
ar
X

iv
:1

90
2.

04
49

1v
1

 [
cs

.N
I]

 1
2

Fe
b

20
19

A VERSION IS UNDER REVIEW AT IEEE JSAC 1

SDN Controllers: Benchmarking & Performance

Evaluation
Liehuang Zhu, Member, IEEE, Md Monjurul Karim, Kashif Sharif, Member, IEEE, Fan Li, Member, IEEE,

Xiaojiang Du, Senior Member, IEEE, and Mohsen Guizani, Fellow, IEEE

Abstract—Software Defined Networks offer flexible and intel-
ligent network operations by splitting a traditional network into
a centralized control plane and a programmable data plane. The
intelligent control plane is responsible for providing flow paths
to switches and optimizes network performance. The controller
in the control plane is the fundamental element used for all
operations of data plane management. Hence, the performance
and capabilities of the controller itself are extremely important.
Furthermore, the tools used to benchmark their performance
must be accurate and effective in measuring different evaluation
parameters. There are dozens of controller proposals available in
existing literature. However, there is no quantitative comparative
analysis for them. In this article, we present a comprehensive
qualitative comparison of different SDN controllers, along with
a quantitative analysis of their performance in different network
scenarios. More specifically, we categorize and classify 34 con-
trollers based on their capabilities, and present a qualitative com-
parison of their properties. We also discuss in-depth capabilities
of benchmarking tools used for SDN controllers, along with best
practices for quantitative controller evaluation. This work uses
three benchmarking tools to compare nine controllers against
multiple criteria. Finally, we discuss detailed research findings on
the performance, benchmarking criteria, and evaluation testbeds
for SDN controllers.

Index Terms—Software Defined Network, SDN Controller,
Benchmarking, Performance.

I. INTRODUCTION

S
OFTWARE Defined Networks (SDN) have seen tremen-

dous growth and deployment in different types of net-

works in recent times. They are being actively used in

datacenter networks [1], [2], wireless & Internet of Things

(IoT) networks [3], [4], wide area & cellular networks. [5],

as well as security and privacy of domains [6]. Compared

to traditional networks it decouples the control logic from

network layer devices, and centralizes it for efficient traffic

forwarding and flow management across the domain. This

multi-layered architecture, as shown in Figure 1, has data

forwarding devices at the bottom in data plane, which are

programmed by controllers in the control plane. The high level

application or management plane interacts with control layer

to program the whole network and enforce different policies.

L. Zhu, M. Karim, K. Sharif, and F. Li are with Beijing En-
gineering Research Center for Massive Language Information Process-
ing & Cloud Computing Application, and School of Computer Science
and Technology, Beijing Institute of Technology, Beijing, China. Email:
{liehuangz,mkarim,kashif,fli}@bit.edu.cn

Xiaojiang Du is with Department of Computer and Information Sciences,
Temple University, Philadelphia, USA. Email: dux@temple.edu

Mohsen Guizani is with Department of Electrical and Computer Engineer-
ing, University of Idaho, Moscow, ID, USA. Emil: mguizani@uidaho.edu

K. Sharif is the corresponding author.

The interaction among these layers is done through interfaces

which work as communication/programming protocols.

Traditional networks suffer from a number of limitations,

mainly due to diverse service requirements and the scale

of the network. Some of these are related to traffic engi-

neering, flow management, policy enforcement, security, and

virtualization [7]–[11]. SDN presents a simplified, centralized,

and efficient solution to these, by decoupling the data plane

forwarding and control plane intelligence. Hence, the network

switched become simple forwarding devices, which route data

traffic based on instruction from a softwarized controller. This

centralized entity provides a programmatic control of whole

network and enables real-time control of underlying devices.

By using SDN, network management becomes straightforward

and helps in removing rigidity from the network.

Some of the well known controllers are NOX [12], POX

[13], Floodlight [14], OpenDaylight (ODL) [15], Open Net-

work Operating System (ONOS) [16] and RYU [17]. However,

a number of other controllers and flavors are available in

the literature. From a practical implementation perspective, it

is very difficult to determine which controller will perform

best in any given type of network. Hence, the qualitative

Fig. 1: Elements in a layered structure of SDN.

http://arxiv.org/abs/1902.04491v1

A VERSION IS UNDER REVIEW AT IEEE JSAC 2

and quantitative comparative analysis of these controllers is

very important. To the best of our knowledge, there is no

such work which compares the controllers for their prop-

erties and evaluates their performance. Although a number

of surveys have been done for SDN in general, there are

none which provide a comprehensive controller evaluation.

Works in [18]–[31] present some quantitative comparison,

however, most of them either feature a specific application

or simple environment to execute multiple experiments. In

this work, we have adopted a different method by using a

number of different benchmarking tool specifically developed

for controller evaluations. The contributions of this work are

multi-fold:

• We present the generic architecture of SDN controller and

the evolution of modern SDN controllers.

• We present a qualitative comparative analysis of 34 dif-

ferent controllers for their properties and capabilities. We

also discuss the different use cases for these controllers

and the enhancements done to improve their performance

by other works.

• We present a comprehensive study of benchmarking tech-

niques and tools for SDN controllers. This includes the

existing works & approaches used for evaluation, capa-

bilities of benchmarking tools, and most importantly the

details of metrics which should be used for quantitative

evaluations.

• We conduct quantitative analysis of 9 different controllers

using 3 different benchmarking tools for a variety of met-

rics. The results presented show the actual performance

of controllers.

• We present comprehensive discussion on research find-

ings not only for controller behavior but also for the

metrics and tools used.

The rest of the paper is organized as follows: Section II

gives and overview of SDN controllers, followed by compar-

ison and classification of controllers in Section III. Bench-

marking metrics and existing efforts are detailed in Section

IV. Benchmarking tools and their properties are evaluated

in Section V. Experimental results and research findings are

detailed in section VI and VII respectively. Section VIII

concludes the paper.

II. SDN CONTROLLERS

A controller is the core component of any SDN infrastruc-

ture, as it has the global view of entire network including

data plane SDN devices. It connects these resources with

management applications, and performs flow actions dictated

by application policy among the devices. In this section, we

present the generic architecture of the controllers, and the

evolution towards modern controllers. We also present the

classification, comparison, and use case enhancements for 34

different controllers.

A. Architecture of SDN Controllers

The controller in a software defined network, also referred

as Network Operating Systems (NOS), is the core and critical

component responsible for making decisions on managing

Fig. 2: General Overview of SDN Controller

traffic in underlying network. The proposals put forth for

different controllers in literature do not modify the basic

controller architecture, rather they differ in terms of modules

and capabilities. Hence, we find that presenting individual

architectures to be less useful for the reader. Here, we present

the general architecture as shown in Figure 2, and discuss its

different modules.

Controller Core: The core functions of the controller

are mainly related to topology and traffic flow. The link

discovery module regularly transmits inquiries on external

ports utilizing packet out messages. These inquiry messages

return in the from of packet in messages, which allows the

controller to build the topology of network. The topology

itself is maintained by the topology manager. This provides

the decision making module to find optimal paths between

nodes of the network. The paths are built such that the

different QoS policies or security policies can be enforced

during path installation. In addition, the controller may also

have dedicated statistics collector/manager and queue manager

for collecting performance information and management of

different incoming and outgoing packet queues, respectively.

Flow manager is one of the major modules which directly

interacts with data plane’s flow entries and flow tables. It

utilizes southbound interface for this purpose.

Interfaces: The core controller is surrounded by differ-

ent interfaces for interaction with other layers and devices.

Southbound Interface (SBI) defines a set of processing rules

that enable packet forwarding between forwarding devices and

controllers. SBI helps the controller to provision physical and

virtual network devices intelligently. OpenFlow (OF) [32] is

the most commonly used SBI and is a de-facto standard for

industry. The fundamental responsibility of OF is to define

flows and classify network traffic based on a predefined rule

set. On the opposite end, the controller uses Northbound Inter-

face (NBI) to allow developers to integrate their applications

with controller and data plane devices. Controllers support a

number of northbound APIs, but most of them are based on

REST API. For inter controller communication, West Bound

A VERSION IS UNDER REVIEW AT IEEE JSAC 3

Interface (WBI) is used. There is no standard communication

interface for this purpose, hence different controllers use

different mechanisms. Moreover, heterogeneous controllers do

not usually communicate with each other. East Bound API

(EBI) extends the capability of controller to interact with

legacy routers. BGP [33] is the most commonly used protocol

for this purpose.

B. Evolution of SDN Controllers

Modern SDN controllers and SDN design is not the first

attempt at centralizing the network control. From mid-2000s,

several attempts have been made to separate the control logic

from the data plane.

SoftRouter [34] and ForCES [35] were introduced in a

single network device to separate control elements (CEs)

from forwarding elements (FEs). However, they were lim-

ited to packet modification functionalities, as most of the

routers (at the time) were limited in computing intelligence

or network awareness to perform required operations. Routing

Control Platforms (RCP) [36] was proposed as an intra-AS

(Autonomous System) platform to implement an expandable

control platform for BGP. However, the solution is for het-

erogeneous networks and prone to single point of failure.

Path Computation Engine (PCE) [37] was presented to enable

clients to execute path computations in routers but lacks

dedicated centralized path computation engine and fails to

provide cooperation among different entities. Although Intelli-

gent Route Service Control Point (IRSCP) [38] introduces path

allocation module in an external router and provides dynamic

connectivity feature to enhance traffic flows throughout a

network, it was limited to single ISP service. On the other

hand, 4D project [39] was intended as a clean-state solution

to introduce a control plane for topology discovery and to

provide traffic forwarding logic and rule sets. However, there

is no practical implementation of this approach. The SANE

project [40] was developed by National Science Foundation

(NSF) to enable traffic forwarding and access control policies

using logically centralized server within enterprise networks.

Ethane [41] is the successor of the SANE project that brings

a more improved and practical control management module,

aware of global network and performs routing operations

based on pre-defined flows. Both, SANE and Ethane fail to

acknowledge the network components as an overall representa-

tion. Besides, they also lack flow-level control over traditional

routing approaches.

