid data. Decisions can be sent back to the collection
agents to avoid recording duplicate data from neighbor-
hood network devices.

3) Transmission: In a legacy network, standard protocols are
commonly used for transmission (e.g., SNMP and sys-
log). However, in the SDN architecture, the southbound
application programming interface (API) allows network
designers to define suitable data structures for their re-
quirements. For example, OpenFlow [24] is a practical
instance of SDN. The OFPMT METER [25] component
of OpenFlow is a built-in controller function for obtain-
ing meter data from OpenFlow devices. Valid data from
the agents will be sent for analytics through OpenFlow
control communication.

4) Analysis: Most of the analytics developed for the legacy
network status are also available for SDN and are inte-
grated with the controller. For large-scale and distributed
SDN systems, the logging information can be easily ex-
plored using the centralized control. It is also convenient
for software developers to add interpreting mechanisms
[26] for network status analysis.

5) Presentation: The existing visualizations can be easily
integrated with the SDN system. Moreover, SDN can
provide interactive interfaces to support application-level
developments for presentation. By obtaining data through
the northbound APIs, network behavior and anomalies
can be immediately visualized.

C. Discussion

Comparing the legacy network with SDN, the former has
advantages in terms of bespoke operations and survivability,

whereas the latter offers better adaptation and flexibility in terms
of network control. As the network continues to grow, the scal-
ability increases the difficulty of monitoring. The latency and
inconsistency of distributed network devices usually lead to
inappropriate measurement results [27]. However, without effi-
cient methods in the preprocessing and transmission phases, it
is difficult to coordinate the log collection from various devices.
Moreover, some new network innovations (e.g., cloud-based
data centers and 5G mobile networks) have created more com-
plex environments in terms of system operation. Several stud-
ies [28], [29] show that traditional monitoring methods may
not be capable of keeping up with fast, on-demand, and dy-
namic changes in network behavior in such environments. Un-
der this circumstance, using SDN to implement the monitoring
mechanism is a possible improvement. In the SDN architecture,
the controller can be used for global network monitoring. This
centralized control in SDN makes it possible to perform more
softwarized operations on the network system, including cor-
relating traffic to specific forwarding destinations, identifying
end-hosts, pinpointing critical nodes, showing flow statistics,
and determining the topology of and tracking anomalous traf-
fic. With the SDN approach, network monitoring operations can
be turned into primitive functions embedded in the controller,
utilizing software-based control methods to observe the whole
SDN network.

In terms of implementation, there are still several problems in
applying the SDN methodology for production network moni-
toring. As most of the global network is still using the traditional
architecture, the first problem occurs at the boundary between
the legacy network and SDN. The SDN controller cannot man-
age or visualize network devices without the support of the SDN
protocol. Additionally, because SDN separates the logic of for-
warding devices from the data plane, it has an extra communica-
tion requirement and increased delay time for centralized control
communication. The monitoring tools should properly adjust the
connection quality and enable bootstrapping communication to
improve efficiency. Even SDN seems to be imperfect, despite its
many benefits in developing network applications. For network



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

designers, SDN brings a novel software-control architecture for
ameliorating existing problems with legacy networks. From the
viewpoint of network operators, SDN provides the possibility of
optimally managing network resources via softwarized artificial
programs. The open standard of SDN simplifies the network op-
erations, increasing the transparency of exploring the network.

III. RESEARCH DEVELOPMENTS IN SDN MONITORING

According to the various monitoring phases, we have col-
lected various developments in SDN monitoring in Table II. In
the collection phase, the monitoring components are instructed
to track the network status. In the preprocessing phase, the
listed developments include flow header inspection, hashing,
programming, and the traffic matrix (TM). In the transmission
phase, there are two types of instances: SDN-original meth-
ods (e.g., controller polling and switch pushing) and traditional
techniques (e.g., sampling and port mirroring). In the analysis
phase, traffic statistics, anomaly detection, fault management,
and traffic engineering must be considered. In the presentation
phase, various developments examine an interactive interface,
high-level language, and real-time presentation. The implemen-
tation varieties are explained in the following.

A. Collection Methods

The query schedule and time period adaptation are two impor-
tant concepts in data collection. Narayana et al. [44] proposed a
method using a query language to enable adaptive strategies for
reducing the overheads of SDN monitoring. Moreover, MicroTE
[30] instructs servers to track the network traffic through its in-
terface, but there is only one server per rack for summarizing the
host-to-host traffic. Mahout [31] focused on detecting elephant
flows in networks by observing the socket buffers in end hosts
as a proxy for flow measurement. HONE [32] uses an abstract
layer to specify the required statistics, employing partitioning
among the host agents and the controller for measurement. Liv-
ing on the Edge [33] explores two-threaded monitoring inside
the virtual switches: one thread for NetFlow [60] flow sampling
and another for sFlow [61] packet sampling. Experiments us-
ing Living on the Edge show that NetFlow gives efficient and
accurate measurements, whereas a badly configured sFlow can
degrade the network throughput when porting legacy methods
into an SDN environment.

B. Preprocessing Methods

The preprocessing phase in SDN is still responsible for gath-
ering and pre-examining the collected data. Most of the devel-
opments focus on improving the collection performance and
organizing the measurement agents. We categorize these meth-
ods into four groups and discuss them in the following.

1) Flow Header Inspection: In this area, different packet
fields (e.g., source/destination IP addresses and port numbers)
are used to specify the flow statistics. The hardware counters in
the ternary content addressable memory (TCAM) entries play
an important role in rapid data processing. For instance, Hamad
et al. [34] proposed a mechanism for obtaining traffic statistics

through the OpenFlow protocol and analyzed the impact of the
querying frequency on the network load and information accu-
racy. Their results indicate that the developed method achieves
high accuracy. Owing to the limited bandwidth and TCAM
entries, the scalability of flow header inspection is limited in
practice.

2) Hashing: This methodology extracts the sum of a packet
(rather than storing the entire packet body) to provide a tradeoff
between memory use and accuracy in data processing. A typical
development, OpenSketch [35], uses a hash function to improve
the performance of the preprocessing phase. OpenSketch has a
three-stage pipeline architecture for storing data by integrating
hash functions, classification, and a counting table. One char-
acteristic of OpenSketch is that it makes switches using static
random-access memory (SRAM) to store all the counters—this
is cheaper and more energy efficient than TCAM. Currently,
OpenSketch relies on modifying the commodity switches and
has limited availability.

3) Programming: This mechanism can support the monitor-
ing of specific objects with cost-efficient actions based on algo-
rithms. For example, ProgME [36] creates a measurement archi-
tecture (flowset) by organizing the collected data. The flowset
is specified by the descriptive Flowset Composition Language.
Compared with per-flow information, the flowset offers better
performance in tracking the flows. Moshref et al. [37] proposed
an algorithm called Max-Cover HHH to find the critical nodes
in the network topology. Their method collects statistics from
these nodes for use in existing switch components. Furthermore,
some high-level programming language designs (e.g., Frenetic
[41] and Pyretic [42]) provide the functionality for monitor-
ing specific traffic. In addition, NetAssay [43] is a preliminary
design based on Pyretic that captures traffic with specific charac-
teristics. It uses the domain name, autonomous system number,
and user or device information to collect traffic, rather than the
IP address or protocol number.

