
Computer Networks 192 (2021) 108047

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Survey paper

Software defined networking architecture, traffic management, security, and
placement: A survey
Madhukrishna Priyadarsini ∗, Padmalochan Bera
Indian Institute of Technology, Bhubaneswar, India

A R T I C L E I N F O

Keywords:
SDN
Network function virtualization
Energy efficiency
Load balancing
SDN security
Controller placement
OpenFlow protocols

A B S T R A C T

Software-defined networking (SDN) is the potential deployment platform for the future Internet and enterprise
networks. In SDN, the logical control (programs) and the forwarding logic (data) are separated. Therefore,
it allows to configure the network parameters, routing policies effectively based on the requirements of the
environment. The control plane (set of controllers) implements network functions such as, load balancing,
energy-efficient routing, security. The data plane (set of switches) receives the forwarding logic from control
plane and forwards the packets in the network. This in turn enhances the traffic management performance
of the network, and strengthens the security perimeter. The researchers have worked on various directions
towards the enhancement of network control functions, performance, and security. However, none of those
talks about traffic management challenges in integration with security, energy efficiency and performance
dependencies.

This survey presents an extensive study, analysis and report of state-of-the-art works on effective traffic
management including load balancing and energy-efficient routing, SDN control implementation and de-
ployment architecture, controller security and optimal controller placement that affect traffic management.
Moreover, this survey discusses a few unexplored problems in SDN such as scalable deployment, integration
with legacy network, and future research road maps to these problems. This will help researchers understanding
different theoretical, experimental, and applied research in SDN, challenges in these problems; developing
effective solutions; and designing future research road maps.
1. Introduction

Software-defined networking (SDN) is a modern-era network tech-
nology that allows effective management of heterogeneous network.
Traditional network architecture is limited in satisfying the grow-
ing demand of implementing heterogeneous applications with real
time communications requirements [1]. Traditional network supports
specific policies implemented during the build time of the devices
and thereby limits flexibility in dynamic configuration of the network
parameters [2].

Fig. 1 shows generic views of TCP/IP and SDN network architec-
ture. The SDN architecture separates the control plane from the data
and thereby makes the network function implementation hardware
independent. The interfacing between different planes are realized
using a set of protocols under the OpenFlow standard. For example,
data and control plane communication is controlled using northbound
protocol. Thus, SDN can accommodate network devices (switches)
from any vendor that supports the OpenFlow protocol standard. The
SDN architecture consists of three layers namely; data plane, con-
trol plane, application plane, and two primary functional components

∗ Corresponding author.
E-mail addresses: mp18@iitbbs.ac.in (M. Priyadarsini), plb@iitbbs.ac.in (P. Bera).

namely; controllers and switches. The controllers generate the flow
rules (instructions for packet processing and network management)
and the switches forward the traffic according to these flow rules [3].
The communication between controller and switches is governed by
a set of OpenFlow protocols. In contrast to traditional networks, SDN
architecture only requires software (controller function and protocol)
up-gradation in case of changes in network environments. This makes
SDN platform cost-effective and simple for deployment in real-life
network implementations. SDN provides flexibility to the programmer
in developing control and application planes in any high-level lan-
guages. It allows updating network parameters on the fly based on
changes in requirements [4] which in turn enhances the performance
and robustness of the network. Moreover, SDN supports developing
different network functions such as load balancing, energy-efficient
routing, security analysis using network function virtualization for
effective traffic management in the network [5,6].

One of the limitations of SDN Architecture is its heavy dependency
on the controller. This may lead to various problems. Firstly, the SDN
vailable online 31 March 2021
389-1286/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2021.108047
Received 26 June 2020; Received in revised form 14 December 2020; Accepted 23
 March 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:mp18@iitbbs.ac.in
mailto:plb@iitbbs.ac.in
https://doi.org/10.1016/j.comnet.2021.108047
https://doi.org/10.1016/j.comnet.2021.108047
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108047&domain=pdf


Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
Fig. 1. Example topology showing difference between TCP/IP and SDN Network.

Fig. 2. OpenFlow connection architecture.

platform may potentially suffer from different network server-based
attacks such as spoofing, intrusion, DoS, policy anomalies [7]. Sec-
ondly, there may be a possibility of traffic congestion in the controller.
Moreover, there is a generic problem of high energy consumption by
different network devices [8]. Finally, a limited number of controllers
with uneven association with the switches may introduce performance
problems for large-scale networks. In general, all these problems signif-
icantly affect traffic management in the network. Therefore, to utilize
the benefits of SDN architecture, there is a need for developing so-
lutions to address the above problems. An efficient load balancing
technique may solve the traffic congestion problem in the controller
and thereby can enhance the traffic management process. On the other
hand, the introduction of sleep-active mode in the device function-
ing may significantly reduce energy consumption and thereby control
carbon emission to the environment. Finally, it is necessary to de-
velop dynamic security enforcement solutions to proactively detect and
prevent various attacks. Also, solutions to place the controller in the
network are required after the implementation of the above-mentioned
network functions.

Existing survey articles lacks in covering extensive study and anal-
ysis of traffic management functions in SDN [2,3,9], advancements in
SDN implementation and deployment architectures, affects of security
and controller placement on traffic management. Although there exist
survey articles on SDN security and controller placement, they do not
discuss its dependencies with traffic management. In addition, there
is no article explaining designed energy-efficient solutions for traffic
management and load balancing in SDN. This motivates our current
survey. The main contribution of the paper includes:

(1) We present a detailed study on SDN implementation architecture
covering its evolution from OpenFlow and network function vir-
tualization (NFV). The working procedure of each layer and the
functional components (network devices) are presented along
with the flow rule generation process.
2

(2) We discuss the traffic management challenges in SDN mainly in
the form of load balancing and energy-efficient routing. Then,
we detailed the state-of-the-art research in these directions.

(3) We present a detailed study on various security threats in SDN
and the research directions to counter these threats.

(4) We formally state the controller placement problem in SDN.
Also, we present the research insights to solve this problem con-
sidering different network and traffic management constraints.

(5) We present detailed theoretical, experimental, and analytical
comparison of state-of-the-art works in all the above directions.
We also discuss the dependencies of these problems with ef-
fective traffic management in SDN. Finally, we discuss various
open and current research challenges in SDN for its effective
realization and deployment in various applications.

The remainder of this paper is organized as follows. Section 2 discusses
the SDN evolution from OpenFlow and NFV, its basic architecture, and
the flow rule generation procedure. The traffic management challenges
are described in Section 3 with their potential solutions. In Section 4,
we present the current security threats of SDN and its countermeasures.
The controller placement problem in SDN is described in Section 5 with
the methodologies to solve the problem. Section 6 presents open chal-
lenges of SDN platform such as reliability and scalability with certain
application challenges. Finally, we conclude the paper in Section 7.