The control plane of these earlier proposals is missing

a broad range of matching header fields and also lacks a

wide range of functionalities. As a result, SDN has become

mainstream with the introduction of OpenFlow [32] which is

a data-plane Application Programming Interface (API), and a

robust centralized controller named NOX [12]. OpenFlow is

different from previous solutions as it is an open protocol to

favor software developers to build applications on different

switches that support flow tables with an extensible range

of header fields. SDN brings flexibility and agility by allow-

ing virtualization of the servers, rapid response to network

changes, deployment of policies, and centralized control over

complete network.

III. CLASSIFICATION AND COMPARISON OF SDN

CONTROLLERS

In order to compare different SDN controllers, we have

performed an extensive search of proposals not only in aca-

demic literature, but also in commercial domain. Here, we

first present the possible classification criteria of controllers,

followed by the comparative analysis, and then different use

case specific enhancements.

A. Classification & Selection Criteria

The working of controllers is more or less same across all

the proposals listed in Table I. After analysis of 34 controllers

we conclude that the working, role, and responsibilities of

majority of these do not present any classification basis.

Perhaps the only classification criteria that can be used is

the deployment architecture. The initial aim of SDN was to

centralize the control plane, hence most of the controllers

utilized a single controller, however, this created single point of

failure and scalability challenges. The distributed architecture

allows usage of multiple controllers inside a domain, working

in a flat or hierarchical formation.

In this work, we have not limited the selection of controllers

to any specific criteria. Rather we have collected all possible

controllers from literature and other documented projects. To

the best of our knowledge, there is no other work that collects

and compares such a large number of controllers.

B. Qualitative Comparison

Table I presents a comprehensive view of different proper-

ties of the controllers. In the interest of space and the fact

that not all proposals provide extensive details about their

inner-workings, we do not discuss each controller individu-

ally. Rather we present the properties and design choices of

controllers.

Programming Language: Controllers have been written

using different programming languages, such as C, C++, Java,

Java Script, Python, Ruby, Haskell, Go, and Erlang. In some

cases, the entire controller is built using a single language.

While in many other controllers multiple languages are used

in their core and modules, so that they can offer efficient

memory allocation, can be executed on multiple platforms,

or most importantly achieve higher performance under certain

conditions.

Architecture: The major design decision of a controller is

its architecture, which can be centralized or distributed. Cen-

tralized controllers are mostly used in small scale networks,

whereas distributed controllers are able to span across multiple

domains. They can further be classified into flat, where all

controller instances have equal responsibilities, or hierarchical,

where a root controller is present.

Programmable Interface (API): Generally, Northbound

API (NBI) allows the controller to facilitate applications like

topology monitoring, flow forwarding, network virtualization,

load-balancing, and intrusion detection based on the network

events which are generated by data plane devices. On the other

hand, low-level API like Southbound API (SBI) is responsible

A VERSION IS UNDER REVIEW AT IEEE JSAC 4

TABLE I: SDN Controller’s Feature Comparison Table

Name
Programming

Language
Architecture

Northbound

API

Southbound

API

EastWestbound

API

Supported

Platform
Interface License Multithreading Modularity Consistency Documentation

Beacon [42] Java Centralized ad-hoc OpenFlow 1.0 -
Linux, MacOS,

Windows
CLI, Web UI GPL 2.0 Yes Fair No Fair

Beehive [43] Go
Distributed

Hierarchical
REST

OpenFlow 1.0,

1.2
- Linux CLI Apache 2.0 Yes Good Yes Limited

DCFabric [44] C, Javascript Centralized REST OpenFlow 1.3 - Linux CLI, Web UI LGPL 3.0 Yes Good Yes Fair

Disco [45] Java Distributed Flat REST OpenFlow 1.0 AMQP - - Proprietary - Good No Limited

Faucet [46] Python Centralized - OpenFlow 1.3 - Linux CLI, Web UI Apache 2.0 Yes - Yes Good

Floodlight [14] Java Centralized
REST, Java

RPC, Quantum

OpenFlow 1.0,

1.3
-

Linux, MacOS,

Windows
CLI, Web UI Apache 2.0 Yes Fair Yes Good

FlowVisor [47] C Centralized JSON RPC
OpenFlow 1.0,

1.3
- Linux CLI Proprietary - - No Fair

HyperFlow [48] C++ Distributed Flat - OpenFlow 1.0

Publish and

subscribe

messages

- - Proprietary Yes Fair No Limited

Kandoo [49] C, C++, Python
Distributed

Hierarchical
Java RPC

OpenFlow

1.0-1.2

Messaging

Channel
Linux CLI Proprietary Yes High No Limited

Loom [50] Erlang Distributed Flat JSON
OpenFlow

1.3-1.4
- Linux CLI Apache 2.0 Yes Good No Good

Maestro [51] Java Centralized ad-hoc OpenFlow 1.0 -
Linux, MacOS,

Windows
Web UI LGPL 2.1 Yes Fair No Limited

McNettle [52] Haskell Centralized - OpenFlow 1.0 - Linux CLI Proprietary Yes Good No Limited

Meridian [53] Java Centralized REST
OpenFlow 1.0,

1.3
- Cloud-based Web UI - Yes Good No Limited

Microflow [54] C Centralized Socket
OpenFlow

1.0-1.5
- Linux CLI, Web UI Apache 2.0 Yes - No Limited

NodeFlow [55] JavaScript Centralized JSON OpenFlow 1.0 - Node.js CLI Cisco - - No Limited

NOX [12] C++ Centralized ad-hoc OpenFlow 1.0 - Linux CLI, Web UI GPL 3.0 Yes (Nox-MT) Low No Limited

Onix [56] C++ Distributed Flat Onix API
OpenFlow 1.0,

OVSDB
Zookeeper - - Proprietary Yes Good No Limited

ONOS [16] Java Distributed Flat REST, Neutron
OpenFlow 1.0,

1.3
Raft

Linux, MacOS,

Windows
CLI, Web UI Apache 2.0 Yes High Yes Good

OpenContrail

[57]
C, C++, Python Centralized REST BGP, XMPP - Linux CLI, Web UI Apache 2.0 Yes High Yes Good

OpenDaylight

[15]
Java Distributed Flat

REST,

RESTCONF,

XMPP,

NETCONF

OpenFlow 1.0,

1.3
Akka, Raft

Linux, MacOS,

Windows
CLI, Web UI EPL 1.0 Yes High Yes Good

OpenIRIS [58] Java Distributed Flat REST
OpenFlow

1.0-1.3
Custom Protocol Linux CLI, Web UI Apache 2.0 Yes Fair No Limited

OpenMul [59] C Centralized REST

OpenFlow 1.0,

1.3, OVSDB,

Netconf

- Linux CLI GPL 2.0 Yes High No Good

PANE [60] Haskell Distributed Flat PANE API OpenFlow 1.0 Zookeeper Linux, MacOS CLI BSD 3.0 - Fair No Fair

POF Controller

[61]
Java Centralized -

OpenFlow 1.0,

POF-FIS
- Linux

CLI,

GUI
Apache 2.0 - - No Limited

POX [13] Python Centralized ad-hoc OpenFlow 1.0 -
Linux, MacOS,

Windows
CLI, GUI Apache 2.0 No Low No Limited

Ravel [62] Python Centralized ad-hoc OpenFlow 1.0 - Linux CLI Apache2.0 - - Yes Fair

Rosemary [63] C Centralized ad-hoc
OpenFlow 1.0,

1.3, XMPP
- Linux CLI Proprietary Yes Good No Limited

RunOS [64] C++ Distributed Flat REST OpenFlow 1.3 Maple Linux CLI, Web UI Apache2.0 Yes High Yes Fair

Ryu [17] Python Centralized REST
OpenFlow

1.0-1.5
- Linux, MacOS CLI Apache 2.0 Yes Fair Yes Good

SMaRtLight [65] Java Distributed Flat REST OpenFlow 1.3 BFT-SMaRt Linux CLI Proprietary - - No Limited

TinySDN [66] C Centralized - OpenFlow 1.0 - Linux CLI BSD 3.0 No - No Limited

Trema [67] C, Ruby Centralized ad-hoc OpenFlow 1.0 - Linux CLI GPL 2.0 - Good No Fair

Yanc [68] C, C++ Distributed Flat REST
OpenFlow

1.0-1.3
yanc File System Linux CLI Proprietary - - No Limited

ZeroSDN [69] C++ Distributed Flat REST
OpenFlow 1.0,

1.3
ZeroMQ Linux CLI, Web UI Apache 2.0 - High Yes Fair

for enabling the communication between a controller and

SDN enabled switches or routers. Additionally, east-west API

(EWBI) is used by multiple controllers from different domains

to form peering with each other in a distributed or hierarchical

environment. Not all controllers provide all APIs, and only

select few have customized them for their own specific use.

Platform and Interface: These properties describe the

implementation of controller to be compatible with specific

operating system. Majority of controllers are built on top of

Linux distributions. Moreover, in order to configure and view

statistical information, some controllers provide graphical or

web based interfaces to the administrators.

Threading and Modularity: A single-threaded controller

is more suitable for lightweight SDN deployments. In con-

trast, multi-threaded controllers are suitable for commercial

purposes such as, 5G, SDN-WAN, and optical networks. On

the other hand, a controller’s modularity allows the integration

of different applications and functionalities. High modularity

allows a controller to perform faster task execution in a

distributed environment.

License, Availability, and Documentation: Most of the

controllers discussed in this article are licensed as Open-

Source. However, a few have a proprietary license which

means they are only available through special request or for

research purpose. Regular maintenance of these controllers is

also a challenging task for the developers which is why a

number of them do not receive regular updates. Nevertheless,

the source code is available online which allows anyone to

make further changes according to the requirements. While

accessing them online, we have found that the majority of them

lack proper documentation. On the contrary, the ones which

are updated on a regular basis feature detailed and updated

documentation for all the available version and also include

community-based support.