4) Traffic Matrix: The TM has played an important role in
traffic analysis and policy-control for many years [62]. Extend-
ing TM to the SDN framework is a popular research topic. In
recent developments, OpenTM [38] directly reads the statistics
from each flow to obtain the TM. This approach is concerned
with the accuracy of the collected data, rather than with effi-
cient querying frequency, which may cause scalability problems.
DCM [39] uses a novel two-stage filtering method to monitor
per-flow information. It includes an admission component to
filter flows that are not of interest and uses a Bloom filter to
determine the corresponding monitoring actions. iSTAMP [40]
separates TCAM entries into two parts: one for using the TM
to optimally aggregate parts of the incoming flows and another
for per-flow monitoring of the informative flows. Although iS-
TAMP seems to give a good allocation between resources and
accuracy, it ignores the flow aggregation constraints.

C. Transmission Methods

The transmission phase in SDN is responsible for sending
data plane statistics from devices to the controller. However,
by integrating with SDN, several developments used in legacy



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TSAI et al.: NETWORK MONITORING IN SOFTWARE-DEFINED NETWORKING: A REVIEW 5

TABLE II
INSTANCES OF RESEARCH DEVELOPMENTS IN SDN MONITORING

Phase Project/development Remarks

Collection MicroTE [30] MicroTE tracks network traffic at datacenter servers and leverages the existence of short-term
predictable traffic to mitigate unpredictable congestion

Mahout [31] Mahout uses the shim layer in the end host to monitor socket buffers for elephant flow detection
HONE [32] HONE provides a query language for ordering data collection across multiple hosts, which can reduce

the controller load
Living on the edge [33] Living on the edge employs NetFlow and sFlow inside the vSwitch and compares the performance of

their monitoring results
Preprocessing Getting traffic statistics from

network devices in an SDN
environment using OpenFlow [34]

Hamad et al. proposed a mechanism to obtain traffic statistics using OpenFlow features and analyzed
the effect of the querying frequency on the network load and information accuracy

OpenSketch [35] OpenSketch is a three-stage pipeline architecture for data collection, offering a good tradeoff between
accuracy and usage of memory resources

ProgME [36] ProgME is a measurement architecture with a redefined concept of organizing collected data
Resource/accuracy tradeoffs in
software-defined measurement [37]

This paper describes the Max-Cover HHH algorithm, which collects traffic information from HHH to
reduce the usage of TCAM memory

OpenTM [38] OpenTM directly reads the counters of switches, which is faster and has more accuracy than the TM in
legacy networks

DCM [39] DCM uses two-stage filters to implement per-flow monitoring
iSTAMP [40] The mechanism in iSTAMP separates the TCAM entries into two parts, one for optimally aggregating

flows and another for per-flow monitoring
Frenetic [41] Frenetic is a high-level language built for classifying and aggregating network traffic; it also offers a

functional reactive combinator library
Pyretic [42] Pyretic is an imperative domain-specific language embedded in Python to process packets and extend

packets with virtual fields
NetAssay [43] NetAssay is a preliminary design for capturing traffic more closely and mapping to intent through

programming
Compiling path queries in
software-defined networks [44]

The author of this study proposes the use of a query language to enable adaptive strategies to improve
the data collection efficiency of SDN monitoring

Transmission Planck [45] Planck employs port mirroring to extract traffic without its metadata to enhance performance
Empowering SDN controller with
packet-level information [46]

This study describes a controller that offers packet-level information by sending part of the packets to
the controller based on a sampling method

OpenSample [47] OpenSample is a traffic measurement mechanism that leverages the packet sampling of sFlow
OpenNetMon [48] The development in OpenNetMon periodically queries packet counters from the source and destination

switches, which is appropriate for end-to-end measurement
PayLess [49] In PayLess, the query data of each flow depend on an adaptive monitoring algorithm, resulting in better

measurement of actual utilization
FlowCover [50] The polling decisions in FlowCover are made by a polling scheme optimizer that reduces the

communication cost
FlowSense [51] FlowSense aims to use a completed passive-way to give zero-cost measurements

Analysis Revisiting traffic anomaly detection
using SDN [52]

This research proposes four different anomaly detection algorithms to analyze the connection status,
implement rate-limiting, block suspicious packets, and categorize anomalies

OpenWatch [53] OpenWatch uses a linear algorithm that dynamically changes the spatial and temporal granularity of
measurements

OpenSAFE [54] OpenSAFE is an extensible and scalable method for mirroring and measuring large amounts of traffic
in network systems

Scalable fault management for
OpenFlow [55]

This research employs scalable fault management to allow integrated operations, administration,
management execution, and failure detection in the MPLS network to emit communication messages

Baatdaat [56] Baatdaat uses the detour path to mitigate link congestion, but the depth-first algorithm for finding
detour paths is limited to depth-3 fat trees

TinyFlow [57] In TinyFlow, the edge switch chooses to send packets to different egress ports to break down any
detected elephant flows into mice flows

Presentation Interactive monitoring,
visualization, and configuration of
OpenFlow-based SDN [58]

This research provides a web interface that visually displays the network topology, traffic rate, and total
flow rules

OF@TEIN SDN testbed [59] This research provides wide network visibility using sFlow-RT and slices the network into multiple
concurrent experiments with SDN-based network virtualization

networks are compatible with SDN environments. Hence, we
classify the transmission methods as SDN-original and hybrid
methods in the following explanation.

1) SDN-Original Methods: The SDN-original methods only
use the SDN protocol to transmit measurement data. To ex-
plain this method, we take OpenFlow developments as an
example. Controller polling and switch pushing are two ap-
proaches provided by OpenFlow for collecting flow statistics

from the switch. Controller polling means that the controller
sends Stats_Request messages to the switches at the
polling rate, and the switches send back the counter information
with Stats_Reply messages. Most of the solutions use the
controller polling method, including OpenTM [38] and Open-
NetMon [48]. As controller polling incurs large communication
overheads, PayLess [49] offers an adaptive scheduling algorithm
for polling. The polling decisions of FlowCover [50] are made



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

by polling a scheme optimizer. FlowSense [51] uses a switch
pushing approach, whereby the Flow_Removed message is
triggered whenever a flow entry expires. The link utilization in
each interswitch link is then computed. Although FlowSense
has zero measurement cost, it is not able to estimate the instan-
taneous utilization because of its nonreal-time characteristics.

2) Hybrid Methods: Several traditional developments used
in legacy networks are compatible with the SDN environment.
These methods can be classified as packet based and flow based.
There are two types of packet-based methods: port mirroring
and packet sampling. Port mirroring is supported by most of the
modern switches, enabling a variety of network monitoring and
security applications. When port mirroring is enabled, traffic
destined for a single port is mirrored to a monitoring port that is
connected to a monitoring or intrusion detection system. For in-
stance, Planck [45] employs port mirroring to replicate packets
without the metadata, thus enhancing the traffic measurement
efficiency. Shirali-Shahreza and Ganjali [46] used packet sam-
pling to select one packet out of every N and send copied
parts of the sampled packets to the controller, thus providing
packet-level information. OpenSample [47] is another applica-
tion that leverages sFlow’s packet sampling to provide near-
real-time measurements of network load and individual flows.
The advantage of OpenSample is that it can be deployed with-
out modifying the end-host hardware. OpenSample works with
unmodified SDN-enabled switches with sFlow’s functionality.