2. Evolution of SDN

SDN has evolved as an emerging network platform since 2000
with different technologies such as OpenFlow and network function
virtualization. The two major characteristics of SDN are (i) separation
between data and control plane which is acquired from telephone
network systems; and (ii) requirement driven control of tasks which are
taken from different network models such as Tempest, capsule model,
virtual network infrastructure, etc. Due to the lack of hardware support
and available implementation infrastructure, these concepts were not
integrated as an efficient networking platform. Since 2008 with the
development of OpenFlow protocols, a significant amount of research
has been performed in the field of SDN. In the following subsections,
we highlight the backbone technologies of SDN.

2.1. Introduction to OpenFlow and Network Function Virtualization (NFV)

2.1.1. OPenFlow architecture
OpenFlow is a specification managed by the Open Networking

Foundation (ONF) [10], which defines the functions and protocols
used to manage network switches through a centralized controller. It
was initiated by Martin Casado et al. at Stanford University during
2005–2009. OpenFlow is a command and control protocol that includes
communication over SSL/TLS protected channels; feature discovery
and configuration of devices by the controller, and managing the
forwarding tables on the switches. The OpenFlow protocol is designed
and managed by the network administrators and vendors for config-
uring and managing network devices [11]. The protocol allows the
controller to guide the switches on handling incoming packets. The
control instructions are generally structured as ‘‘flow rules’’. Each flow
contains the following fields < header match fields, flow priority,
counters, packet processing instructions, flow timeouts, cookies>. An
OpenFlow switch maintains a set of flow rules in a flow table. A packet
is forwarded in the network based on the flow rules in the switches’
flow table. Fig. 2 presents the OpenFlow connection architecture. It
consists of three types of network components such as;

• One or more switches (The switches may be physical or virtual)
• One or more controllers
• One or more applications/application servers



Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
The controller implements the OpenFlow protocol for establishing com-
munications with the switches. It provides a northbound API to the
applications. The northbound API allows the applications to read the
state of the network and to control the network to perform different
tasks. These components establish communication in three possible
ways: OpenFlow, Non-OpenFlow, and production VLANs. Some Open-
Flow applications may require the only partial deployment of Open-
Flow switches, whereas others require a network consisting of only
OpenFlow switches.

2.1.2. Network Function Virtualization (NFV)
In late 2012, the initiative of NFV has been taken, involving more

than 28 networking companies and over 150 technology providers from
various telecommunication industries across the globe. NFV aims to
reduce equipment costs and decrease time to market while attaining
scalability, dynamic configuration, and a strong ecosystem between
network providers, vendors, and users. By virtualization of network
functions (generally implemented in dedicated hardware), network
operators expect to achieve greater agility and acceleration in-service
deployments while reducing both operational (OpEx) and capital costs
(CapEx) [12]. In addition, NFV is intended to optimize the overhead
incurred due to deployment functions (such as traffic management,
firewalls, DNS, load balancers, etc.). Implementation of NFV requires
dynamic network connectivity both in physical and virtual layers to
interconnect network function endpoints (virtual machines).

NFV Framework:
Network function virtualization framework consists of three ele-

ments; those are described as follows:

(1) Virtualized Network Function (VNF): The virtualized network
functions comprise of the software used to create the various
network functions in its requested format. In general, multi-
ple virtual machines are created that implement different net-
work functions. The VNFs are then synthesized in the hardware,
i.e., the Network Function Virtualization Infrastructure.

(2) Network Function Virtualization Infrastructure (NFVI): NFVI is a
computing platform that consists of core hardware and software
logics for implementation of VNFs. NFVI is platform and OS
independent and can be realized in any geographic location
which allows operators to access the infrastructure flexibly [13].

(3) Network Functions Virtualization Management and Orchestra-
tion (NFV-MANO): NFV-MANO consists of various functional
blocks that enable storage, access, and exchange of informa-
tion for operating the network correctly with improvements in
efficiency and performance.

In summary, NFVI and NFV-MANO together help in managing and
monitoring devices, recovering from failures, and providing effective
security.

2.2. The SDN architecture

The SDN architecture has been designed for the development and
execution of agile and cost-effective network functions and applica-
tions. One of the key emphasis behind SDN architecture is providing an
easily configurable platform with simple troubleshooting methods. This
recommends the centralization of network intelligence by separating
the forwarding process of network packets (data packets) from the
routing process (control process) [14]. In general, SDN is character-
ized by seven fundamental traits: data-control separation, simplified
devices, centralized control, network automation and virtualization,
vendor-independence, programmable platform, and openness. Here, we
provide an overview of the basic components of a software-defined
networking system, their functions, operations, and the process of
3

communication between these components [2].
Fig. 3. SDN architecture consists of three different layers.

2.2.1. Layered architecture
The fundamental characteristic of SDN is the separation of the

forwarding/data plane and the control plane. Fig. 3 shows the ba-
sic architecture of SDN, which consists of three layers. The bottom
or first layer is the infrastructure layer, which is also called a data
plane. It comprises of the traffic/data forwarding network elements.
The responsibilities of the data plane are mainly data forwarding;
dropping or replicating of data, as well as monitoring local network
information and collecting flow statistics. Data plane communicates to
the control plane if it does not possess forwarding information for a
packet and subsequently control plane generates flow information for
such a packet. On the other hand, if the packet forwarding rule/flow
rule pertains to multicast, the packet is replicated in the data plane
before forwarding the various copies through different output ports [3].
In summary, the data plane constitutes the basic distribution topology
of the SDN network.

The second layer is called the control layer or the control plane.
Configuration of the forwarding plane is realized in the control plane.
The control plane determines the flow tables and forwarding logic
in the data plane. Many of these protocols and algorithms require
global knowledge of the network. The control plane determines how
the generation of the forwarding tables and logic in the data plane
should be programmed. It makes use of the information provided by
the forwarding plane and defines network operation and routing-logic.
It comprises one or more software controllers (which are logically
centralized) that communicate with the forwarding devices (switches)
through the standardized interface, the southbound interface [9].

The application layer hosts network applications for introducing
new network features, such as security policy and control, network ser-
vice quality, that in turn assist control plane in configuring the network
with these application requirements. The application layer receives an
abstract and global view of the network from the controller and uses
it to provide recommendations in the form of different application
policies or rules. The interface between the application layer and the
control layer is referred to as the northbound interface [15].