C. Use case Specific Enhancements to SDN Controllers

The adoption of different controllers and SDN in general,

has also triggered enhancements and use case specific im-

provements for different controllers. Here, we have grouped

these enhancements into different categories, and summarize

how they improve the capabilities of controllers.

1) Network Monitoring: Network monitoring has become

one of the most vital use cases of SDN controllers. SDN

controller can take advantage of the global view of topology

A VERSION IS UNDER REVIEW AT IEEE JSAC 5

and proactively query the performance. OpenTM [70] was

proposed by as a module for NOX, one of the earliest open-

source OpenFlow controller. This monitoring scheme evaluates

Traffic Matrix (TM) of OpenFlow switches with a consistent

polling rate. However, this also leads to higher monitoring

overhead. Adrichem et al. [71] presented OpenNetMon, a

Python-based module for POX controller to monitor end-

to-end per flow QoS metrics like throughput, delay, packet

loss, etc. From the statistical analysis results, the approach

for monitoring throughput is excellent, although continuous

polling of information make cause overhead on the controller.

Flow monitoring is limited to edge switches only. On the other

hand, Payless [72] implemented over Floodlight controller is

another query-based monitoring framework that can request

the desired QoS metrics using a set of well-defined RESTful

APIs. However, some trade-off between accuracy and over-

head can lead to slight performance degradation for different

polling intervals. SDN Interactive Manager [73] and OFMon

[74] are two recent implementation of network monitoring

modules that have been built over Floodlight and ONOS

controller respectively.

2) Load Balancing: SDN controller plays an important role

to enable load balancing in distributed systems by optimizing

resource allocation, minimizing response time, and maximiz-

ing throughput of that system. Without rewriting IP addresses,

Handigol et al. [75] implemented a method where NOX

controller can be used along with OpenFlow switch reactively

to reduce response time for load balancing of multiple web

servers. Contrarily, Uppal et al. [76] used address rewriting

techniques for NOX-based load balancer which cuts down cost

and brings flexibility. Another NOX-based proactive load bal-

ancer was proposed by Wang et al. [77] which uses OpenFlow

wild card rules that can achieve faster adaptation with new load

balancing weights and to redistribute the existing weight more

efficiently. Based on switch migration technique Liang at el.

in [78] presented a dynamic load balancing method that has

been implemented over cluster OpenDaylight controller [15].

However, this method may fail in large scale networks due to

coordinator node’s recurring load collection issue.

3) Network Virtualization & Cloud Orchestration: With

addition of Network virtualization (NV) techniques SDNs have

gained a new dimension. This has allowed network slicing and

multi-tenant hosting on existing physical network resources.

FlowVisor [47] is the most popular SDN based implementation

to utilize virtual networks by leveraging OpenFlow function-

ality to abstract the underlying hardware. VeRTIGO [79] is

an extension of FlowVisor that provides the controllers to

choose the depth of virtual network abstraction required. This

extension increases more flexibility in provisioning SDNs,

however at the cost of hypervisor complexity. in order to

reduce complexity of network management, Xingtao et al.

[80] presented an SDN controller built on docker [81] to

improve the deployment speed with expanded mobility. In

[82] the flexibility of NOX controller has been used as a

container-based controller virtualization module to effectively

cache and manage mappings between virtual networks and

physical switches. HyperFlex [83] proposes a control plane

virtualization model which largely aims at achieving scalabil-

ity, privacy, and extensibility. In this architecture, FlowVisor

and Ryu controllers have been combined to provide the core

hypervisor functions and to control the hypervisor network

respectively.

Cloud orchestration defines the integration of SDN con-

trollers with a cloud based resource manager, such as Open-

Stack [84] to enable dynamic interworking between data

centers, wide area networks, transport network, and other

enterprise networks. In [85], OpenDaylight is integrated with

OpenStack Havana [86] to evaluate the effectiveness of SDN

in a cloud-based architecture where multiple data centers

(DC) are located in different domains. In this architecture, the

controller communicates with Havana using its REST NBI to

perform critical tasks such as building, removal, and migration

of virtual instances which are located in inter-DC and intra-DC

environments.

4) Policy Enforcement: To enhance the security and flexible

network management, an SDN controller has the capability to

assign different policy decisions by implementing flow-based

forwarding rules. Hinrichs et al. [87] implemented NOX as an

application to provide access control, external authentication,

and to enable policy enforcement along with network isola-

tion. PANE [60] presents an API to allow administrators to

install policies for bandwidth allocation, access control, and

path control. Additionally, the API provides the capability to

query the state of network or to provide information to SDN

controller regarding future traffic characteristics. PolicyCop

[88] based on Floodlight controller, is an autonomic QoS

policy enforcement architecture, that presents an interface for

specifying QoS requirements in Service Layer Arguments

and implementation through the OpenFlow API. Besides, it

can monitor different policies so that control plane rules can

be modified with changing traffic conditions autonomously.

An extra module of ONOS controller has been extended

to implement a policy-based secure framework in [89]. The

authors allowed an end-to-end SDN services across various

domains including inter and intra domain, using a wild card

based policy language which includes a group of entities and

services. Associated action such as acceptance or denial of a

request is executed when a policy statement is satisfied.

IV. BENCHMARKING PROCESS & METRICS

Theoretical comparison based on features and properties do

not reflect the actual performance of any controller. Hence, real

deployment and benchmarking is necessary for true evaluation.

In this section, we first present and overview on the necessity

and importance of evaluating controllers. Following it, we

discuss existing efforts for benchmarking along with important

lessons learned. Finally, we present a list of performance

metrics, which should be used in benchmarking of controllers.

A. Why Benchmark a Controller?

Prior to executing SDN-based operations, network adminis-

trators are required to verify whether available components

can match their requirements to perform necessary tasks.

Hence, evaluations related to data plane (vSwitchs, links,

etc.) may include tasks such as measurement of flow table

user
Highlight

user
Line

user
Line

user
Line

A VERSION IS UNDER REVIEW AT IEEE JSAC 6

TABLE II: Comparative analysis of different benchmarking studies.

Reference Testbed Specifications
Evaluation Tool

Used
Controller(s) Evaluated Evaluation Metrics Optimization Objectives Lessons Learned

[18]
1 × Quad-core & 1 × Octa-Core Server

2 Gbps Link Speed
CBench

NOX, NOX-MT, Beacon,

Maestro
Throughput, Latency

Batching I/O

Boost Async I/O
Number of switches impact the controller performance.

[19]
1 × Cluster with 2 Separate Xeon Servers

8 Gbps Link Speed
CBench

NOX-MT, Beacon, Maestro,

Floodlight

Throughput, Latency, Threading

Scalability, Delay Sensitivity

Switch Partitioning

Packet Batching

Task Batching

Switch partitioning & switch batching impacts throughput.

Packet batching & task batching impacts delay sensitivity.

[20]
2 separate Xeon Servers

10 Gbps Link Speed

CBench

Hcprobe

NOX, POX, Floodlight, Ryu,

Mul,

Beacon, Maestro

Throughput, Latency, Reliability,

Security

Flow Modification

Customized Workload

Scalability of controller depends on the number of cores.

Not every controllers can handle heavy workload.

[21]
Single testbed with 4 servers (dual core)

100 Mbps Link Speed
OFCBenchmark NOX, Floodlight, Maestro

Round Trip Time

Send and Response Rate

Packet Processing Rate

Implement Boost Libraries to

handle Threads

Transmitting larger flows helps in detecting congestion in

networks.

[22] Not Specified OFCProbe NOX and Floodlight
Impact of Fat-tree Topology

Load Balancing

Java library is used to handle

OpenFlow connections

Topology has an impact on flow processing time.

Efficient handling of switch depends on the characteristic of

controller.

[23] 5 × Server with Core i5 CPU CBench Floodlight and OpenDaylight Throughput, Latency, Failure Not Specified
Custom profile is proposed for CBench.

Controllers may suffer from memory leakages.

[24] Not Specified

Analytic

Hierarchy

Process (AHP)

POX, Floodlight,

OpenDaylight, Ryu and

Trema

Virtual Switch Support, Modularity,

Documentation, API Compatibility
Not Specified

Evaluation Method is Subjective

Testing process may effect the outcome.

[25]
Single Testbed with Quad-Core Xeon

Server

CBench, Open

vSwitch

NOX, POX, Floodlight, Ryu,

Beacon

Throughput, Latency, Threading

Capability, Python Interpretation

Python Interpreter,

Hyper-Threading (HT)

HT offers performance improvement for java-based

controllers.

Reliability, Trustworthiness, Usability, and Scalability

should be considered equally.

[26] 1 × Quad-core, 1 × One Octa-core Testbed

Mininet, Open

vSwitch, Indigo

vSwitch

POX
CPU Utilization, Topology Impact,

Ping Delay
Not Specified

Number of switches impact the flow installation time

Mininet utilizes maximum system memory.

Initial Ping Delay is larger than average Ping Delay.

[27]
1 × Multi-Core, 1 × Many-Core Testbed

10 Gbps Link Speed
CBench

NOX-MT, Floodlight, Beacon,

Maestro

Latency, Throughput, Energy

Consumption, I/O Threading Impact

Floodlight Learning Switch

CBench Delay Parameter

Maestro Config File Modification

Number of Switches and cores impact NOX’s performance.

CPU types and system architecture impact scalability.

[28]
Single Testbed with Octa-core CPU

10 Gbps Link Speed
CBench

NOX, POX, Floodlight,

OpenDaylight, ONOS, Ryu,

IRIS, Beacon, Maestro

Latency, Throughput Not Specified
Controller’s SBI allows additional support for future Internet

architecture

[29] Dual Core Virtual Testbed

Open vSwitch,

Cluster Testbed,

HTTP

Generator,

REST Client

OpenDaylight, ONOS

Flow Installation Rate

Flow Reading Rate

Failover Time

Controllers are customized for

WAN environment

Size of a cluster has impact on flow installation rate.

Failover Time of a controller depends on number of devices.

Latency has significant impact on large-scale WAN.