D. Analysis

In SDN environments, the analysis functions are usually inte-
grated into the controller or placed on the application plane. It is
common to send feedback to the SDN controller for adaptation.
There are four common functions in the analysis phase: traf-
fic statistics, anomaly detection, fault management, and traffic
engineering.

1) Traffic Statistics: Throughput, packet loss, latency, and
link utilization are fundamental aspects of network evaluation.
In SDN, OpenNetMon [48] uses the counters kept by OpenFlow
switches to calculate the throughput and packet loss. The mea-
surement of latency in OpenNetMon emulates the transmission
of probe packets created by the controller. By comparing the
departure time with the arrival time of these packets, the latency
can be calculated. As the measuring points are strongly related to
the source and destination switches, the scope of OpenNetMon
is appropriate for end-to-end measurement in a single-domain
network controlled by one SDN controller. Planck [45] tracks
the sequence numbers and receiving time of TCP packets to
compute the throughput of TCP flows. The controller then totals
the throughput of all flows traversing a given link to compute
the link utilization. Note that SDN flows match the wildcard
rules in flow entries, whereas TCP flows are defined according
to five tuples of packets. The traditional flow-based monitoring
tools use ossified tuples to define flows, whereas the flow rules
are defined by operators. In addition, SDN controllers use the
action of flow entries to determine how the switches react to
a flow.

2) Anomaly Detection: Intrusions such as denial-of-service
attacks, fake packet insertion, and unauthorized programs can
manipulate connection requests, thus influencing network op-
erations. To detect possible threats, Mehdi et al. [52] proposed
several different anomaly detection algorithms to analyze the
connection status, implement rate-limiting, block suspicious
packets, and categorize anomalies. OpenWatch [53] provides
adaptive flow counting methods by using a linear prediction al-
gorithm that dynamically changes the granularity of the anomaly
detection measurements. If the traffic varies quickly, linear
schemes may not provide accurate estimates. OpenSAFE [54]
uses a policy language called ALARMS and a modified SDN
controller to manage the programmed network.

3) Fault Management: This function includes two parts:
fault detection and fault recovery. Fault detection identifies fail-
ures and triggers alarms, whereas fault recovery determines what
should be done to troubleshoot the network, such as comput-
ing detours or alternate paths to minimize the impact of traffic
disruption. Kempf et al. [55] proposed a scalable fault manage-
ment system that allows integrated operations, administration,
and management execution. They implemented failure detec-
tion in networks by introducing logical group ports that emit
monitoring messages without additional processing overheads.
Besides the fault management of links and forwarding device
failures, the controller failover issue is inevitable. In the SDN ar-
chitecture, the controller operates the logically centralized con-
trol of the enterprise network infrastructure, network policies,
and data flows. The forwarding devices in the data plane need to
remain connected to the controller in order to accept forward-
ing decisions for every decision. The failure of the controller
can cause critical problems. If the SDN controller crashes, the
whole SDN network may stop forwarding packets. As a result,
the SDN controller should avoid single-point-of-failure events
in handling system and software failures. The design of the
open network operating system (ONOS [63]) supports a con-
troller cluster that guarantees the system will continue operating
when one of the controllers fails by redistributing work to other
remaining controllers. As in ONOS, OpenDaylight [64] uses a
cluster composed of multiple controllers to ensure the availabil-
ity of the system. The difference between the ONOS and Open-
Daylight clusters is in the controller relationship. The ONOS
controllers operate in equal roles for each switch, whereas the
OpenDaylight controllers are setup in master–slave roles.

4) Traffic Engineering: As the equal-cost multipath algo-
rithm [65] occasionally mixes up the elephant and mice flows,
Baatdaat [56] uses SDN concepts to offer a hardware-based link
measurement module in line with the NetFPGA switch. This
enables correct calculations of link utilization. Possible detour
paths are constructed by a depth-search algorithm limited to
a depth-3 fat tree. The design of TinyFlow [57] records the
downstream ports and chooses a different egress port to break
up elephant flows into mice flows once the byte count exceeds
some threshold. However, as TinyFlow uses all available egress
ports for flow management, other existing flows may exceed
the threshold. This shortcoming will hopefully be improved in
future research.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TSAI et al.: NETWORK MONITORING IN SOFTWARE-DEFINED NETWORKING: A REVIEW 7

E. Presentation Developments

In terms of presentation developments, there is a trend toward
using interactive and graphic methods of visualizing data. We
include three directions for research: the topology graphical
user interface (GUI), real-time presentation, and network service
interface.

1) Topology GUI: This combines the discovery of the net-
work topology with a display of the network graph. Although
there is no official standard that defines a topology discovery
method, most of the current controllers (e.g., Floodlight [66],
Ryu [67], and Beacon [68]) have already implemented such
GUIs. During the topology discovery process, the SDN con-
troller detects the current network topology by leveraging the
link layer discovery protocol (LLDP) [69]. LLDP sends packets
to each port of each switch, and the switches then separate the
received packets to the corresponding ports. All switches receive
LLDP packets from each port, except the controller port, and
forward the packets to the controller via a Packet-In message.
The controller extracts the payload of these packets and adds
information to its topology database. By adding a controller
module or using applications, we can visualize the topology
database of the network.

2) Real-Time Presentation: The sFlow-RT analytics engine
[70] aims to deliver real-time visibility for SDN networks. Its
agent uses the sFlow protocol to collect packets at the defined
sampling rate and sends them to the sFlow-RT collector. sFlow-
RT operates in the control plane to receive the sampled packets
and process them into matrices of statistics based on the flow.
The matrices can be graphically displayed via the represen-
tational state transfer (REST) [71] API. Rehman et al. [59]
developed an sFlow monitoring engine and used sFlow-RT to
implement traffic visualization in the OF@TEIN testbed.

3) Management Interface: This represents the managed flow
tables, reflects real-time traffic information, and cautions the op-
erators when elephant flows choke the network or unexpected
system errors occur. Certain open-source SDN controllers (e.g.,
ONOS, OpenDaylight, and Ryu) provide an API configuration
to add/remove flow entries or handle network events. Isolani
et al. [58] developed an interactive interface that can visually
display the network topology, along with the download and up-
load traffic rates. The controller polling interval and idle timeout
configuration can be set and the corresponding change of traffic
rate observed. The use of programming composition to achieve
functional flexibility is a current trend in SDN.

F. Summary

Currently, the SDN concept is widely applied in many net-
work fields, such as campus networks [72] and service providers
[73]. According to a survey conducted by IHS Markit [74],
around 75% of networking carriers have already deployed or will
deploy SDN. Many researchers are also focusing on evaluating
the production applications of SDN in the real world. For exam-
ple, Bakalov [75] introduced three major challenges related to
shifting real networks into SDN. In their research, the frequent
interactions required to update the real-time network status may
generate huge management overheads. Fulfilling the necessary

services with a frequent new set of use cases is an important con-
sideration when deploying SDN in a production environment.
Furthermore, friendly control with software-based methods in
SDN is the most attractive benefit to network operators. As SDN
monitoring covers many network measurement methods, it is
possible to orchestrate the application plane, control plane, and
data plane to satisfy management demands. With mechanisms
to control forwarding rules and actions, the SDN monitoring
results can be extended using many creative network adaptation
techniques. Based on the review of research in this section, we
now briefly summarize the different uses of SDN monitoring.