2.2.2. Communication protocols
The most common southbound interface is OpenFlow [10], which is

standardized by the Open Networking Foundation (ONF). OpenFlow is
a protocol that describes the interaction of one or more control servers
with OpenFlow-compliant switches. An OpenFlow controller installs a
flow table in the switches so that these switches forward traffic as per
the entries in the flow table. The flow rules are of different types as
classified by match fields such as bit_offset, length, the pattern is similar
to IP access control lists (ACLs) and may contain wildcards.



Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
Fig. 4. An example of flow table.
The OpenFlow protocol provides an interface that allows a control
software to program switches in the network. In general, the controller
can change the forwarding behavior of a switch by altering the rules
in the forwarding table. Controllers often provide a similar interface
to the applications, which is called the northbound interface, to expose
the programmability of the network. The northbound interface is not
standardized and often allows fine-grained control of the switches.
However, applications do not require the details of the southbound
interface, e.g., an application does not need to know the details about
the network topology and related parameters.

2.2.3. SDN forwarding devices and functionalities
An SDN device (OpenFlow switch) is comprised of an API for

communication with the controller, a topology abstraction layer, and
a packet-processing function. In the case of a virtual switch, this
packet-processing function is packet-processing software. On the other
hand, in the case of a physical OpenFlow switch, the packet-processing
function/logic is embedded in the hardware. The packet-processing
logic consists of the mechanisms to take actions based on the results
of evaluating different fields in the header of the incoming packets
and on finding the highest-priority match. When a match is found with
the flow table rules, the incoming packet is processed locally unless it
is explicitly forwarded to the controller. When there is no match, the
packet may be forwarded to the controller for further processing. In the
case of a software switch, these functions are mirrored by the software
while in case of hardware switch, they are programmed in the hardware
logic [3].

The flow table is the primary data structure in an SDN device
that consists of a set of flow rules. The flow tables allow the switch
to evaluate incoming packets and take appropriate actions based on
packet headers. Incoming network packets are evaluated based on
some fields in the header such as length, pattern, offset. The actions
may include forwarding the packet to a specific port, dropping the
packet, or flooding the packet on all ports, etc. An SDN device is
not fundamentally different from a network switch except that the
basic operation of an SDN switch has been rendered more generic and
more programmable through the flow tables and the associated logic.
The Flow tables consist of a number of prioritized flow rules, each of
which typically consists of two components: a set of match fields and
actions. An incoming packet is compared against the match fields in
priority order, and the first complete match is selected. Subsequently,
the network device takes the corresponding action specified in the flow
rule. The flow table and flow entry constructs used in flow tables and
4

flow rules provides application developer a wide range of possibilities
for designing packet matching s/w or h/w logic. An example of the flow
table is shown in Fig. 4.

A number of SDN device implementations are available today,
both commercial and open source. At present, there are two major
alternatives: Open vSwitch(OVS) from Nicira, Indigo from Big Switch.
In addition, network equipment manufacturers such as Cisco, HP, NEC,
IBM, Juniper, and Extreme, have added OpenFlow support to some of
their legacy switches.

2.2.4. SDN operation
The three major functional components of SDN are the SDN

switches, the controller, and the application layer. The SDN switches
implement forwarding logic for determining actions on incoming pack-
ets. An SDN switch contains a data structure called a flow table which is
a collection of a set of flow rules or flow entries. When a switch receives
a packet, it checks its flow tables for a match. In case of a match, it
takes appropriate configured action which usually entails forwarding
the packet. If it does not find a match, the switch can either drop the
packet or pass it to the controller. The SDN controller is responsible
for creating an abstract view of the topology and presenting it to
the running applications. The controller allows the SDN applications
to define flows on switches and to manage the network functions to
respond to the packets that are forwarded to the controller. Since
one controller can control a large number of network devices, the
forwarding rules are calculated and operated on a high-performance
machine with less latency [1]. Fig. 5 shows the generic functioning of
SDN.

The SDN applications are built on top of the controller. It is to be
noted that these applications are different from the traditional OSI net-
work model. The functional implementations of SDN applications cover
characteristics of the network layer and data layer (not application
layer) of the OSI model. The SDN applications are interfaced with the
controller; use that interfaces to set proactive flows on the switches, and
to receive packets that have been forwarded to the controller. When the
application starts, the proactive flows are set by application and these
flows persist till there are no changes in the configuration. This type of
flow is called static flows. Another type of proactive flow is configured
by the controller based on the current load in the device. In addition,
some flow rules are defined in response to a packet forwarded to the
controller. On receipt of incoming packets that have been forwarded
to the controller, the SDN application sets the effective policies for the
controller, and if appropriate, establishes/configures new flows in the



Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
Fig. 5. SDN operation overview.

Fig. 6. SDN controller architecture.

switch. Next time, the switch responds locally when it receives a packet
and is called reactive flows [3].

The controller maintains a view of the entire network, receives
network functions for traffic management, implements policy decisions,
controls SDN devices in the infrastructure layer, and provides a north-
bound API for applications. Here, we refer implementation of policy
decisions as routing, forwarding, packet redirecting, load balancing,
etc. The controllers often bundled with their own set of common ap-
plication modules, such as a learning switch, a router, a basic firewall,
and a simple load balancer [16].

Fig. 6 shows the modules that cover the core functionalities of the
controller. It also shows a northbound API and a southbound API, and
a few example applications that might use the controller. The core
features in the controller include:

• End-user device discovery: Discovery of end-user devices such as
laptops, desktops, printers, mobile devices, and so on.

• Network device discovery: Discovery of network devices that
comprise the infrastructure of the network, such as switches,
routers, and wireless access points.

• Network device topology management: Maintaining information
about the interaction between the network devices to each other
and to the end-user devices to which they are directly attached.

• Flow management: Maintaining a database of the flows being
managed by the controller and perform all necessary coordination
with the devices/switches to ensure synchronization of the device
flow entries with that database.

The core functions of the controller are implemented by a set of
software modules as shown in Fig. 6. These modules need to maintain
local databases containing the current topology and flow statistics. The
5

controller dynamically extracts the network topology by learning of the
presence of switches (SDN devices) and end-user devices and checking
the connectivity between them. It maintains a flow cache that mirrors
the flow tables on the various switches it controls. The controller locally
maintains the per-flow statistics as collected from the switches [16].
The controller functions are implemented through pluggable modules,
and the features are designed according to the network requirements.

Existing SDN controllers:
There are a number of SDN controllers available today. They include

both open source SDN controllers and commercial SDN, controllers.
Open source SDN controllers come in many forms of implementa-
tions starting from basic C-language controllers such as NOX [17] to
python-based controller POX [18], and to Java-based versions such
as Beacon [19], Floodlight [20], OpenDayLight [21]. Also, there is a
Ruby-based controller called Trema [22]. Interfaces to these controllers
may be offered in the language in which the controller is written or
other alternatives, such as REST or Python. Vendors such as NEC, IBM,
and HP offer controllers that are primarily OpenFlow implementations.
In summary, OpenFlow controller architecture is more prevalent for
extensions and offering new features and automation. Whereas, the
proprietary controllers are more network or application-specific and
offer less programmability support.