[30] Not Specified

Mininet, Open

vSwitch, Traffic

Generator

POX and Floodlight
Round Trip Delay, Average

Throughput
Not Specified

Simple controllers better suited for configuration-related

tasks.

Feature-based controllers are good for performance-based

tasks.

[31] 2 Xeon Testbeds OFCProbe ONOS

Topology Discovery Time, Path

Provision Time, ASYN. Msg.

Process Time

Not Specified

Number of links has equal impact as number of switches

regarding performance.

Reactive path provisioning time relies on length of

corresponding path.

capacity, progressing times of OpenFlow messages, and band-

width utilization, etc. Similarly, for the control plane it is

equally essential to evaluate whether the controller is capable

to efficiently manage the complete network, and utilize the

capabilities of data plane to its maximum capacity. Although

the fundamental function of a controller is flow management

and installation, a number of different performance metrics

can be used for its benchmarking. As there are numerous con-

trollers available with different architectures and properties, it

becomes extremely important to have a standard benchmarking

criteria for evaluation.

In this regard, there are two basic requirements: a) a set

of benchmarking metrics, and b) an efficient tool for bench

marking test. In [90], authors have presented a basic list of

tests which should be conducted to evaluate the performance of

a controller. However, there can be a number of other metrics

which should also be used when benchmarking different

controllers. Similarly, the tool used to perform the test in an

emulated environment is critical.

B. Existing Works & Lessons Learned

Prior to this article, [18]–[31] use multiple techniques,

tools, and testbeds to evaluate the performance of several

SDN controllers including scalability, reliability efficiency, and

robustness.

In Table II, we compile most of the existing works asso-

ciated with the evaluation of the controller performance and

the major findings. Majority of these works use CBench [91],

to evaluate the performance based on latency and throughput.

In most cases, throughput mainly correlates with threading

capability of a controller, regarding the number of flows it

can process in a specified time slot. Some other works extend

CBench to integrate support with the operating system’s kernel

and compilers like Java and Python. The aim is to improve

threading scalability of a controller regarding system’s I/O

modules. Some works include simulation-based environments

where hosts and vSwitches are virtualized to evaluate the

impact of topology on the performance of a controller. In these

experiments, the load balancing functionality is extensively

tested. Moreover, some works evaluate the reliability of the

controller by generating vulnerable flows. Energy consumption

has also been evaluated using fat-tree or data-center topologies.

Below we give brief description of some of the notable works.

Authors in [18] present CBench [91] tool for evaluation of

different controllers. They perform multiple flow-based exper-

iments using it to compare the effectiveness and performance

of NOX-MT, a multi-threaded adoption of NOX controller

with other controllers like NOX, Beacon, and Maestro. Despite

showing a notable improvement in performance, NOX-MT

fails to identify some of the limitations of NOX such as mas-

sive utilization of Dynamic memory allocation and redundant

representation of multiple requests.

In [19], authors compare four multi-threaded controllers

(NOX-MT, Floodlight, Beacon, and Maestro) for architectural

features like multi-core availability, controller impact on OF

switch, packet batching, and task processing. Authors use

CBench to compare these controllers based on their throughput

and latency performance. In throughput mode, two scenarios

A VERSION IS UNDER REVIEW AT IEEE JSAC 7

are considered including a fixed amount of switches with an

increasing number of threads and fixed threads with an increas-

ing number of switches. Beacon shows better performance in

these two scenarios due to its ability to use the multi-core and

multi-threading functionalities. Besides, the dynamic changing

of packet sizes allows Maestro to perform better in latency test.

Work in [20] presented a framework named HCprobe

to compare seven different SDN controllers: NOX, POX,

Floodlight, Beacon, Ryu, MUL and Maestro. To compare the

effectiveness of these controllers, the authors performed some

additional measurements like scalability, reliability, and secu-

rity along with latency and throughput. The testbed analysis

presents some security vulnerabilities along with the reliability

issues with MUL and Maestro controllers. On the other hand,

Beacon, MUL, and Floodlight obtained minimum latency

while Beacon performed relatively well in the throughput test.

Analytic Hierarchy Process (AHP) is used in [24] to ana-

lyze POX, Floodlight, OpenDaylight, Ryu, and Trema based

on multiple standards like virtual switch support, modular-

ity, documentation, programming language compatibility and

availability of user interface. According to calculation, Ryu

was elected to be the most suitable controller based on

requirements as mentioned earlier. However, the AHP method

is subjective and changing of measurements or scenarios may

lead to a different outcome.

In [25], authors use multi-core and many-core testbeds to

evaluate NOX, Maestro, Floodlight, Beacon on the aspect of

multi-core utilization efficiency, performance scalability, and

energy consumption regarding data center environments. The

work emphasizes on existing controllers limitation in taking

advantages of the concurrency in modern hardware.

In [28] the performance of well-known centralized and dis-

tributed SDN controllers has been studied using CBench. The

results show that both MUL and Libfluid MSG (written in C)

achieved the highest throughput under an increasing number of

switches whereas python-based Ryu and POX obtained better

score in latency mode. However, with the increasing number of

threads, both Beacon and MUL performed better while python-

based controllers failed to show satisfying performance.

C. Benchmarking Metrics and their Impact

In this section we present a detailed list of performance

metrics that can be used to benchmark SDN controllers.

Table III outlines the grouping and description of each of

these metrics. Some of these have also been identified by

[90], however, we have extended this list and grouped them to

eliminate the confusion regarding terminology. Generic terms

such as, throughput and latency can have significantly different

meaning depending on measurement process. Additionally,

there can be other metrics to evaluate a controller, e.g. security,

reliability, etc. However, we refer to them as non-measurable

parameters which are more subjective in nature. We leave their

classification as future work. The measurable parameters are

grouped as following.

1) Throughput Metrics: Throughput is usually measured

as a rate for processing flow requests by the controller. The

important thing to note, is that it is not the flow installation

time (path provisioning). From the test tools perspective, it is

the number of packet in messages sent and the corresponding

packet out mssages recieved per unit time. These requests

could be synchronous or asynchronously coming from the

vSwitches in real environment.

2) Latency Metrics: This group of metrics is measured

in time units. Similar to throughput it only deals with the

time between packets sent to controller and response received

at the vSwitch. A number of factors can effect the latency

of a controller, including computation time require by the

controller and link delay.

3) Flow Related Metrics: These metrics deal with the

complete path provisioning and flow installation. The primary

difference between this and throughput is the complete path.

Throughput only measures the rate from vSwitch to controller

and back to vSwitch. However, complete flow installation

requires installation of flow entries at other vSwitches along

the path. We group both rate and time variants of these

parameters in the same category, along with load balancing

capability of the controller.

4) Topology Based Metrics: The ability to detect or deter-

mine a topology including its type (single, linear, overlay and

tree), size and number of integrated nodes altogether represent

a vital aspect to evaluate the efficiency of a controller. Interac-

tion with its southbound interface also plays a significant role

in these metrics.

5) Threading & Session Metrics: This set of metrics identi-

fies controller competence with respect to utilizing the system

architecture, hardware capabilities, and I/O units. Optimization

of thread-based capabilities like multi-threading offers several

advantages of task batching, event scheduling, process flows

as groups and most importantly increases controller’s flow

processing time and rate.

6) Miscellaneous Metrics: Here we group other parameters

which can also be used for evaluating the controllers. Some

of these can be crucial in specialized scenarios. For example

energy consumption in mobile environments where controllers

are deployed on devices which are energy constrained. Sim-

ilarly, in situations where hardware failure is a concern, the

failover time needs to be reduced so that backup controllers

can takeover as quickly as possible.

V. TOOLS FOR CONTROLLER BENCHMARKING

Evaluating or benchmarking the performance of a controller

can be done either through simulation/emulation or by using a

hardware based testbed. Although, hardware testbeds provide

measurements which are closer to actual values in production

environment, however their cost is significant for research

community. Hence emulation based evaluations are common

practice. However, for benchmarking of SDN controllers, the

software tool used has to be extremely efficient and precise. In

this section, we present a number of well known tools available

for benchmarking, followed by analysis for their properties and

benchmarking capabilities.

user
Line

A VERSION IS UNDER REVIEW AT IEEE JSAC 8

TABLE III: Classification of Benchmarking Metrics and Tool Capabilities

Measurable Metrics
Description

Benchmarking Tools

Group Parameters CBench PktBlaster OFNet

Throughput

Async Message Processing Rate
Determines number of flow requests a controllers can process per unit

time. A processed request does not mean a successfully installed flow.

✓ ✓ ❍

Sync Message Processing Rate ✓ ✓ ❍

Send and Response Rate ✕ ❍ ✓

Latency

Async Message Processing Time
Denotes the delay or time duration between request from the vSwitch

and response received back.

✓ ✓ ✓

Sync Message Processing Time ✓ ✓ ✓

Round Trip Time ✕ ❍ ✓

Flow Related

Path Provision Time (Proactive/Reactive)

Determines the efficiency of a controller to install flows, or measures

which include communication between a source and destination.

✕ ✓ ✓

Path Provision Rate (Proactive/Reactive) ✕ ✓ ❍

Flow Reading Rate ✕ ✕ ❍

Flow Installation Time ✓ ✓ ✓

Load Balancing ✕ ❍ ✕

Topology
Topology Discovery Time/Size Measures the capability to discover topology or change in topology.

This also indirectly measure the SBI performance.

✕ ✓ ✓

Topology Change Time ✕ ✓ ✓

Threading

Thread Capability

Indicates the utilization efficiency of a controller regarding the OS and

physical hardware resources.

✓ ✓ ✓

I/O Impact ✓ ✓ ✕

Control Session Capability ✕ ❍ ✕

vSwitch CPU Utilization ✕ ✕ ✓

Others

Forwarding Table Capacity

Miscellaneous parameters which can be measured for specific scenarios.