1) By User Role: When migrating from a legacy network
architecture to SDN, both the network operators and users must
embrace the changes. Operators have to use SDN methods to
manage the network, whereas users may need to change their
perception about the network service. The SDN architecture pro-
vides a way of making service-oriented operations for network
applications.

a) Operator: SDN takes apart and abstracts the control
plane from the switches, routers, and other network compo-
nents. It is more convenient for network operators to trou-
bleshoot the separate logical and physical layers. Centralized
control of a network enables operators to maintain large-scale
networks, avoiding the need to configure policies switch-by-
switch. Additionally, with the help of monitoring information,
operators are able to balance resources in large-scale networks.
Therefore, SDN monitoring techniques have already been im-
plemented in enterprise and data center solutions. For instance,
B4 [76] demonstrated the practice of bringing the SDN archi-
tecture into an enterprise network. The aim is to drive efficiency
improvements in terms of managing traffic forwarding over a
wide area network (WAN). Furthermore, Hong et al. [77] pre-
sented software-driven WAN (SWAN), a system that boosts the
utilization of data center networks to satisfy transmission de-
mands. According to their experimental results, SWAN is able
to carry more traffic than traditional multiprotocol label switch-
ing (MPLS) techniques.

b) End user: In legacy networks, users generally have lit-
tle ability to control the network, whereas network function
virtualization (NFV) [78] turns network services into adjustable
objects within SDN. For example, by obtaining the network sta-
tus from presentation developments, network users are able to
send back essential reactions to the network controller through
NFV. By doing this, the interaction between application and
network system becomes more collaborative and adaptive [79].

2) By Deployment Environment: Many academic and com-
mercial institutes have already deployed SDN internally. How-
ever, most of the global network is still operating on the tra-
ditional architecture. Local SDN networks require the use of
transit legacy networks to deliver packets to other SDN net-
works. In these circumstances, the local SDN controllers can
only manage their own regions, while the operation of the in-
termediate network is managed by non-SDN methods. To find
capable developments for network monitoring, we have to di-
vide the deployment environment into two types: pure SDN and
hybrid SDN (hSDN). The possible applications for enabling
SDN monitoring are described in the following.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

a) Pure SDN environment: In this environment, all net-
work nodes are SDN enabled and are fully managed by the SDN
controller. Most of the monitoring approaches in the develop-
ment instances are implemented in pure SDN environments.
The only concern about monitoring a pure SDN is the scale of
the network. If it is small, then employing a powerful controller
can fulfill most control requirements. Using OpenSketch and
iSTAMP helps an SDN switch achieve better performance in
obtaining data from the switch hardware. However, if the scale
of the network is huge (e.g., data center networks and large-scale
network testbeds) [80], the monitoring performance becomes an
important issue. To reduce the controller load, Phan and Fukuda
[81] proposed a network-wide monitoring solution for SDN.
Using alternative operations such as HONE may also help to
decrease the traffic monitoring load.

b) Hybrid environment: As a combination of legacy and
SDN architectures, network managers may have to use both
non-SDN and SDN methods to monitor network devices in a
hybrid environment. Vissicchio et al. [82] thoroughly discussed
such a scenario. They classified the hSDN models that com-
bine SDN with legacy networks in network deployment. The
challenge of monitoring hybrid environments is to send corre-
sponding instructions to both non-SDN and SDN devices during
the collection and transmission phases.

Living on the Edge, OpenSample, and SUMA [83] are refer-
ence solutions that may enable compatible measurement solu-
tions. There is also an extension called heterogeneous SDN [84],
which aims to apply SDN concepts as a means of improving the
controllability of heterogeneous communication systems such
as 5G mobile networks [85], VANets [86], sensor networks [87],
and the Internet of Things [88]. By integrating SDN manage-
ment techniques, these systems can achieve intelligent network
control. For example, in the 5G SDN mobile network, the traffic
statistics reported by small cells and tiny cells can be used to
promote traffic engineering and energy saving. The monitoring
results are useful in improving the spectrum adaptation of base
stations using software-defined control [85].

3) By Operation Purpose: Using the operation purpose
to determine the required deployment in SDN monitoring is
essential for monitoring developments. Here, we describe three
important purposes for deploying SDN monitoring.

a) Improving monitoring performance: Achieving low-
cost and high-accuracy measurements is the ideal scenario in
network monitoring. To achieve better performance, some com-
promise in system ability is an option. For example, DevoFlow
[89] removes unnecessary flow table entries, which reduces the
flow measurement overhead by decreasing the number of active
flow entries.

b) Supporting traffic management: SDN has the ability to
distinguish between the characteristic issues of security, fault
tolerance, and traffic engineering. In security analysis, highly
varying traffic or suspicious connections should be detected by
anomaly detection algorithms. Fault-tolerant mechanisms offer
available paths for failover operations. To meet QoS require-
ments, traffic engineering mechanisms adjust the priority of
flows. Deploying MicroTE or Mahout can help to track mice
and elephant flows.

c) Commonality control: Although open-source con-
trollers provide platforms for SDN network programming, the
different APIs and control instructions impose limitations. The
commonality of controller APIs is not only a requirement, but
also a hot research issue in SDN control and monitoring. The
use of programmatic languages can bring extended controlla-
bility into SDN. For example, Pyretic can be built as an abstract
handler for control collaboration, although it is no longer being
developed.

IV. OPEN ISSUES

A. Supporting Adaptive Measurement

In general cases, network measurement tasks are config-
ured with fixed metrics to sample the traffic regularly, although
adaptive metrics may be more efficient during the actual mea-
surements. For instance, according to the observed network
behavior, the SDN controller can change the per-flow metrics
to approach more fine-grained measurement. There are several
studies that focus on this issue. OpenMeasure [90] leverages
the SDN controller to update the monitoring rules with learning
predictions in real time. Wellem et al. [91] implemented the
Count-Min sketch algorithm inside the NetFPGA for adaptive
measurements. Moreover, HashPipe [92] can track heavy flows
with high accuracy on the SDN switches, using pipeline and
hash tables to manage flow identifiers and counters to achieve
better performance.

B. Toward Real-Time Analytics

For comprehensive management, the designed framework
must reduce the monitoring overheads while flexibly allocating
network resources in order to process and visualize traffic statis-
tics in real time. Traffic engineering is responsible for improving
performance at both the traffic and resource levels. Akyildiz
et al. [93] laid down the roadmap for traffic engineering in SDN
networks. They specified four indexes: flow management, fault
tolerance, topology update, and traffic analysis. We believe that
the trend of intelligently using flow entries will remain a hot
topic, and the powerful SDN analytics engines of the future
will be able to process the traffic status in almost-real time.