In the next section, we present the traffic management challenges
in SDN and the proposed methodologies to solve those issues.

3. Traffic management in SDN

SDN has evolved as an emerging network platform due to its key
feature of effectively managing and monitoring heterogeneous traffic
with less configuration and performance overhead. However, as the
SDN platform has experimented with a large volume of traffic with
various environmental constraints, researchers and network engineers
found various challenges towards effective traffic management. Here,
we cover two such challenges, namely, load balancing and energy-
efficient routing. The first part of this section covers the load balancing
problem and related works to counter this problem. The second part
presents the energy consumption of the network infrastructure and the
devices and its impact on traffic routing and network performance
parameters. We also discuss the research works in the direction of
reducing energy consumption in traffic management.

3.1. Load balancing and its implementation in SDN

With the growth in network size and usages of network applications,
it is a challenge to the network industries to come up with efficient
technologies and platforms for implementing large-scale heterogeneous
network applications [23]. The SDN platform provides flexibility to
configure networks for complying with heterogeneous applications.
But, failure of managing a large volume of traffic potentially creates
a load imbalance in the controllers which in turn degrades network
performance and utilization, e.g., packet reordering, end-to-end delay,
increase of latency, etc [24]. It also limits end-users to access the
required services. Therefore, it is important to distribute the traffic load
evenly among the controllers through appropriate network paths.

In this survey, we present the state-of-the-art works on control
plane load balancing only. Controller is responsible for creating flow
rules and the data plane switches only forward the data according to
the generated flow rules. The controller also considers the resources
available in the data plane, suitable routing protocols, available link
bandwidth, capacity of each forwarding devices while generating the
flow rules. This is why, control plane load balancing is more relevant
for discussion than data plane load balancing. Here, we discuss the
research work on control plane load balancing mainly in two directions.
The first subsection discusses the works done on load balancing in
traditional networks along with highlighting the differences of this



Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
problem in the SDN platform. On the other hand, the second subsection
presents the state-of-the-art load balancing for SDN. In addition, we
summarize the survey on load balancing with our observations and
analysis.

3.1.1. Load balancing in Traditional Networks
The load balancing problem in traditional networks mainly covers

server and link load balancing. In this area, different technologies
such as NGINX [25], HAProxy [26] have been proposed which used
hardware and software implementations based on layer interactions.
Islam et al. [27] proposed a water-aware workload management al-
gorithm that controls data centers’ long-term water consumption by
exploiting Spatio-temporal diversities of water efficiency and dynam-
ically dispatching workloads among distributed data centers. Liang
et al. [28] investigated the problem of developing a geographical load
balancing (GLB) scheme for distributed Internet data centers (IDCs).
They imposed proper limits on the workloads allocated to the IDC
locations with high price-sensitivity coefficients so that the total cost
is decreased. Saurav et al. [29] proposed a distributed algorithm that
saves resources such as the time and energy of mobile devices and
improves overall system performance.

However, the traditional network does not adopt dynamic changes
in network states, which makes the realization of load balancing diffi-
cult [13]. On the other hand, the SDN controller manages the network
resources dynamically as per the user’s requirements and network
topology. Therefore, due to the flexibility in programming and con-
figuring SDN controllers, the SDN platform can be deployed as a load
balancer in traditional network applications.

3.1.2. Load balancing in SDN
The load balancing solutions in SDN are broadly classified into

two categories: (i) centralized load balancing, and (ii) distributed load
balancing. Table 1 presents the comparison of various load balancing
techniques that have been proposed for SDN implementation.

Centralized load balancing:
In the centralized load balancing approach, a single controller is

responsible for balancing the load [30]. It periodically collects load
from other controllers, informs the overloaded controller to transfer
some of its load to a lightly loaded controller. However, this approach
does not scale well for large systems since the central controller has to
make all the decision making. The system is not reliable in the sense
that the failure of the central controller stops the load balancing process
altogether.

Distributed load balancing:
In the distributed load balancing approach, a threshold for the

load is defined for each controller based on the hardware capacity
of the controller, and load balancing is not required until the traffic
load crosses that value [31]. When the load in a controller crosses its
threshold, it collects load from others, and then the controller may
initiate a load balancing process. In this case, each controller balances
its load in collaboration with other controllers through message ex-
changes. Yu et al. [32] proposed a load informative strategy where
a load scale from zero to threshold is divided into many segments.
The load is informed only if the previously informed load and the
current load lies in two different segments in the load scale. But when
the load approaches towards the threshold, the load is continuously
informed to other controllers which require high bandwidth. In SMDM
based load balancing [33], a trade-off between switch migration cost
and load balancing rate is maintained. However, the migration at the
source controller leads to another load migration at the target one,
which causes performance degradation. In the SMCLBRT load balancing
scheme [34], multiple controllers migrate their switches simultaneously
depending on the response time of the target controller. In the first
phase, highly loaded controllers find lightly loaded controllers for
6

switch migration, and in the second phase, all the selected switches
are migrated. This scheme consumes high network bandwidth and
introduces congestion due to simultaneous switch migration. A load-
balancing scheme proposed by Zhou [35] explores the migration of
a group of switches while reducing the number of decisions taken
by the overloaded controllers. But it increases load balancing time
and migration cost, which effectively reduces the performance of the
network. Li et al. [36] proposed a fuzzy synthetic evaluation mecha-
nism for path load-balancing. It balances traffic and avoids unexpected
breakdowns caused by link failure. However, it increases the utilization
and reliability of network paths.

An OpenFlow-based dynamic load-balancing strategy for data center
networks is proposed by Trestian [37]. Zhong et al. [38] proposed a
load-balancing based on server response time. It achieves a better load-
balancing effect in comparison with the traditional round-robin scheme
and random allocation scheme. Kandoo [39], ONOS [40] implement
distributed controller architecture for a cluster of SDN nodes to im-
prove the reliability, scalability of the control plane. However, they
experience a high bandwidth requirement, which leads to performance
degradation. A hybrid approach for the hierarchical design of the
control plane is proposed by Fu et al. [41], where the scalability
is improved considering large scale scenarios. Recently, Priyadarsini
et al. [42] proposed a self-adaptive load balancing scheme that ad-
dresses the aforementioned limitations by adjusting the threshold dy-
namically. Here, load balancing procedure is completed through five
components, namely, Load measurement component that monitors the
load on every controller; Load broadcast component that is responsible
for broadcasting the load to different controllers in the network; Load
balancing component that checks different load balancing conditions
under variable load in the network; Load migration component that
migrates the load of highly loaded source controllers to lightly loaded
controllers as identified in the load balancing component; Link reset
component resets the controller-switch links involved in the migration
to their initial state. This scheme provides a low packet drop rate while
ensuring a high throughput.