✕ ✓ ✕

Ping Delay Time ✕ ✕ ✕

Energy Consumption ✕ ✕ ✕

Network Re-provisioning Time ✕ ✕ ✕

Controller Failover Time ✕ ❍ ✕

A. Benchmarking Tools

Following are some of the commonly used tools for bench-

marking. Table IV provides a comparative analysis of the three

main tools used for evaluation in this work.

CBench [91] is one of the fundamental benchmarking tools

with open-source license. It is designed explicitly for evalu-

ating the performance of OpenFlow SDN controllers which

support OpenFlow 1.0 and 1.3. However, due to compatibility

limitation, controllers with OpenFlow 1.3 may experience

performance issues. There are two basic evaluation metrics in

CBench, i.e., Latency and Throughput. To measure Latency,

the vSwitch forwards a single packet in message towards the

controller and waits for a response. Tests can be repeated sev-

eral times to obtain the average performance. The total number

of acknowledgments obtained in a test period is used to

compute the average latency. As for throughput measurement,

each vSwitch continuously sends as many packet in messages

as possible, to estimate the capability of the controller.

HCprobe [20] is an open-source extension of CBench,

developed with the combination of Python and Shell scripts,

to provide additional performance evaluation capabilities, such

as reliability and scalability. The emulated switch can send

vulnerable OpenFlow messages to controllers to check for

resiliency and trustability. Besides, the test engine utilizes a

Linux kernel, which allows customizable and scalable tuning

of CPU threading. This allows the tester to obtain more

accurate performance statistics of an SDN controller.

WCBench [92] is another variants of CBench built in

Python and utilizes the core library module of CBench. Com-

pared to CBench, feature set of this tool goes beyond latency

and throughput, and offers additional aspects of automated

evaluation with detailed and graphical statistics. Although it

extends the support of OpenFlow to version 1.3, the compati-

bility of WCBench is still limited to specific versions of ODL

controller.

OFCBenchmark [21] is built using C++ and Boost library

to address some of the limitations of CBench. The components

of this benchmarking tool include a graphical dashboard (built

with Delphi), virtualized scalable vSwitch which is the core

module, and includes a client that can administer evaluation

tests. The tool offers distributed benchmarking by allowing

clients to run in multiple instances, and offers extensible

benchmarking such as Round Trip Time (RTT), flow installa-

tion rate, and CPU utilization, etc.

OFCProbe [93] is an upgraded version of OFCBenchmark

which concentrates on maximizing the flexibility of SDN

controllers by emulating a significant amount of OpenFlow

switches in a large scale environment. It is re-designed using

Java to make it a platform-independent tool and also to over-

come the virtualization overhead caused by SDN emulation

tool like Mininet [94]. The core competence of this tool is

to analyze the impact of the network topology during the

evaluation executed by the client component.

PktBlaster [95] is a unified test solution that emulates

large scale SDN networks including network infrastructure

and orchestration layers of SDN controllers. The free version

with limited capabilities offers features such as, latency and

throughput measurement with different testing profilies, i.e.

TCP, UDP, ARP Request, and ARP Reply. A throughput test

determines the rate at which the controller configures the

flows in the switches. The latency test gives the exact time

in milliseconds which the controller takes to process a flow in

the switch. Although the free version is limited to 16 switches

and 64 MAC address, it offers additional properties like Flow

tables, Group tables, Meter tables, size of the Switch Buffer,

and maximum entries per flow table.

OFNet [96] is a combined approach to integrate OpenFlow

network emulation with performance monitoring and visual

debugging of SDN controllers. OFNet can be deployed in a

system to generate different types of topologies. The inbuilt

traffic generator produces different types of network traffic. It

is capable to measure performance characteristics of the con-

troller such as flow generations, flow failures, CPU utilization,

flow table entries, average RTT, latency of flow setup, etc.

B. Benchmarking Capabilities

In this work we use the three of the tools, i.e. CBench,

PktBlaster, and OFNet, to evaluate different controllers. It is

important to note that none of the tools available can measure

all performance statistics. In most of the previous works and

the output of tools, the metrics are rather simplified. For

example, the throughput of a controller can be interpreted in

a number of different ways. Similarly, as shown in Table III,

the latency can be determined using different metrics. The

A VERSION IS UNDER REVIEW AT IEEE JSAC 9

TABLE IV: Comparison of Benchmarking Tools.

Tool Advantages Limitations License Availability
User

Interface

CBench

Faster Analysis Execution

Platform Independent

Source Code is available

vSwitchs limited to 256

Supports only OpenFlow 1.0

Flow Length is Limited

Supports only IP-based traffic

Lacks User-Interface

Open-

Source
Yes CLI

PktBlaster

1000 Emulated Switches

Customized Switch

Groups

Detailed Statistical Results

Accuracy is better than

CBench

No Customized Topology

No Application-based Traffic

Free Edition lacks Deep

Analysis

Open-

Source

Proprietary

Yes Web UI

OFNet

In-depth Performance

Analysis

Self-defined Topology

Various Traffic Profiles

Flow Event Syntax

Traffic Generator

Benchmarks Relies on

Topology

Slower Test Duration

Open-

Source
On Request GUI

TABLE V: Parameters used in evaluation setup.

Tool Parameter Values

CBench

Number of Switch 2, 4, 8, 16

Number of Test Loops 20

Test Duration 300 sec

MAC Addresses per Switch (Hosts) 64

Delay between Test Intervals 2 sec

PktBlaster

Number of Switch 2, 4, 8, 16

Test Duration 300 sec

Number of Iterations 5

Traffic Profile TCP

Ports per Switch (Hosts) 64

Flow Counts per Table 65536 (Default)

Packet Length 64 bytes

OFNet

Number of Hosts 20

Number of Switchs 7

Desired Traffic Rate 100 flow/sec

Flow measured by Packet-out & Flow-Mod

Total Test Duration 300 sec

columns on right side of table shows each individual metric

which can be directly measured, indirectly measured, or not

measurable by a specific tool.

VI. EVALUATION AND BENCHMARKING OF CONTROLLERS

This section discusses performance of 9 different controllers

using previously described benchmarking tools. To the best

of our knowledge, no previous work has compared such a

large number of controllers, and performed cross comparison

using different tools. The controllers evaluated are NOX,

POX, Floodlight, ODL, ONOS, Ryu, OpenMUL, Beacon,

and Maestro. The reason to select these out of previously

discussed 34, is the availability of controller source code or

implementation. The 3 benchmarking tools used are CBench,

PktBlaster, and OFNet. We use a virtualized environment to

emulate the controller and tools in separate virtual machines,

running on a 2.10 GHz i7-3612QM processor with 12 GB

of DDR3 RAM. Ubuntu 16.04.03 LTS is the base operating

system and 1 Gbps link connects the VMs.

It is important to note that all results are plotted as bar

graphs. This is done to increase visual understanding of the

reader. Overlapping nine different controller outputs in a single

plot were not only visually confusing, but also made it difficult

to infer any meaningful information.

A. Evaluation Setup

TableV shows the different parameters for evaluation setup.

It is important to note that the programmable parameters

in different tools are not identical, hence, we have tried to

best possible extent to make them similar. However, once the

parameters are set, all controllers use the same values.

CBench tests the performance by sending asynchronous

messages. For latency the messages are in series, i.e. it

send a packet in message to the emulated switch and waits

for a response before sending the next one. We execute

20 iterations with varying number of emulated switches to

observe the impact of switches on the controller. On the other

hand, with same parameters we test the throughput of the

running controller. However, the packets are not sent in series,

and requests are sent without waiting for a response. One

execution, CBench outputs the flow messages a controller can

handle per second. The results presented here are an average

of number of responses per second from all switches in that

execution.

PktBlaster utilizes the in-built TCP-based traffic emulation

profile that creates an OpenFlow session between the emulated

switch and the controller. Due to free edition of tool the

number of iterations is limited to 5. The nine controllers

are evaluated based on latency (flow installation rate) and

throughput (flow processing rate).

OFNet uses a custom tree-based topology consisting of 7

emulated switches and 20 virtual hosts. We limit the number

of hosts and switches due to limited resources available on

emulating machines. Inbuilt traffic generator is used, which

initiates and transfers multiple types of traffic, such as DNS,

Web, Ping, NFS, Multi-cast, Large-send, FTP and Telnet

among hosts in the emulated network much like Mininet

Emulation environment. Host 2, 12 and 20 act as DNS, NFS

and Multicast server respectively. We analyze metrics such as,

Round Trip Time, average flow setup latency, vSwitch CPU

utilization, number of flows missed by the controllers, number

of flows sent and received. OFNet provides analysis against

time, hence the average of 10 iteration is plotted against a 300

seconds simulation.

B. Latency Performance

1) CBench: We observe two different effects on latency

using CBench tool. First we observe the latency against

number of switches in topology, from 2 to 16. Figure 3a

shows that there are two distinct groups, one with high latency,

and one with significantly lower. An interesting observation

is the Ryu controller which has negligible impact on its

latency performance. Similarly, NOX and POX also show

minimal change in latency as the switches increase. However,

less latency does not translate to out-right winner, as the

capabilities of controller itself must also be considered. In this

regard, ODL, consistently performs in the middle and offers

a number of other feature as listed in Table I.

The second experiment observes the effect of tool’s own

performance on latency measurement. Here we change the

number of iterations while the number of switches is fixed at

16. Interestingly, the pattern in Figure 3b shows most of the

controllers to change their latency as the results are averaged-

out over a larger set of repetitions. The basic take-away from

this is that the setup environments effect on measurements

should never be disregarded. It may positively or negatively

impact the obtained results with the same parameters.

A VERSION IS UNDER REVIEW AT IEEE JSAC 10

(a) CBench latency with varying number of
switches.

(b) CBench latency in different number of itera-
tions (16 switches).

(c) PktBlaster latency in with varying number of
switches.

(d) OFNet flow setup Latency

Fig. 3: Latency performance for CBench, PktBlaster, and OFNet.