C. Cyber-Security Support

As SDN decouples data and control, the control plane will
become the new target for malicious attacks. Security measures
can be enabled by redirecting or filtering traffic flows based on
the packet header or payload. For example, FleXam [94] imple-
ments packet-level information by redefining sampling as a new
action (i.e., OFPAT_SAMPLING) to be assigned to each flow.
FleXam also implements the so-called threshold random walk,
a port scan detection technique. The OrchSec architecture [95]
orchestrates network monitoring and SDN control functions to
develop security applications. By using the REST API, security
applications in OrchSec can periodically query traffic. Once
a suspicious activity is detected, the application takes action to
drop the harmful packets. Furthermore, Liyanage et al. [96] pro-
posed a method for leveraging monitoring and data collection
to detect security threats in mobile SDN networks.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TSAI et al.: NETWORK MONITORING IN SOFTWARE-DEFINED NETWORKING: A REVIEW 9

D. Cloud Application Integration

With the increasing usage of cloud services, there is a need to
enhance network control functionality for handling traffic in the
cloud. For example, Neutron [97] is an SDN-enabled develop-
ment that provides virtual network management in OpenStack
[98]. Meridian [99] is a prototype SDN controller platform
for network services in cloud environments, while NetGraph
[100] uses a topology service module to obtain the topology of
the underlying network and up-to-date continuous streams to
update this information. CloudWatcher [101] applies security
in cloud network monitoring services using four routing algo-
rithms, which detour packets to preinstalled network security
devices for inspection.

E. Quality-of-Experience Monitoring

To augment QoS, the concept of quality-of-experience (QoE)
[102] has emerged to allow providers to observe user perception,
experience, and expectations. Using packet-based or flow-based
measurement results, SDN can provide sophisticated QoS man-
agement for traffic engineering implementations. As effective
QoE control mechanisms require QoS parameters to make deci-
sions, Fiedler et al. [103] proposed a generic formula to connect
QoE and QoS parameters. Kassler et al. [104] also proposed a
system architecture for QoE monitoring and management based
on two functions: the QoS matching and optimization function
residing in the application layer and the path assignment func-
tion residing in the control layer. Farshad et al. [105] introduced
an in-network QoE measurement framework that provided mon-
itoring for HTTP adaptive streaming, and Jarschel et al. [106]
also implemented QoE approaches based on deep packet in-
spection (DPI) to enhance video streaming transmission.

F. Application-Aware Networking

To enhance application-driven adaptations and on-demand
service, concepts incorporating application programming into
SDN have started to appear [107]. Qian et al. [108] provided
deep insights into the application usage and the relationship
between network usage with user mobility in cellular data net-
works, thus helping network designers and operators to adjust
their network capacity management. Atlas [109] is a crowd-
sourcing approach to detect fine-grained applications from mo-
bile agents. These are then sent to a machine-learning trainer
inside the control plane for classification. Mekky et al. [110]
proposed an extended application-aware SDN architecture that
generalizes forwarding abstractions, including layer 4–7 infor-
mation. For improved efficiency, their implementation leverages
the application logic at the switches. Moreover, FlowQoS [111]
is a reference design that performs per-flow application-based
QoS by delegating the application identification and QoS con-
figuration to the SDN controller.

G. Software-Defined Internet Exchange

The high-level abstraction of network services and manage-
ment functions gave rise to the software-defined Internet ex-
change (SDX) [112], [113], which interconnect multiple SDN

domains. In this way, operations such as network advertisement
and configuration can be software controlled. Such a combi-
nation of traffic monitoring in SDXs will bring benefits for
managing multidomain networks and monitoring collaborated
services. As SDN practices grow at a fast pace, it can be expected
that SDX will become an important issue in global network re-
search.

V. CONCLUSION

This paper has surveyed the current state of the art in SDN
monitoring, including design ideas, methods, and possible im-
provements. Integrated perspectives on monitoring issues have
been introduced, and traditional monitoring and SDN monitor-
ing methods have been compared. The development concepts,
research directions, and open issues of SDN have been reviewed
and discussed. For readers who are planning to study SDN mon-
itoring, several research directions and suggestions are given as
follows.

1) Making monitoring more efficient: One of the critical
tasks in network monitoring is to reduce the operation
overheads when measuring the network status and sum-
marizing statistical information. The operation overheads
grow according to the scale and complexity of the net-
work. For large-scale SDN networks, there is a need for
smart algorithms in data selection, scheduling, and sam-
pling. Balancing performance and accuracy is a critical
problem for operators.

2) Exploring potential uses: To fulfill various use cases in
SDN monitoring, supporting potential utilization scenar-
ios in advance is a desirable aspect of development. As
most of the parts of the global network are still using tra-
ditional architecture, it is expected that the hSDN mode
will be the deployment solution for some time. Therefore,
choosing capable designs for application into the moni-
toring environment is vital. Making good use of program-
ming languages and APIs will help researchers develop
various monitoring mechanisms for achieving more flex-
ible, adaptive, and high-level control characteristics in
SDN monitoring.

3) Transparency: In network virtualization, the virtual net-
work technology provides a powerful technique for uti-
lizing the network. Supervising both physical and logical
networks and ensuring that mapping information remains
transparent is the challenge in monitoring the networks.
To provide a clear view of the physical and virtualized
parts in each slice, the transparency functionality is a
practical development that supports network monitoring.

4) Inspection and analysis: It is important to network op-
erators that the usage of both applications and users can
be identified. In terms of inspection, monitoring network
packets enables network operators to secure the network,
meeting the various and changeable operations safely.
However, checking layer 2–4 headers is no longer suf-
ficient to extract the packet. Exploiting multilayer ex-
amination and DPI are increasingly important for fine-
grained security monitoring.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions on the paper.

REFERENCES

[1] A. I. Coates, A. O. Hero, III, R. Nowak, and B. Yu, “Internet to-
mography,” IEEE Signal Process. Mag., vol. 19, no. 3, pp. 47–65,
May 2002.

[2] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
IP routing protocols,” IEEE Commun. Mag., vol. 40, no. 10, pp. 118–124,
Oct. 2002.

[3] A. Campbell, G. Coulson, and D. Hutchison, “A quality of service ar-
chitecture,” ACM SIGCOMM Comput. Commun. Rev., vol. 24, no. 2,
pp. 6–27, 1994.

[4] T. Fawcett and F. Provost, “Activity monitoring: Noticing interesting
changes in behavior,” in Proc. ACM Int. Conf. Knowl. Discovery Data
Mining, 1999, pp. 53–62.

[5] H. Zimmermann, “OSI reference model—The ISO model of architecture
for open systems interconnection,” IEEE Trans. Commun., vol. COM-28,
no. 4, pp. 425–432, Apr. 1980.

[6] A. Pras et al., “Key research challenges in network management,” IEEE
Commun. Mag., vol. 45, no. 10, pp. 104–110, Oct. 2007.

[7] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-defined networking: A compre-
hensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[8] S. Sezer et al., “Are we ready for SDN? Implementation challenges
for software-defined networks,” IEEE Commun. Mag., vol. 51, no. 7,
pp. 36–43, Jul. 2013.

[9] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T.
Turletti, “A survey of software-defined networking: Past, present, and fu-
ture of programmable networks,” IEEE Commun. Surveys Tuts., vol. 16,
no. 3, pp. 1617–1634, Third Quarter 2014.

[10] A. Yassine, H. Rahimi, and S. Shirmohammadi, “Software defined net-
work traffic measurement: Current trends and challenges,” IEEE Instrum.
Meas. Mag., vol. 18, no. 2, pp. 42–50, Apr. 2015.