In summary, centralized load balancing is not scalable for large-
scale heterogeneous applications. Moreover, it suffers from reliability
in case of controller failures. On the other hand, distributed load
balancing is proven to be more scalable satisfying specific performance
objectives. The major factors to select a load balancing techniques
are network size, latency requirements, variation in traffic types, link
quality (failure prone), convergence requirements etc. Therefore, it is
recommended to deploy adaptive load balancing strategies which are
capable of effectively satisfying the above requirements.

In addition, there exists another direction of research, where link
load balancing is given equal priority as controller load balancing.
Authors in [43], proposed a load-balancing algorithm using the remain-
ing bandwidth of the bottleneck link and the average link remaining
bandwidth in the path for SDN-based data centers. A score is given
for each path according to the link load in the path and the path
with the largest score is selected to transfer the traffic. The traffic is
redistributed periodically to different paths that can avoid the occurring
of heavy load link. In paper [44], the authors proposed a hybrid
approach combining server and link load balancing for multi-path
routing in distributed storage systems. They used a process as call on-
demand inverse multiplexing which calculates the overall throughput
and resource usage. Authors in [45], formulated the load-balancing
routing for both links and controllers (LBR-LC) problem in an SDN, and
proved its NP-hardness. They proposed a rounding-based algorithm to
solve this problem, and also analyzed the approximation performance.
Moreover, they discussed the efficient mechanism for network status
maintenance among distributed controllers.

3.2. Energy-efficiency in SDN

Today, a large number of heterogeneous applications are being

executed in the backbone network of any organization or publicly



Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
Table 1
Load balancing approaches in SDN.
Load balancing approaches Contributions Applications Proposed techniques

Centralized A single controller collects load
from others and balances load of
highly loaded controllers

1- Cloud computing
2- Defense networks

Centralized load balancing [30]

Distributed

Each controller informs others
when their load exceeds
defined threshold values

1- Cloud computing
2- Data centers

Threshold-based load balancing [31]

The load is informed when
the current load differs
from previous load

1- Cloud computing
2- Data centers

Load informative strategy [32]

A trade-off between switch
migration cost and load
balancing rate is maintained

1- Enterprise networks
2- Social networks

SMDM [33]

Controllers migrate their load
simultaneously depending on the
response time of target

1- Defense networks
2- Social networks

SMCLBRT [34]

Reduces the number of decisions
taken by the overloaded controllers

1- Cloud computing
2- Data centers

Load balancing scheme [35]

Balances traffic and avoids
unexpected breakdowns caused
by link failure

1- Cloud computing
2- Edge computing

Fuzzy synthetic scheme [36]

Dynamically migrates load for
data center networks

1- Edge computing
2- Fog computing

Dynamic load balancing [37]

Migrates load considering
server response time

1- Data centers
2- Social networks

Load balancing scheme [38]

Improves scalability, reliability
of control plane

1- Cloud computing
2- Enterprise networks

Distributed load balancing [39], [40]

Improves scalability in large
scale networks

1- Cloud computing
2- IoT networks

Hybrid load balancing [41]

Dynamically adjusts threshold
value for load increment
and decrement

1- Cloud computing
2- Social networks
3- Enterprise networks
4- Data centers

Self-adaptive load balancing [42]
accessible network [46]. The increase of traffic with varying require-
ments trivially causes high energy consumption and degradation in
the performance of SDN controllers. In order to maintain and en-
hance the network’s performance, optimizing the energy consumption
of controllers, switches, and links in heterogeneous and live networks
with varying input is necessary. In fact, it is one of the key require-
ments for obtaining quality of service, reliability, robustness in various
computing-intensive networks such as data centers and disaster man-
agement networks. Statistics show, even with the reduction in the
growth of the data center for reliable services, the power consumption
is increasing significantly [8].

In addition, with the exponential growth of Internet use, a large
amount of energy is required to operate and control the cooling sys-
tem in backbone network infrastructures which produces a significant
amount of carbon waste. Therefore, while developing network control
functions in SDN, there is a need for reducing energy consumption in
order to control carbon emission and to make the environment green.

With the aforementioned summary, we now introduce the related
works in the direction of energy-efficient computing in SDN. The re-
search is broadly classified into two categories: (i) basic energy-efficient
SDN, and (ii) application-aware energy-efficient SDN. Table 2 shows
the highlighted research works for achieving energy-efficiency in SDN.
They also highlight the benefits and drawbacks of different proposed
methodologies.

3.2.1. Traffic-aware energy-efficient SDN
This subsection discusses the existing research works on designed

frameworks for obtaining energy efficiency in SDN, solutions provided
to reduce energy consumption of the network devices, as well as the
impact of energy efficiency on traffic management.

Wei et al. [47], presented the energy-efficient traffic engineering
7

problem in hybrid SDN/IP networks. They formulated a mathematical
model considering SDN/IP hybrid routing mode and proposed one
algorithm to solve energy-efficient traffic engineering problems. Their
algorithm considers the IP routers which perform the shortest path
routing using distribute OSPF link weight optimization based on neigh-
boring region search and split the traffic at the SDN enabled switches
by the global controller. Bolla et al. [48], proposed energy management
primitives in the context of the emerging Software-defined networking.
It increases networking flexibility, the OpenFlow Protocol to integrate
the energy-aware capabilities offered by the Green Abstraction Layer
(GAL). It also proposes an analytic model for the management of a
network with these capabilities. In Nam et al. [49], a novel energy-
saving scheme that can flexibly control and route traffic relying on
the difference of network device’s energy-profile. The energy-saving
scheme using OpenFlow makes use of the energy profile of network
devices and switch port under various link rates. Cruz et al. [50],
focused on energy consumption optimization in SDN switches and links,
their associated rates, the number of flow entries at each SDN switch.
Alberto et al. [51], proposed an energy-aware and policy-based system-
oriented SDN paradigm, which allows managing the mobile network
dynamically at run time and on-demand through policies. In their work,
they reduced energy consumption by switching off unused devices.
Priyadarsini et al. [8], proposed sleep and active mode concept for en-
ergy consumption reduction by the network devices and link paths. The
proposed mathematical modeling for each device’s energy consumption
calculation. In addition, they introduced energy consumption reduction
by the routing algorithms used by the controller for a global topology
view and finding the route for each packet. Priyadarsini et al. [7],
presented an energy-efficient load balancing approach where the au-
thors integrated energy consumption and load balancing in a single
framework. They have shown how to load increment leads to more
energy consumption and proposed a controller system model to balance

traffic load as well as reduce the energy consumption of the network.



Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
Table 2
Proposed Methodologies for energy-efficiency in SDN with benefits and drawbacks.

Category Methodology Principle Benefits (+) and drawbacks (−)

Basic energy-efficient SDN

Energy-efficient traffic engineering [47] OSPF link weight optimization for
SDN/IP hybrid routing mode

+ Efficient link utilization
− Prone to collision

Energy-aware primitives for GAL [48] Analytical modeling for energy-aware
capabilities of GAL

+ Green communication
− Not scalable

Energy-saving scheme [49] Routes traffic by considering
energy consumption of devices

+ Flexible to control routes
− Prone to failure

Energy-aware approach [50] Optimization model to reduce energy
consumption of switches and links

+ 40% energy saving
− Prone to overheads

Energy-aware SDN paradigm [51] Manages mobile network
dynamically through policies

+ Discards unused devices
+ Cost effective
− High processing time

Energy optimization framework [8] Selects energy-efficient routing
routing algorithms

+ Optimizes energy of devices
− Uses existing algorithms

Energy-efficient load balancing [7] Balances network load while
optimizing energy consumption

+ Improves network performance
+ 25% more energy saving
− Not cost effective

Application-aware
energy-efficient SDN

ElasticTree [52] Saves energy of
data center networks

+ Dynamic flow control
− Not scalable

CARPO [33] Eliminates unnecessary links
in data center networks

+ 90% link utilization
− Delay

EAR [53] Introduces infinite number
of rules

+ Reduces links
− Communication delay
− Large memory requirement

DevoFlow [54] Distributes controllers work
among active switches

+ Reduces energy consumption
+ Cost effective
− Large memory requirement

Energy-aware VM placement [55] Combines VM placement
and routing in DCN

+ Parallel processing
+ Uses DFS and best fit
− Not fault-tolerant

Traffic-aware VM placement [56] Efficiently allocate resources
in intra-DCN

+ Better resource utilization
− Delay
The survey paper by Tuysuz et al. [57], discussed the importance
of energy-efficiency in SDN and presented major research works to
reduce energy consumption in the network. They also discussed the
benefits and drawbacks of each proposed methodology. In addition,
they discussed open issues n energy-efficiency and provided a guideline
for the future direction of research.

3.2.2. Application-aware energy-efficient SDN
There exist research works that contribute towards achieving en-

ergy efficiency in application specific SDN fields such as data center
networks, wireless sensor networks, mobile ad-hoc networks to achieve
energy efficiency. We highlight some of the research contributions in
this subsection.

ElasticTree [52] was proposed to save energy in data center net-
works (DCN) using the SDN framework. It dynamically optimizes en-
ergy by ensuring qualitative traffic flow, meeting performance con-
straints, and turning network devices off. It has three parts: optimizer,
routing, and power control. Optimizer provides a minimum-power
consumption considering a particular load of the network topology.
The routing part chooses the routes for traffic flows. Finally, the power
control part arranges power states and turns the device on or off accord-
ing to the necessity. Correlation-Aware Power Optimization Algorithm
(CARPO) [33], saves the energy of the DCN by eliminating unnecessary
links. Considering maximum link capacity and the equality of incoming
and outgoing data rates, CARPO tries to minimize energy consumption
by turning off switches as much as possible.

There exists another direction of research which considers VM
placement and rule placement for energy-aware SDN approaches. Au-
thors in [53] proposed a method to eliminate the rule space problem
of existing energy-aware routing (EAR) approaches. EAR approaches
mainly assume that there is an infinite amount of rule space and hence
an OpenFlow switch can hold an infinite number of rules. Accord-
ing to this work, if there is not any predefined rule for a packet,
8

the default rule is applied. Authors in [54] proposed a load aware
energy-efficient framework namely; DevoFlow, which disburdens the
controller by assigning some of its work to switches and provides
energy-efficient management of the network. The underlying reason for
this modification is the interference of the controller inflows transfers
a high amount of workload to the control plane. Authors in [56]
focused on the traffic-aware placement of VMs to obtain better uti-
lization of resources. They presented two algorithms: server-driven and
network-driven. These algorithms aim to efficiently allocate resources
of intra-DCN. The server-driven algorithm first chooses a server for a
VM and then determines the switches that will provide the flow of
traffic. The network-driven algorithm first selects the switches and then
an appropriate server for VM. Authors in [55] combined VM placement
and routing optimization in DCNs to achieve energy efficiency and
proposed a joint host-network algorithm by using a depth-first search
with the best-fit option. They introduced a parallel processing method
that divides DCNs into clusters and found optimal paths in a parallel
way.

In summary, basic energy-efficient techniques are not scalable and
prone to failure. Moreover, they are highly complex in nature with
large memory requirements. Therefore, there is a need to develop
energy-efficient traffic Management and network control solutions for
SDN which are scalable, fault-tolerant, cost-effective, and require less
computation time. This direction of research is still in the pre-mature
stage. Network industries need to come with effective embedded com-
munication and control software technologies to address this challenge.
On the other hand, the application-aware energy-efficient techniques
are applied in data centers with rule updating methodology. In this
direction, researchers require to exploit the growth in server and com-
puting technologies along with resource sharing to develop light-weight
applications that reduce carbon footprint. In the next section, we
describe the SDN security challenges and the prevention methodologies

to provide high-end security to the platform.



Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera

i
T
t
p
c
n
i
r
f
c
b
w

4

4. Security and SDN

SDN is an emerging technology with effective control and deci-
sion making solves various security challenges in traditional networks.
Thus, SDN implementations introduce wide-open space to the network
security research community. Here, we present the major security
challenges across different functional layers in SDN along with the
potential prevention and control strategies.

4.1. Security challenges

Security challenges can be realized mainly in the form of attacks.
Attacks on the SDN platform consist of control plane attacks, data-plane
attacks, southbound attacks, and northbound attacks.

4.1.1. Control plane attacks
The literature reported possible attacks on the SDN control plane

that include: denial of service (DoS) in switch-controller and switch–
switch [58], controller hijacking [59], insertion of malicious appli-
cations [60]. Researchers at Microsoft introduced a threat model for
the SDN controller, called STRIDE [61] that consists of six different
attack types such as Spoofing, Tampering, Repudiation, Information
Disclosure, DoS, and Elevation of Privilege. The above attacks occur
dynamically when the controller processes requests from the underly-
ing devices. On the other hand, it is also possible to launch an attack
on the controller during build time by exploiting the vulnerability
of the controller’s operating system and bugs in the network function
implementation. In addition, there exist reports on two other classes
of SDN-protocol attacks, namely topology tampering [62] and link-
fabrication [63]. Such attack classes manifest as DoS and controller
hijacking. The attacks on SDN Controller is considered as high-risk
security violation as it affects the complete functioning of the network.
So, there is a need for research to come up with effective solutions to
address these.