2) PktBlaster: Latency calculation using PktBlaster is also

done against increasing number of switches. Figure 3c shows

three distinct groups of controllers. NOX and POX show

minimum latency, while Floodlight, ODL, and ONOS have

the highest latency in this test. Ryu, OpenMUL, Maestro, and

Beacon are in the middle. The important factor to note here

is that the number of switches does not have any significant

impact on the latency calculation. We again emphasis the

fact, that the measurement process should reflect the metric

being measured. Here latency is more closer to RTT between

observing node and controller. On the other hand, flow installa-

tion time (path provisioning) would include multiple switches,

hence increasing the time.

3) OFNet: Unlike CBench and PktBlaster, OFNet has a

different evaluation and reporting method, where it simulates

the SDN network much like Mininet. The output values are

reported against time, instead of a specific value. Figure 3d

shows the averaged result of 10 iterations on a time line of

300 seconds. It can be observed that there is no specific pattern

over time followed by any given controller. The overall effect

that we observe is that less time is required to install flows as

the simulation progresses. The dip and rise in latency at around

180 sec mark is due to traffic generation artifact, where some

types of traffic are generated later in the simulation, hence

requiring more flows.

4) Cross-Tool Analysis: One of the contributions of this

article is to demonstrate the difference in outcome for same

metric under potentially similar network environments. As can

be seen from Figure 3 the Y-axis scale varies extensively in

all three tools. For CBench the measured latency is in the

orders of tens of milliseconds, where as in PktBlaster the

same controllers perform under 10ms. In a total contrast the

latency measurements on OFNet are in the order of hundreds

of milliseconds. Controllers which performed the best in one

simulator, are the worst performs in the other. Although

OFNet has a different topological setup, however there is no

correlation in the observed results.

C. Throughput Performance

This metric is measured using CBench and PktBlaster only

as shown in Figure 4. OFNet does not provide direct measure-

ment of flow processing, however, indirect measurement can

be done through sent and received flow messages, which is

discussed in later section.

1) CBench: In throughput mode, CBench switches send as

many packets as possible at once, and does do not wait for

a reply. Figure 4a shows the comparison based on increasing

number of switches. It is observed that NOX, POX, and RYU

remain the lowest performers, while controllers like ODL,

Beacon and Maestro have up to 100 responses per millisec-

onds. Although both OpenMUL and Floodlight performed

consistently well around 150 flows/ms, the flow response rate

of ONOS is significantly higher around 400 flows/ms to 500

flows/ms.

2) PktBlaster: The measurements of throughput shown in

Figure 4b present minimal effect from change in number of

switches when testing with PktBlaster. The performance of

Floodlight, ODL, and ONOS is the best among all the con-

trollers compared, while NOX and POX are at the lower end.

A VERSION IS UNDER REVIEW AT IEEE JSAC 11

A minor (insignificant) decrease in throughput was observed

as the number of switches increased for NOX, POX, and Ryu.

However, after running 5 iterations each, the change remains

insignificant.

3) Cross-Tool Analysis: Similar to earlier analysis, the tools

differ in throughput metric also, however the change is not too

drastic. All the controllers tend to perform better in PktBlaster

evaluations as compared to CBench. Specifically, ODL and

Floodlight show significant gain in the performance.

D. OFNet Specific Measurements

In this set of experiments, we focus specifically on the

performance metrics offered by OFNet.

1) Average Round Trip Time: RTT evaluation is an im-

portant factor to consider when identifying the location of

controller deployment. It identifies the communication delay

between the controller and the switch. If the controller and

switches are physically far apart, the increased RTT will con-

tribute to increased latency. Similarly, the time complexity of

packet processing at controller effects the overall performance.

Based on our tree topology, Figure 5a shows that ONOS has

high RTT that starts with 100 ms and goes past 1000 ms

during the simulation. On the other hand, Ryu & OpenMUL

have least RTTs, mostly because of less complex algorithms

involved at the controller. However, less complex does not

translate to better, rather, they may be attributed to less number

of controller capabilities.

2) CPU Utilization of vSwitch Daemon: Here we use

the OFNet’s in-built traffic emulation application to transmit

various packets and to identify the CPU usage of the vSwitch

process while the vSwitch is interacting with a controller.

While running a single-threaded controller like NOX, POX,

and RYU, the CPU utilization in Figure 5b of vSwitch daemon

remains under 30% to 40%. On the contrary, CPU utilization

is remarkably higher at 90% in the case of the multi-threaded

controller like ONOS. Besides, the CPU usage remains under

70% rest of the controllers including Floodlight and ODL. One

major factor in high throughput performance of ONOS is the

multi-threading capabilities. However, they can be limited by

the capabilities of the vSwitches.

3) Missed Flows: Here we measure the number of flows

that the controller misses while the test is ongoing. Typically

the traffic generator initiates flow requests to the vSwitches,

which in-turn sends requests to the controllers and waits for

the response. In this testing environment, vSwitch transmits

reactive flows to benchmark the SDN controllers. Figure 6a

depicts that, ONOS, ODL and Floodlight miss the least

number of flows as opposed to NOX, POX and RYU. This

again is attributed to the multi-threading capabilities of the

controllers, which allows them to perform comparatively better

than the single-threaded ones.

4) Flow Messages Sent & Received: This experiment cal-

culates the number of flow messages that have been sent to

the controller by vSwicth and the received flow messages

from the controller. Although, both CBench and PktBlaster

use the term ”Packet in” to send flows towards controller to

evaluate latency and throughput, OFNet instead sends flow

messages continuously at a specific duration to determine

the flow acceptance efficiency of the controller. Figure 6b

shows that least amount of OF messages have been sent to

NOX, POX, RYU, and OpenMul compared to others while a

significant amount of messages has been transmitted to ONOS,

ODL and Floodlight controllers. Figure 6c depicts that, the

flow reception rate is higher from the controllers like NOX,

POX, and RYU as these controllers have less computational

time. On the contrary, flow reception rate of multi-threaded

controllers such as Floodlight, ONOS, and ODL is less than

the single-threaded ones, which is due to the distributed nature

of these controllers. As the received messages are coming from

a specific instance of the controller, hence the plot reflects a

lesser value.

VII. RESEARCH FINDINGS

Based on the qualitative analysis of controllers, properties

& capabilities of benchmarking tools, and the evaluation of

controllers using them, we have summarized the main findings

below.

• Considering latency and throughput, multi-threaded con-

trollers including centralized ones (Floodlight, OpenMul,

Beacon, Maestro) and distributed ones (OpenDaylight and

ONOS) perform significantly better than centralized and

single-threaded controllers like NOX, POX, and Ryu.

However, they also require more physical resources in

order to perform efficiently.

• Majority of the controllers proposed in literature have no

implementation available and the details available are not

sufficient for third person to code it. Hence, other than

theoretical comparison, it is not possible to evaluate them.

• Placement of controller in physical topology, directly

impacts a number of performance parameters. In this

regard, we plan to conduct an extensive study with

different topological setups (datacenter, WAN, mobile,

etc.) to compare distributed controllers.

• Limitations of tools also directly effect the benchmarking.

For CBench and PktBlaster we only utilized a speci-

fied number of the emulated switches due to available

hardware resources and in-built traffic profiles. Therefore,

physical resource and modification of compiler (or inter-

preter) may have some noticeable impact on the collected

results.

• We also noticed that some of the available features of

tools, such as packet length, vSwitch buffer size, etc.

impact the performance of the controller. However it is

important to note that the outputs given by any tool also

indicate the performance of components used in complete

topology. Isolating the performance of controller from the

results is not possible.

• Utilization of benchmarking tool like OFNet allows us to

define custom topology with a variety of traffic profiles.

We observed that single-threaded centralized controller

can still perform better in simplified topologies while

multi-threaded controllers are more suitable for complex

environments.

A VERSION IS UNDER REVIEW AT IEEE JSAC 12

(a) CBench throughput with varying number of
switches.

(b) PktBlaster throughput with varying number of
switches.

Fig. 4: Throughput performance for CBench and PktBlaster.

(a) Average RTT Measurement. (b) CPU utlization of vSwitch Daemon.

Fig. 5: RTT and CPU performance for OFNet.

(a) Missing Flows. (b) Flows Sent to Controller. (c) Flows Received from Controller.

Fig. 6: Flow measurements for OFNet.

VIII. CONCLUSION

Benchmarking the performance of a controller is a challeng-

ing task. In this work we qualitatively compare 34 controllers,

and then perform benchmarking and evaluation in quantitative

terms for 9 controllers. During this process, we have also

categorized and classified the different metrics which should

be used for controller benchmarking. Moreover, we conduct

an analysis of tools which can be used in the benchmarking

process. Based on the observations, we find that very few

controllers comply to OpenFlow 1.3 (or higher version) and

provide enough information for actual deployment. Most of the

evaluations done previously are based on simple metrics , with

specific optimization objectives. Moreover, the tools used vary

significantly in features and capabilities. It is impractical to

compare results of one tool with another. Simulation/emulation

based evaluation can give only an indication of performance

at best, and may significantly differ from actual production

environment evaluation.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski et al., “B4:
Experience with a globally-deployed software defined WAN,” in ACM

SIGCOMM Computer Communication Review, vol. 43, no. 4, 2013, pp.
3–14.

[2] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu et al., “B4 and After:
Managing Hierarchy, Partitioning, and Asymmetry for Availability and
Scale in Google’s Software-defined WAN,” in Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Communication,
2018, pp. 74–87.

A VERSION IS UNDER REVIEW AT IEEE JSAC 13

[3] S. Bera, S. Misra, and A. V. Vasilakos, “Software-Defined Networking
for Internet of Things: A Survey,” IEEE Internet of Things Journal,
vol. 4, no. 6, pp. 1994–2008, 2017.

[4] I. T. Haque and N. Abu-Ghazaleh, “Wireless Software Defined Network-
ing: A Survey and Taxonomy,” IEEE Communications Surveys Tutorials,
vol. 18, no. 4, pp. 2713–2737, 2016.

[5] V. Nguyen, A. Brunstrom, K. Grinnemo, and J. Taheri, “SDN/NFV-
Based Mobile Packet Core Network Architectures: A Survey,” IEEE

Communications Surveys Tutorials, vol. 19, no. 3, pp. 1567–1602, 2017.