[11] Z. Shu et al., “Traffic engineering in software-defined networking:
Measurement and management,” IEEE Access, vol. 4, pp. 3246–3256,
2016.

[12] M. Cheikhrouhou and J. Labetoulle, “Efficient instrumentation of man-
agement information models with SNMP,” in Proc. IEEE/IFIP Netw.
Oper. Manage. Symp., 2000, pp. 477–490.

[13] C. Williamson, “Internet traffic measurement,” IEEE Internet Comput.,
vol. 5, no. 6, pp. 70–74, Nov./Dec. 2001.

[14] S. Lee, K. Levanti, and H. S. Kim, “Network monitoring: Present and
future,” Comput. Netw., vol. 65, pp. 84–98, 2014.

[15] V. Mohan, Y. J. Reddy, and K. Kalpana, “Active and passive network
measurements: A survey,” Int. J. Comput. Sci. Inf. Technol., vol. 2, no. 4,
pp. 1372–1385, 2011.

[16] R. Presuhn, “Management information base (MIB) for the simple
network management protocol (SNMP),” 2002. [Online]. Available:
https://www.ietf.org/rfc/rfc3418.txt

[17] C. Lonvick, “The syslog protocol,” 2001. [Online]. Available:
https://www.ietf.org/rfc/rfc3164.txt

[18] S. Kandula, R. Chandra, and D. Katabi, “What’s going on?: Learn-
ing communication rules in edge networks,” ACM SIGCOMM Comput.
Commun. Rev., vol. 38, no. 4, pp. 87–98, 2008.

[19] T. Oetiker and D. Rand, “MRTG: The multi router traffic grapher,” in
Proc. Syst. Admin. Conf., 1998, pp. 141–148.

[20] T. Oetiker, “RRDtool: Round robin database tool,” Mar. 14, 2017. [On-
line]. Available: https://oss.oetiker.ch/rrdtool/index.en.html

[21] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing,
power, and area model,” Compaq Comput. Corporation, Palo Alto, CA,
USA, Tech. Rep. 2001/2, 2001.

[22] B. Cheswick, H. Burch, and S. Branigan, “Mapping and visualizing the
internet,” in Proc. USENIX Annu. Tech. Conf., 2000, pp. 1–12.

[23] J. A. Wickboldt, W. P. De Jesus, P. H. Isolani, C. B. Both, J. Rochol, and L.
Z. Granville, “Software-defined networking: Management requirements
and challenges,” IEEE Commun. Mag., vol. 53, no. 1, pp. 278–285,
Jan. 2015.

[24] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–
74, 2008.

[25] “OpenFlow specification 1.3.” Mar. 14, 2017. [Online]. Available: https://
www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.0.pdf

[26] “Elasticsearch.” Mar. 14, 2017. [Online]. Available: https://www.
elastic.co/

[27] Y. Vardi, “Network tomography: Estimating source-destination traffic
intensities from link data,” J. Amer. Statist. Assoc., vol. 91, no. 433,
pp. 365–377, 1996.

[28] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined
networking: State of the art and research challenges,” Comput. Netw.,
vol. 72, pp. 74–98, 2014.

[29] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and A. V. Vasilakos, “Software-
defined and virtualized future mobile and wireless networks: A survey,”
Mobile Netw. Appl., vol. 20, no. 1, pp. 4–18, 2015.

[30] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. Conf. Emerg. Netw. Exp.
Technol., 2011, Art. no. 8.

[31] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-
overhead datacenter traffic management using end-host-based ele-
phant detection,” in Proc. IEEE Int. Conf. Comput. Commun., 2011,
pp. 1629–1637.

[32] P. Sun, M. Yu, M. J. Freedman, J. Rexford, and D. Walker, “HONE:
Joint host-network traffic management in software-defined networks,” J.
Netw. Syst. Manage., vol. 23, no. 2, pp. 374–399, 2015.

[33] V. Mann, A. Vishnoi, and S. Bidkar, “Living on the edge: Monitoring
network flows at the edge in cloud data centers,” in Proc. Int. Conf.
Commun. Syst. Netw., 2013, pp. 1–9.

[34] D. J. Hamad, K. G. Yalda, and I. T. Okumus, “Getting traffic statistics
from network devices in an SDN environment using OpenFlow,” in Proc.
Inf. Technol. Syst., 2015, pp. 7–11.

[35] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with
OpenSketch,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation,
2013, pp. 29–42.

[36] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: Towards pro-
grammable network measurement,” IEEE/ACM Trans. Netw., vol. 19,
no. 1, pp. 115–128, Feb. 2011.

[37] M. Moshref, M. Yu, and R. Govindan, “Resource/accuracy tradeoffs
in software-defined measurement,” in Proc. ACM Workshop Hot Topics
Softw. Defined Netw., 2013, pp. 73–78.

[38] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic matrix
estimator for OpenFlow networks,” in Proc. Int. Conf. Passive Active
Netw. Meas., 2010, pp. 201–210.

[39] Y. Yu, C. Qian, and X. Li, “Distributed and collaborative traffic monitor-
ing in software defined networks,” in Proc. ACM Workshop Hot Topics
Softw. Defined Netw., 2014, pp. 85–90.

[40] M. Malboubi, L. Wang, C.-N. Chuah, and P. Sharma, “Intelligent SDN
based traffic (de)aggregation and measurement paradigm (iSTAMP),” in
Proc. IEEE Int. Conf. Comput. Commun., 2014, pp. 934–942.

[41] N. Foster et al., “Frenetic: A network programming language,” ACM
Sigplan Notices, vol. 46, no. 9, pp. 279–291, 2011.

[42] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing
software defined networks,” in Proc. USENIX Symp. Netw. Syst. Des.
Implementation, 2013, pp. 1–13.

[43] S. Donovan and N. Feamster, “Intentional network monitoring: Finding
the needle without capturing the haystack,” in Proc. ACM Workshop Hot
Topics Netw., 2014, pp. 1–7.

[44] S. Narayana, J. Rexford, and D. Walker, “Compiling path queries in
software-defined networks,” in Proc. Workshop Hot Topics Softw. Defined
Netw., 2014, pp. 181–186.

[45] J. Rasley et al., “Planck: Millisecond-scale monitoring and control for
commodity networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 407–418, 2015.

[46] S. Shirali-Shahreza and Y. Ganjali, “Empowering software defined net-
work controller with packet-level information,” in Proc. IEEE Int. Conf.
Commun., 2013, pp. 1335–1339.

[47] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “OpenSam-
ple: A low-latency, sampling-based measurement platform for com-
modity SDN,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst., 2014,
pp. 228–237.

[48] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon: Net-
work monitoring in OpenFlow software-defined networks,” in Proc.
IEEE Netw. Oper. Manage. Symp., 2014, pp. 1–8.

[49] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A
low cost network monitoring framework for software defined networks,”
in Proc. IEEE Netw. Oper. Manage. Symp., 2014, pp. 1–9.

https://www.ietf.org/rfc/rfc3418.txt
https://www.ietf.org/rfc/rfc3164.txt
https://oss.oetiker.ch/rrdtool/index.en.html
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.elastic.co/
https://www.elastic.co/


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TSAI et al.: NETWORK MONITORING IN SOFTWARE-DEFINED NETWORKING: A REVIEW 11

[50] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “FlowCover: Low-cost flow
monitoring scheme in software defined networks,” in Proc. IEEE Global
Commun. Conf., 2014, pp. 1956–1961.