4.1.2. Data plane attacks
SDN switches present in data plane are capable of only forwarding

the traffic flows according to the flow rules. However, attacks on
switches may cause damage to the entire network including it being
the potential source of controller attacks. In general, the attacks on
the switches are of two types. Firstly, there may exist fake traffic flows
during the intercommunication of switches. Secondly, malicious flows
may be generated/exists during the in-flow and out-flow of the traffic.
The common form of attacks in the data plane are DoS, DDoS [58],
spoofing [61], intrusion [2] are examples of attacks associated with
data plane. Spoofing attacks lead to flow rule modification, leakage
of data. On the other hand, DoS and DDoS attacks create flooding in
controllers and flow entries. Network intrusions cause unauthorized
data, leakage of data, injection of software bugs.

4.1.3. Southbound attacks
Southbound APIs play a major role in communication between the

control plane and the data plane. If this interface is compromised
then malicious traffic can be injected in both the planes. Examples
of southbound attacks are man-in-the-middle [64], black-hole [59]
attacks, intrusion attacks [2], DoS and DDoS attacks [58], spoofing
attacks [61], etc. Black-hole attack diverts the flow rules created by the
controller when forwarded to the switches. The attacker can manipulate
the data plane devices according to the flow rules. The man-in-middle
attack can see the flow rules and accordingly attack the switches by
knowing the loopholes of the devices.

4.1.4. Northbound attacks
Northbound protocols are used to communicate between the appli-

cation plane and the control plane. Intrusion attack [2] is the major
attack type possible on the northbound protocol.
9

4.1.5. STRIDE attack model
As mentioned earlier, the STRIDE attack model is widely applicable

to network threat modeling that consists of almost all types of attacks.
It covers the following six classes of attacks. (i) Spoofing aims to hide
the identity of the attacker as well as traffic origin. Its primary goal is
to mislead the target using a fake IP address. The controller should able
to detect IP spoofing initiated within its network. (ii) Tampering is an
unauthorized modification or destruction of network information such
as flow rules, policies, and access lists. The Transport layer security
(TLS) encryption used in OpenFlow does not provide efficient isolation
to prevent tampering mechanism. This is because many controllers
have not adopted TLS encryption or kept it as an optional mechanism.
(iii) Repudiation is applicable to SDN controllers during build time
only. The administrator needs to provide a user name and password
to all developers to prevent code injection attacks in the controller.
(iv) Information Disclosure is the method for getting information about
other users or the system in an unauthorized manner. The information
can be exploited by the attacker to extract useful information from the
target (controller). (v) Denial of Service (DOS) occurs when an attacker
sends a large number of packets to the controller for processing with
large payload size and SYN flag ON. The functioning of the controller
slows down as it gets engaged in sending acknowledgment packets,
and by the time the attacker gets its required information. The attacker
can exploit this time to extract useful information from the controller.
(vi) Elevation of Privilege is the ability to get privileged access to some
other systems without appropriate access rights. This type of attack
may results in the modification of flow rules by the attacker, and
subsequently, the attacker can gain control over the network.

4.2. Proposed prevention methodologies

There exist various research efforts to address security challenges
in the SDN controller. Here, we discuss the existing solutions that
cover DoS attacks on the controller, Controlling Malicious Applications,
policy-based Security, and game-based security models.

4.2.1. Prevention to DoS attacks in SDN
Shin et al. [65] introduced a solution, called AVANT-GUARD that

ncludes a connection migration mechanism used to establish useful
CP sessions, and actuating triggers that enable data plane devices
o activate flow rules under predefined conditions. Wei et al. [66]
resented a FlowRanger, which is a request prioritizing algorithm for
ontrol plane based DoS attacks. It calculates the trust value of each
ode in the network based on the traffic flow request and stores
n a priority queue. Entries on the priority queue control the flow
ule generation inside the controller. Dhawan et al. [67] provided a
low behavioral solution, named Sphinx that monitors all controller
ommunication and identifies relevant OpenFlow messages required to
uild the network. It analyzes and compares the current traffic flows
ith the previous flows and saved policy rules over a certain period.

.2.2. Controlling malicious applications
Wang et al. [68] proposed a scheme, PERM-GUARD, which provides

authenticity to the controllers before the generation of flow rules and
avoids the controller hijacking attack. The authentic controllers can only
generate the rules and detect the compromised controllers. The works
in [69] and [70] proposed solutions, such as FortNOX and LegoSDN,
to mainly discard malicious applications from the application layer and
northbound API. Similarly, BroIDS [71] is a security solution to avoid
man-in-the-middle and black-hole attacks, and provides security to the
control and application planes. Jiang et al. [72] introduced a technique,
Combat-Sniff, which actively scans eavesdropping nodes in the network
and proactively defend sniff packets. This eliminates eavesdropping
attack mitigation in the SDN environment and targets TCP-SYN based
attacks.



Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera

r
f
p
s
i

4

u
s
t
b
d
a
t
o
a
i
o
i
p
e
P
e
c
s
d

s
S
a
t
t
i
u
a

5

v
t
l
c
c
a
t
n
i
c
c
c
k

4.2.3. Policy-based security mechanisms
A new direction of research provides policy-based security mecha-

nisms to the SDN controller. Dao et al. [73] introduced a method utiliz-
ing user behavior analysis. They listed existing attack types in a reposi-
tory, and every incoming packet request is checked with the repository.
If the packet matches the attack category, then it is discarded; other-
wise, flow rules are generated for the same. MM. et al. [74] introduced
the use of a trust management system that maintains IDs of currently
operational network devices. An encrypted authentication mechanism
is used to check the authenticity of the devices and allow them to
generate flow rules. Krishna et al. [60], presented a policy-based ap-
proach to mitigate attacks on the SDN controller. They proposed two
modules inside the controller namely, policy manager and topology
epository. The topology repository fetches useful topology information
rom the switches about the incoming packet and forwards to the
olicy manager, which in turn evaluates the traffic against existing
ecurity policies and generates the required flow rules using topology
nformation.