[6] L. Zhu, X. Tang, M. Shen, X. Du, and M. Guizani, “Privacy-preserving
ddos attack detection using cross-domain traffic in software defined
networks,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 3, pp. 628–643, 2018.

[7] X. Du, M. Guizani, Y. Xiao, and H.-H. Chen, “A routing-driven elliptic
curve cryptography based key management scheme for heterogeneous
sensor networks,” Trans. Wireless. Comm., vol. 8, no. 3, pp. 1223–1229,
Mar. 2009.

[8] Y. Xiao, V. K. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, “A survey
of key management schemes in wireless sensor networks,” Comput.

Commun., vol. 30, no. 11-12, pp. 2314–2341, Sep. 2007.

[9] M. G. X. Du, Y. Xiao and H. H. Chen, “An effective key management
scheme for heterogeneous sensor networks,” Ad Hoc Networks, vol. 5,
no. 1, pp. 24–34, January 2007.

[10] Y. Xiao, X. Du, J. Zhang, F. Hu, and S. Guizani, “Internet protocol
television (iptv): The killer application for the next-generation internet,”
IEEE Communications Magazine, vol. 45, no. 11, pp. 126–134, Novem-
ber 2007.

[11] X. Du and H. Chen, “Security in wireless sensor networks,” IEEE

Wireless Communications, vol. 15, no. 4, pp. 60–66, Aug 2008.

[12] N. Gude, T. Koponen, J. Pettit et al., “Nox: Towards an Operating
System for Networks,” ACM SIGCOMM Computer Communication

Review, vol. 38, no. 3, p. 105, 2008.

[13] “POX Controller Manual Current Documentation.” [Online]. Available:
https://noxrepo.github.io/pox-doc/html/

[14] Big Switch Networks, “Project Floodlight.” [Online]. Available:
http://www.projectfloodlight.org/floodlight/

[15] “OpenDaylight: A Linux Foundation Collaborative Project.” [Online].
Available: https://www.opendaylight.org/

[16] P. Berde, M. Gerola, J. Hart et al., “Onos: Towards an open, distributed
sdn os,” in Proceedings of the Third Workshop on Hot Topics in Software

Defined Networking, ser. HotSDN ’14. ACM, 2014, pp. 1–6.

[17] Ryu SDN Framework Community, “Ryu Controller.” [Online].
Available: https://osrg.github.io/ryu/index.html

[18] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks.” Hot-ICE,
vol. 12, pp. 1–6, 2012.

[19] S. A. Shah, J. Faiz, M. Farooq et al., “An Architectural Evaluation of
SDN Controllers,” in IEEE International Conference on Communica-

tions, 2013, pp. 3504–3508.

[20] A. Shalimov, D. Zuikov, and D. a. Zimarina, “Advanced Study of
SDN/OpenFlow Controllers,” in Proceedings of the Central Eastern

European Software Engineering Conference. ACM, 2013, pp. 1–6.

[21] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A Flexible
OpenFlow-Controller Benchmark,” in 2012 European Workshop on

Software Defined Networking, 2012, pp. 48–53.

[22] M. Jarschel, C. Metter, T. Zinner, S. Gebert, and P. Tran-Gia, “Ofcprobe:
A platform-independent tool for openflow controller analysis,” in IEEE

International Conference on Communications and Electronics, 2014, pp.
182–187.

[23] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of
OpenDaylight SDN controller,” Proceedings of the International Con-

ference on Parallel and Distributed Systems, pp. 671–676, 2014.

[24] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based
comparison and selection of Software Defined Networking (SDN) con-
trollers,” in World Congress on Computer Applications and Information

Systems, 2014, pp. 1–7.

[25] Y. Zhao, L. Iannone, and M. Riguidel, “On the performance of SDN
controllers: A reality check,” in IEEE Conference on Network Function

Virtualization and Software Defined Network, 2015, pp. 79–85.

[26] P. Isaia and L. Guan, “Performance benchmarking of SDN experimental
platforms,” in IEEE NetSoft Conference and Workshops, 2016, pp. 116–
120.

[27] S. Mallon, V. Gramoli, and G. Jourjon, “Are today’s sdn controllers ready
for primetime?” in IEEE Conference on Local Computer Networks,
2016, pp. 325–332.

[28] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN controllers:
A comparative study,” in Mediterranean Electrotechnical Conference,
2016, pp. 1–6.

[29] D. Suh, S. Jang, S. Han et al., “Toward Highly Available and Scalable
Software Defined Networks for Service Providers,” IEEE Communica-

tions Magazine, vol. 55, no. 4, pp. 100–107, 2017.
[30] I. Z. Bholebawa and U. D. Dalal, “Performance analysis of sdn/openflow

controllers: Pox versus floodlight,” Wireless Personal Communications,
vol. 98, no. 2, pp. 1679–1699, 2018.

[31] A. Nguyen-Ngoc, S. Raffeck, S. Lange et al., “Benchmarking the ONOS
Controller with OFCProbe,” in IEEE Seventh International Conference

on Communications and Electronics, 2018, pp. 367–372.
[32] N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow: En-

abling Innovation in Campus Networks,” ACM SIGCOMM Computer

Communication Review, vol. 38, no. 2, p. 69, 2008.
[33] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-

4).”
[34] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo,

“The SoftRouter Architecture,” in In ACM HOTNETS, 2004.
[35] L. Yang, T. A. Anderson, R. Gopal, and R. Dantu, “Forwarding and

Control Element Separation (ForCES) Framework,” RFC 3746, 2004.
[36] N. Feamster, H. Balakrishnan, J. Rexford et al., “The Case for Sepa-

rating Routing from Routers,” in Proceedings of the ACM SIGCOMM

Workshop on Future Directions in Network Architecture, 2004, pp. 5–12.
[37] A. Farrel, J.-P. Vasseur, and J. Ash, “A Path Computation Element

(PCE)-Based Architecture,” RFC 4655, Internet Engineering Task Force,
2006.

[38] J. Van der Merwe, A. Cepleanu, K. D’Souza et al., “Dynamic Connec-
tivity Management with an Intelligent Route Service Control Point,” in
Proceedings of the SIGCOMM Workshop on Internet Network Manage-

ment, 2006, pp. 29–34.
[39] A. Greenberg, G. Hjalmtysson, D. A. Maltz et al., “A Clean Slate 4D

Approach to Network Control and Management,” SIGCOMM Comput.

Commun. Rev., vol. 35, no. 5, pp. 41–54, 2005.
[40] M. Casado, T. Garfinkel, A. Akella et al., “SANE: A Protection

Architecture for Enterprise Networks,” in USENIX fSecurity Symposium,
vol. 49, 2006, pp. 137–151.

[41] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” SIGCOMM

Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, 2007.
[42] D. Erickson, “The beacon openflow controller,” Proceedings of the

second ACM SIGCOMM workshop, pp. 13–18, 2013.
[43] S. H. Yeganeh and Y. Ganjali, “Beehive: Towards a Simple Abstraction

for Scalable Software-Defined Networking,” Proceedings of the ACM

Workshop on Hot Topics in Networks - HotNets-XIII, pp. 1–7, 2014.
[44] GitHub, “An Open Source SDN Controller for

Cloud Computing Data Centers.” [Online]. Available:
https://github.com/China863SDN/DCFabric

[45] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed multi-
domain SDN controllers,” IEEE/IFIP Network Operations and Man-

agement Symposium: Management in a Software Defined World, 2014.
[46] J. Bailey and S. Stuart, “Faucet:Deploying SDN in the Enterprise,” ACM

Queue, no. October, pp. 1–15, 2016.
[47] R. Sherwood, G. Gibb, K.-k. Yap et al., “FlowVisor: A Network

Virtualization Layer,” Network, p. 15, 2009.
[48] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed control plane

for openflow,” Proceedings of the 2010 internet network management

conference on Research on enterprise networking, pp. 3–3, 2010.
[49] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient

and Scalable Offloading of Control Applications Soheil,” Proceedings

of the first workshop on Hot topics in software defined networks, p. 19,
2012.

[50] A. Kazarez, “Loom Github Page.” [Online]. Available:
https://github.com/FlowForwarding/loom

[51] Z. Cai, A. Cox, and E. T. S. Ng, “Maestro: A System for Scalable
OpenFlow Control,” Cs.Rice.Edu, p. 10, 2011. [Online]. Available:
http://www.cs.rice.edu/{∼ }eugeneng/papers/TR10-11.pdf

[52] A. Voellmy, B. Ford, Y. R. Yang et al., “Scaling Software-Defined
Network Controllers on Multicore Servers,” Proceedings of the ACM

SIGCOMM Conference on Applications, technologies, architectures, and

protocols for computer communication, pp. 289–290, 2012.
[53] M. Banikazemi, D. Olshefski, A. Shaikh et al., “Meridian: An SDN

platform for cloud network services,” IEEE Communications Magazine,
vol. 51, no. 2, pp. 120–127, 2013.

[54] GitHub, “MicroFlow:The light-weighted, lightning fast
OpenFlow SDN controller.” [Online]. Available:
https://github.com/PanZhangg/Microflow

https://noxrepo.github.io/pox-doc/html/
http://www.projectfloodlight.org/floodlight/
https://www.opendaylight.org/
https://osrg.github.io/ryu/index.html
https://github.com/China863SDN/DCFabric
https://github.com/FlowForwarding/loom
http://www.cs.rice.edu/{~}eugeneng/papers/TR10-11.pdf
https://github.com/PanZhangg/Microflow

A VERSION IS UNDER REVIEW AT IEEE JSAC 14

[55] “NODEFLOW: An openflow controller node style.” [Online]. Available:
http://garyberger.net/?p=537

[56] T. Koponen, M. Casado, N. Gude, and other, “Onix: A Distributed
Control Platform for Large-Scale Production Networks,” USENIX Con-

ference on Operating Systems Design and Implementation, pp. 1–6,
2010.