[51] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha, “FlowSense: Monitoring network utilization with zero mea-
surement cost,” in Proc. Int. Conf. Passive Active Netw. Meas., 2013,
pp. 31–41.

[52] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traf-
fic anomaly detection using software defined networking,” in
Proc. Int. Workshop Recent Adv. Intrusion Detection, 2011,
pp. 161–180.

[53] Y. Zhang, “An adaptive flow counting method for anomaly detec-
tion in SDN,” in Proc. ACM Conf. Emerg. Netw. Exp. Technol., 2013,
pp. 25–30.

[54] J. R. Ballard, I. Rae, and A. Akella, “Extensible and scalable network
monitoring using OpenSAFE,” in Proc. Internet Netw. Manage. Conf.
Res. Enterprise Netw., 2010.

[55] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takács, and P.
Sköldström, “Scalable fault management for OpenFlow,” in Proc. IEEE
Int. Conf. Commun., 2012, pp. 6606–6610.

[56] F. P. Tso and D. P. Pezaros, “Baatdaat: Measurement-based flow schedul-
ing for cloud data centers,” in Proc. IEEE Symp. Comput. Commun.,
2013, pp. 765–770.

[57] H. Xu and B. Li, “TinyFlow: Breaking elephants down into mice in data
center networks,” in Proc. IEEE Int. Workshop Local Metropolitan Area
Netw., 2014, pp. 1–6.

[58] P. H. Isolani, J. A. Wickboldt, C. B. Both, J. Rochol, and L. Z. Granville,
“Interactive monitoring, visualization, and configuration of OpenFlow-
based SDN,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage., 2015,
pp. 207–215.

[59] S. U. Rehman, W.-C. Song, and M. Kang, “Network-wide traffic visibility
in OF@TEIN SDN testbed using sFlow,” in Proc. Asia-Pacific Netw.
Oper. Manage. Symp., 2014, pp. 1–6.

[60] NetFlow, Mar. 14, 2017. [Online]. Available: http://www.cisco.
com/go/netflow

[61] sFlow, Mar. 14, 2017. [Online]. Available: http://www.sflow.org/
[62] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C.

Diot, “Traffic matrix estimation: Existing techniques and new di-
rections,” ACM SIGCOMM Comput. Commun. Rev., vol. 32, no. 4,
pp. 161–174, 2002.

[63] Open Network Operating System, Sep. 30, 2017. [Online]. Available:
http://onosproject.org/

[64] OpenDaylight, Mar. 14, 2017. [Online]. Available: https://www.
opendaylight.org/

[65] C. E. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm, RFC
2992, 2000.

[66] Floodlight, Mar. 14, 2017. [Online]. Available: http://www.
projectfloodlight.org/floodlight/

[67] Ryu, Mar. 14, 2017. [Online]. Available: https://osrg.github.io/ryu/
[68] D. Erickson, “The beacon openflow controller,” in Proc. ACM Workshop

Hot Topics Softw. Defined Netw., 2013, pp. 13–18.
[69] P. Congdon and B. Lane, “802.1ab—Station and media access con-

trol connectivity discovery,” 2005. [Online]. Available: http://www.
ieee802.org/1/pages/802.1ab.html

[70] sFlow-RT, Mar. 14, 2017. [Online]. Available: http://www.sflow-rt.com/
[71] Richardson, Leonard and Ruby, SamRoy Thomas Fielding,

“RESTful web servicesArchitectural Styles and the design of
network-based software architectures, representational state transfer
(REST),” 20082000. [Online]. Available: https://www.ics.uci.edu/ field-
ing/pubs/dissertation/rest_arch_style.htm

[72] M. Kobayashi et al., “Maturing of OpenFlow and software-defined net-
working through deployments,” Comput. Netw., vol. 61, pp. 151–175,
2014.

[73] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R.
Sherwood, “On controller performance in software-defined networks,”
in Proc. USENIX Workshop Hot Topics Manage. Internet, Cloud, Enter-
prise Netw. Services, 2012, p. 10.

[74] M. Howard, “75 percent of carriers surveyed have deployed or
will deploy SDN this year,” 2016. [Online]. Available: https://
technology.ihs.com/583348

[75] V. Bakalov, “Shifting to SDN? 3 ways it will affects network
monitoring,” 2015. [Online]. Available: http://www.networkcomputing.
com/applications/shifting-sdn-3-ways-it-will-affect-network-monitoring
/1619610103

[76] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–
14, 2013.

[77] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, 2013,
pp. 15–26.

[78] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” IEEE Commun.
Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[79] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in Proc. USENIX Symp. Netw. Syst. Des. Implementation, 2014, pp. 203–
216.

[80] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer, “Inter-
faces, attributes, and use cases: A compass for SDN,” IEEE Commun.
Mag., vol. 52, no. 6, pp. 210–217, Jun. 2014.

[81] X. T. Phan and K. Fukuda, “Toward a flexible and scalable monitoring
framework in software-defined networks,” in Proc. Int. Conf. Adv. Inf.
Netw. Appl. Workshops, 2017, pp. 403–408.

[82] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” ACM SIG-
COMM Comput. Commun. Rev., vol. 44, no. 2, pp. 70–75, 2014.

[83] T. Choi, S. Song, H. Park, S. Yoon, and S. Yang, “SUMA: Software-
defined unified monitoring agent for SDN,” in Proc. IEEE Netw. Oper.
Manage. Symp., 2014, pp. 1–5.

[84] M. Mendonca, K. Obraczka, and T. Turletti, “The case for software-
defined networking in heterogeneous networked environments,” in Proc.
ACM Conf. Emerg. Netw. Exp. Technol., 2012, pp. 59–60.

[85] R. Trivisonno, R. Guerzoni, I. Vaishnavi, and D. Soldani, “SDN-based
5G mobile networks: Architecture, functions, procedures and backward
compatibility,” Trans. Emerg. Telecommun. Technol., vol. 26, no. 1,
pp. 82–92, 2015.

[86] I. Ku, Y. Lu, M. Gerla, R. L. Gomes, F. Ongaro, and E. Cerqueira,
“Towards software-defined vanet: Architecture and services,” in Proc.
Annu. Mediterranean Ad Hoc Netw. Workshop, 2014, pp. 103–110.

[87] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor OpenFlow: Enabling software-
defined wireless sensor networks,” IEEE Commun. Lett., vol. 16, no. 11,
pp. 1896–1899, Nov. 2012.

[88] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubrama-
nian, “A software defined networking architecture for the internet-of-
things,” in Proc. IEEE Netw. Oper. Manage. Symp., 2014, pp. 1–9.

[89] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S.
Banerjee, “DevoFlow: Scaling flow management for high-performance
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4,
pp. 254–265, 2011.

[90] C. Liu, A. Malboubi, and C.-N. Chuah, “OpenMeasure: Adaptive flow
measurement & inference with online learning in SDN,” in Proc. IEEE
Conf. Comput. Commun. Workshops, 2016, pp. 47–52.