[57] “OpenContrail An open-source network virtualization platform for the
cloud.” [Online]. Available: http://www.opencontrail.org/

[58] B. Lee, S. H. Park, J. Shin, and S. Yang, “IRIS: The Openflow-
based Recursive SDN controller,” International Conference on Advanced

Communication Technology, pp. 1227–1231, 2014.

[59] “OpenMUL SDN Platform.” [Online]. Available:
http://www.openmul.org/openmul-controller.html

[60] A. D. Ferguson, A. Guha, C. Liang et al., “Participatory Networking:
An API for Application Control of SDNs,” ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4, pp. 327–338, 2013.

[61] S. Li, D. Hu, W. Fang, S. Ma et al., “Protocol Oblivious Forwarding
(POF): Software-Defined Networking with Enhanced Programmability,”
IEEE Network, vol. 31, no. 2, pp. 58–66, 2017.

[62] A. Wang, X. Mei, J. Croft et al., “Ravel: A Database-Defined Network,”
Proceedings of the Symposium on SDN Research, pp. 1–7, 2016.

[63] S. Shin, Y. Song, T. Lee et al., “Rosemary: A Robust, Secure, and High-
Performance Network Operating System Seungwon,” Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications

Security, pp. 78–89, 2014.

[64] GitHub, “RunOS OpenFlow Controller.” [Online]. Available:
https://github.com/ARCCN/runos

[65] F. Botelho, A. Bessani, F. M. V. Ramos, and P. Ferreira, “SMaRtLight:
A Practical Fault-Tolerant SDN Controller,” Arxiv preprint, pp. 1–7,
2014. [Online]. Available: http://arxiv.org/abs/1407.6062

[66] B. Trevizan De Oliveira, L. Batista Gabriel, and C. Borges Margi,
“TinySDN: Enabling multiple controllers for software-defined wireless
sensor networks,” IEEE Latin America Transactions, vol. 13, no. 11, pp.
3690–3696, 2015.

[67] Y. Takamiya and N. Karanatsios, “Trema OpenFlow controller
framework,” 2018. [Online]. Available: https://github.com/trema/trema

[68] M. Monaco, O. Michel, and E. Keller, “Applying Operating System
Principles to SDN Controller Design,” in Proceedings of the Twelfth

ACM Workshop on Hot Topics in Networks. ACM, 2013, p. 2.

[69] F. Dürr, T. Kohler, J. Grunert, and A. Kutzleb, “Zerosdn: A
message bus for flexible and light-weight network control distribution
in SDN,” CoRR, vol. abs/1610.04421, 2016. [Online]. Available:
http://arxiv.org/abs/1610.04421

[70] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: Traffic matrix
estimator for openflow networks,” in Proceedings of the Conference on

Passive and Active Measurement, 2010, pp. 201–210.

[71] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in IEEE

Network Operations and Management Symposium, 2014, pp. 1–8.

[72] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A
low cost network monitoring framework for software defined networks,”
in IEEE Network Operations and Management Symposium, 2014, pp.
1–9.

[73] P. H. Isolani, J. A. Wickboldt, C. B. Both, J. Rochol, and L. Z.
Granville, “Sdn interactive manager: An openflow-based sdn manager,”
in IFIP/IEEE International Symposium on Integrated Network Manage-

ment, 2015, pp. 1157–1158.

[74] W. Kim, J. Li, J. W. K. Hong, and Y. J. Suh, “Ofmon: Openflow mon-
itoring system in onos controllers,” in 2016 IEEE NetSoft Conference

and Workshops (NetSoft), 2016, pp. 397–402.

[75] N. Handigol, S. Seetharaman, M. Flajslik et al., “Plug-n-serve: Load-
balancing web traffic using openflow,” ACM Sigcomm Demo, vol. 4,
no. 5, p. 6, 2009.

[76] H. Uppal and D. Brandon, “Openflow based load balancing,” CSE561:

Networking Project Report, University of Washington, 2010.

[77] R. Wang, D. Butnariu, J. Rexford et al., “Openflow-based server load
balancing gone wild.” Hot-ICE, vol. 11, pp. 12–12, 2011.

[78] C. Liang, R. Kawashima, and H. Matsuo, “Scalable and crash-tolerant
load balancing based on switch migration for multiple open flow
controllers,” in International Symposium on Computing and Networking,
2014, pp. 171–177.

[79] R. D. Corin, M. Gerola, R. Riggio, F. D. Pellegrini, and E. Salvadori,
“Vertigo: Network virtualization and beyond,” in European Workshop

on Software Defined Networking, 2012, pp. 24–29.

[80] L. Xingtao, G. Yantao, W. Wei, Z. Sanyou, and L. Jiliang, “Network
virtualization by using software-defined networking controller based

docker,” in IEEE Information Technology, Networking, Electronic and

Automation Control Conference, 2016, pp. 1112–1115.
[81] “Docker overview.” [Online]. Available:

https://docs.docker.com/engine/docker-overview/
[82] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization

in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
pp. 20–27, March 2013.

[83] A. Blenk, A. Basta, and W. Kellerer, “Hyperflex: An sdn virtualization
architecture with flexible hypervisor function allocation,” in IFIP/IEEE

International Symposium on Integrated Network Management, 2015, pp.
397–405.

[84] “OpenStack:Open source software for creating private and public
clouds.” [Online]. Available: https://www.openstack.org/software/

[85] A. Mayoral, R. Vilalta, R. Muoz et al., “Sdn orchestration architec-
tures and their integration with cloud computing applications,” Optical

Switching and Networking, vol. 26, pp. 2 – 13, 2017.
[86] “OpenStack Havana Release.” [Online]. Available:

https://www.openstack.org/software/havana/
[87] T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and S. Shenker, “Express-

ing and enforcing flow-based network security policies,” University of

Chicago, Tech. Rep, vol. 9, 2008.
[88] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “Policycop:

An autonomic qos policy enforcement framework for software defined
networks,” in IEEE SDN for Future Networks and Services, 2013, pp.
1–7.

[89] V. Varadharajan, K. K. Karmakar, and U. Tupakula, “Securing com-
munication in multiple autonomous system domains with software
defined networking,” in IFIP/IEEE Symposium on Integrated Network

and Service Management, 2017, pp. 195–203.
[90] B. Vengainathan, A. Basil, M. Tassinari et al., “Benchmarking Method-

ology for Software-Defined Networking (SDN) Controller Performance,”
RFC 8456, 2018.

[91] R. Sherwood and K.-K. Yap, “Cbench Con-
troller Benchmarker,” 2011. [Online]. Available:
https://github.com/andi-bigswitch/oflops/tree/master/cbench

[92] GitHub, “WCBench:CBench, Wrapped in stuff that makes it Useful.”
[Online]. Available: https://github.com/dfarrell07/wcbench

[93] “OFCProbe: A Platform Independent Tool for
OpenFlow Controller Analysis.” [Online]. Available:
https://www3.informatik.uni-wuerzburg.de/research/ngn/ofcprobe/ofcprobe.shtml

[94] M. Team, “Mininet: An Instant Virtual Network on your Laptop (or
other PC).” [Online]. Available: https://mininet.org/

[95] “PktBlaster SDN Datasheet,” Veryx Technolo-
gies, Tech. Rep., 2016. [Online]. Available:
http://www.veryxtech.com/wp-content/uploads/2015/10/Datasheet-PktBlaster-SDN-Controller-Test5.pdf

[96] G. H. Shankar, “OFNet Quick User Guide.” [Online]. Available:
http://sdninsights.org/

http://garyberger.net/?p=537
http://www.opencontrail.org/
http://www.openmul.org/openmul-controller.html
https://github.com/ARCCN/runos
http://arxiv.org/abs/1407.6062
https://github.com/trema/trema
http://arxiv.org/abs/1610.04421
https://docs.docker.com/engine/docker-overview/
https://www.openstack.org/software/
https://www.openstack.org/software/havana/
https://github.com/andi-bigswitch/oflops/tree/master/cbench
https://github.com/dfarrell07/wcbench
https://www3.informatik.uni-wuerzburg.de/research/ngn/ofcprobe/ofcprobe.shtml
https://mininet.org/
http://www.veryxtech.com/wp-content/uploads/2015/10/Datasheet-PktBlaster-SDN-Controller-Test5.pdf
http://sdninsights.org/

	I Introduction
	II SDN Controllers
	II-A Architecture of SDN Controllers
	II-B Evolution of SDN Controllers

	III Classification and Comparison of SDN Controllers
	III-A Classification & Selection Criteria
	III-B Qualitative Comparison
	III-C Use case Specific Enhancements to SDN Controllers
	III-C1 Network Monitoring
	III-C2 Load Balancing
	III-C3 Network Virtualization & Cloud Orchestration
	III-C4 Policy Enforcement

	IV Benchmarking Process & Metrics
	IV-A Why Benchmark a Controller?
	IV-B Existing Works & Lessons Learned
	IV-C Benchmarking Metrics and their Impact
	IV-C1 Throughput Metrics
	IV-C2 Latency Metrics
	IV-C3 Flow Related Metrics
	IV-C4 Topology Based Metrics
	IV-C5 Threading & Session Metrics
	IV-C6 Miscellaneous Metrics

	V Tools for Controller Benchmarking
	V-A Benchmarking Tools
	V-B Benchmarking Capabilities

	VI Evaluation and Benchmarking of Controllers
	VI-A Evaluation Setup
	VI-B Latency Performance
	VI-B1 CBench
	VI-B2 PktBlaster
	VI-B3 OFNet
	VI-B4 Cross-Tool Analysis

	VI-C Throughput Performance
	VI-C1 CBench
	VI-C2 PktBlaster
	VI-C3 Cross-Tool Analysis

	VI-D OFNet Specific Measurements
	VI-D1 Average Round Trip Time
	VI-D2 CPU Utilization of vSwitch Daemon
	VI-D3 Missed Flows
	VI-D4 Flow Messages Sent & Received

	VII Research Findings
	VIII Conclusion
	References