[91] T. Wellem, Y.-K. Lai, C.-H. Cheng, Y.-C. Liao, L.-T. Chen, and C.-Y.
Huang, “Implementing a heavy hitter detection on the NetFPGA Open-
Flow switch,” in Proc. IEEE Int. Symp. Local Metropolitan Area Netw.,
2017, pp. 1–2.

[92] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J.
Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.
Symp. SDN Res., 2017, pp. 164–176.

[93] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in SDN-OpenFlow networks,” Comput. Netw., vol. 71,
pp. 1–30, 2014.

[94] S. Shirali-Shahreza and Y. Ganjali, “FleXam: Flexible sampling exten-
sion for monitoring and security applications in OpenFlow,” in Proc.
ACM Workshop Hot Topics Netw., 2013, pp. 167–168.

[95] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “OrchSec: An
orchestrator-based architecture for enhancing network-security using
network monitoring and SDN control functions,” in Proc. IEEE Netw.
Oper. Manage. Symp., 2014, pp. 1–9.

[96] M. Liyanage et al., “Security for future software defined mobile net-
works,” in Proc. Int. Conf. Next Gener. Mobile Appl., Serv. Technol.,
2015, pp. 256–264.

[97] Neutron, Sep. 30, 2017. [Online]. Available: https://github.com/
openstack/neutron

[98] OpenStack, Mar. 14, 2017. [Online]. Available: http://docs.openstack.
org/index.html

[99] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang, “Merid-
ian: An SDN platform for cloud network services,” IEEE Commun. Mag.,
vol. 51, no. 2, pp. 120–127, Feb. 2013.

http://www.cisco.com/go/netflow
http://www.cisco.com/go/netflow
http://www.sflow.org/
http://onosproject.org/
https://www.opendaylight.org/
https://www.opendaylight.org/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://osrg.github.io/ryu/
http://www.ieee802.org/1/pages/802.1ab.html
http://www.ieee802.org/1/pages/802.1ab.html
http://www.sflow-rt.com/
https://www.ics.uci.edu/ fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/ fielding/pubs/dissertation/rest_arch_style.htm
https://technology.ihs.com/583348
https://technology.ihs.com/583348
http://www.networkcomputing.com/applications/shifting-sdn-3-ways-it-will-affect-network-monitoring/1619610103
http://www.networkcomputing.com/applications/shifting-sdn-3-ways-it-will-affect-network-monitoring/1619610103
http://www.networkcomputing.com/applications/shifting-sdn-3-ways-it-will-affect-network-monitoring/1619610103
https://github.com/openstack/neutron
https://github.com/openstack/neutron
http://docs.openstack.org/index.html
http://docs.openstack.org/index.html


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE SYSTEMS JOURNAL

[100] R. Raghavendra, J. Lobo, and K.-W. Lee, “Dynamic graph query prim-
itives for SDN-based cloudnetwork management,” in Proc. ACM Work-
shop Hot Topics Netw., 2012, pp. 97–102.

[101] S. Shin and G. Gu, “CloudWatcher: Network security monitoring using
OpenFlow in dynamic cloud networks,” in Proc. IEEE Int. Conf. Netw.
Protocols, 2012, pp. 1–6.

[102] K. Brunnström et al., “Qualinet white paper on definitions of qual-
ity of experience,” 2014. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-00977812

[103] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative rela-
tionship between quality of experience and quality of service,” IEEE
Netw., vol. 24, no. 2, pp. 36–41, Mar./Apr. 2010.

[104] A. Kassler, L. Skorin-Kapov, O. Dobrijevic, M. Matijasevic, and P.
Dely, “Towards QoE-driven multimedia service negotiation and path op-
timization with software defined networking,” in Proc. Int. Conf. Softw.,
Telecommun. Comput. Netw., 2012, pp. 1–5.

[105] A. Farshad, P. Georgopoulos, M. Broadbent, M. Mu, and N. Race, “Lever-
aging SDN to provide an in-network QoE measurement framework,” in
Proc. IEEE Conf. Comput. Commun. Workshops, 2015, pp. 239–244.

[106] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-
based application-aware networking on the example of Youtube video
streaming,” in Proc. Eur. Workshop Softw. Defined Netw., 2013,
pp. 87–92.

[107] T. Zinner, M. Jarschel, A. Blenk, F. Wamser, and W. Kellerer, “Dy-
namic application-aware resource management using software-defined
networking: Implementation prospects and challenges,” in Proc. IEEE
Netw. Oper. Manage. Symp., 2014, pp. 1–6.

[108] L. Qian, B. Wu, R. Zhang, W. Zhang, and M. Luo, “Characterization
of 3G data-plane traffic and application towards centralized control and
management for software defined networking,” in Proc. IEEE Int. Congr.
Big Data, 2013, pp. 278–285.

[109] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
“Application-awareness in SDN,” ACM SIGCOMM Comput. Commun.
Rev., vol. 43, no. 4, pp. 487–488, 2013.

[110] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman,
“Application-aware data plane processing in SDN,” in Proc. ACM Work-
shop Hot Topics Netw., 2014, pp. 13–18.

[111] M. S. Seddiki et al., “FlowQoS: QoS for the rest of us,” in Proc. Workshop
Hot Topics Softw. Defined Netw., 2014, pp. 207–208.

[112] A. Gupta et al., “SDX: A software defined internet exchange,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 551–562, 2015.

[113] J. Chung, H. Owen, and R. Clark, “SDX architectures: A qualitative
analysis,” in Proc. IEEE SoutheastCon, 2016, pp. 1–8.

Pang-Wei Tsai received the B.S. degree in electronic
engineering and M.S. degree in computer and com-
munication engineering from National Cheng Kung
University, Tainan, Taiwan.

His research interests include software-defined
networking, cloud computing, virtualization, and net-
work management.

Chun-Wei Tsai received the Ph.D. degree in com-
puter science and engineering from National Sun
Yat-sen University, Kaohsiung, Taiwan, in 2009.

In 2017, he joined the Department of Computer
Science and Engineering, National Chung Hsing Uni-
versity, Taichung, Taiwan, where he is currently an
Assistant Professor. His research interests include
computational intelligence, data mining, cloud com-
puting, and the Internet of Things.

Chia-Wei Hsu received the B.S. degree in computer
science engineering from National Sun Yat-sen Uni-
versity, Kaohsiung, Taiwan, and the M.S. degree in
computer and communication engineering from Na-
tional Cheng Kung University, Tainan, Taiwan.

She is currently with the Taiwan Semiconductor
Manufacturing Company Limited, Hsinchu, Taiwan.
Her research interests include software-defined net-
working, network monitoring, and network manage-
ment.

Chu-Sing Yang is a Professor of electrical engineer-
ing with the Institute of Computer and Communica-
tion Engineering, National Cheng Kung University
(NCKU), Tainan, Taiwan. He joined the Faculty of the
Department of Electrical Engineering, National Sun
Yat-sen University, Kaohsiung, Taiwan, in 1988, and
the faculty of the Department of Electrical Engineer-
ing, NCKU, in 2006. His research interests include
software-defined networking, network management,
cloud computing, and cyber-security.

https://hal.archives-ouvertes.fr/hal-00977812
https://hal.archives-ouvertes.fr/hal-00977812