.2.4. Game-based security models
In the literature, there exist research works on controller security

sing the Stackelberg game model. Lu et al. [75] proposed a defense
trategy against session hijacking that minimizes the overall cost of
he SDN network. They modeled the game as a strategic interaction
etween the session attacker and the defender. However, this work
id not address multiple attack scenarios. Chen et al. [76] proposed
dynamic scheduling method using the Stackelberg game to maximize

he security reward of the defender. They mainly focused on the attacks
n the control plane while the selection of master and slave controllers
re occurring. Chowdhary et al. [77] proposed a dynamic game model
nside the control plane, which avoids DDoS (distributed DoS) attacks
nly. Their game model is based on the Nash Folk Theorem, which
mplements a punishment mechanism for attackers and rewards for
layers who cooperate. None of the above game models considered the
ffect of time on the game as well as every possible attack scenario.
riyadarshini et al. [78] proposed a signaling game-based security
nforcement framework (SEF). The framework prevents attacks on the
ontroller prior to calculating the behavior of the attacker. It provides
ecurity with trust-based and risk-based packet analysis and detects
ynamic attacks on the SDN controller.

Table 3 summarizes the scope and features of existing security
olution. It covers the targeted attack defense, the application scope to
DN layers, and security objectives they aim to maintain. In summary,
number of research have been conducted on SDN security solutions

hat used different approaches. However, these solutions are limited in
erms of defending heterogeneous attack patterns across different layers
ncluding end-to-end perimeter of SDN. Moreover, the effectiveness and
sability of these solutions in real SDN platform require systematic
nalysis and reporting.

. Placement of controllers in SDN

A single controller can manage the network efficiently, as it pro-
ides flow rules, routing decisions, policy management depending on
he global network view. However, it has disadvantages in terms of
atency between switches that are placed away from the controllers,
ost of network links, processing powers, and reliability [80]. These
hallenges are handled by physically distributing multiple controllers
cross the network. All the controllers communicate among themselves
o maintain a consistent global network view and to ensure proper
etwork operation. The controllers must be placed at different locations
n the network, which provide optimal performance and minimum
ost. The switch set of any controller receives flow rules from that
ontroller at any point in time. Determining the optimal location of
ontrollers in the network, and assigning a set of switches to them is
nown as controller placement problem (CPP) [81,82]. The placement
10
Fig. 7. Proposed solutions in controller placement problem.

of controllers introduces some challenging questions such as; how many
controllers are required to manage the network? how many switches
each controller can manage? what are the right locations to place the
controllers? during the failure of controllers how the switches can be
managed?

The controller placement problem in SDN has been solved consid-
ering various constraints of the network such as; latency, cost, load,
capacity, etc. We divide the controller placement problem in SDN
into three categories, namely, (i) controller placement problem, (ii)
failure-tolerant controller placement problem, (iii) application-aware
controller placement problem. Fig. 7 shows the highlighted contribu-
tions in SDN controller placement.

5.1. Controller placement problem (CPP)

The CPP was first introduced by Heller et al. [82] in 2012. They
investigated; the number of controllers required in a given topology and
their placement locations. They considered average-case latency bound,
worst-case latency bound, and nodes within a latency bound metrics to
find the location of the controllers. They formulated the CPP as a mini-
mum k-median problem and minimum k-center problem to minimize
the average and maximum (worst case) switch-to-controller latency,
respectively. However, they did not consider multiple controllers in
the network and capacity of the controller. Hock et al. [83–85] pro-
posed POCO (Pareto Optimal Controller) and POCO-PLC for all possible
controller placements in realistic networks. They considered inter-
controller latency, controller failures, network disruptions constraints,
and found locations for placements. They also developed GUIs for
POCO and POCO-PLC. POCO-PLC is different from POCO as it combines
the MATLAB analysis tool with a distributed application. But, these
frameworks do not consider load factors into account for controller
placement. The time complexity of these proposed algorithms is very
high. Sallahi et al. [86] determined the optimal number, location as
well as the interconnections between all the network elements while
minimizing the cost of the network. They formulated the problem using
linear programming and solved it through the optimizer. However,
this model applies to only small networks and solves 10% of the total
problem in 30 h. Therefore, the performance of this model is very
less. Lange et al. [87] implemented the POCO framework in a large
scale SDN network, and also gave a heuristic solution Pareto simulated
annealing to solve the placement problem. The running time of the
simulated annealing used here is high. Cheng et al. [88] proposed
a QoS-Guaranteed Controller Placement problem to find the number
of controllers needed, their placement locations, and the switches
assigned to each of the controllers. They proposed three heuristic al-
gorithms; incremental greedy algorithm, primal–dual-based algorithm,
and network-partition-based algorithm, which guaranteed QoS in the

network and provides optimal placement. However, the latency is



Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
Table 3
Attack detection comparison of state-of-the-art prevention methodologies.
Comparison indices Proposed solutions

SEF
[78]

Flow
Ranger
[66]

Sphinx
[67]

Topo-
Guard
[79]

Avant-
Guard
[65]

Game-
model
[77]

Perm-
Guard
[68]

FortNOX

[69]

LegoSDN
[70]

BroIDS
[71]

Combat-
sniff
[72]

Game-
model
[75]

SDN Operation
Layer

Data ✗ ✗ ✗

Control ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Application ✗ ✗ ✗ ✗

Northbound ✗ ✗ ✗

Southbound ✗ ✗ ✗ ✗

Targeted Attacks

DoS ✗ ✗ ✗ ✗ ✗ ✗

Controller
hijack

✗ ✗

Malicious
Application

✗ ✗ ✗

MIM , Black hole
Attack

✗ ✗

Eavesdropping ✗ ✗ ✗
high in comparison to other solutions. Ul-Haque et al. [89] proposed
an algorithm named LiDy+ for controller placement, which not only
achieves a higher controller utilization but also incurs less energy and
maintenance costs. They considered open search (the controller can
be placed inside any devices) and restricted search (the controllers
are placed inside switches) for controller placement. This is the only
work where the open search controller placement is considered. But,
the performance of the open search is less. Kim et al. [90] proposed
a heuristic solution for both switch and controller placement in a
distributed SDN environment. However, it does not consider the cost
and load parameter into consideration.

Wang et al. [80] presented a survey on state-of-the-art controller
placement solutions that considered different parameters like mini-
mization of latency, deployment cost, energy consumption, and max-
imization of reliability. Chen et al. [91] proposed a Louvain-heuristic
based algorithm to find optimal placement for the controllers. They
partitioned the network and then found the optimal location within
the partition. This solution method does not consider the capacity
and cost of the controllers during placement. Rath et al. [92] solved
the CPP using a non-zero-sum game and found the optimal location
of the controllers using the payoff values of the game. However, the
load and cost parameters are not considered, which do not provide
accuracy in placement. Sood et al. [81] presented the CPP as controller
selection problem (CSP). They Choose CSP instead of CPP to solve
performance issues in SDN, such as the minimum number of controllers,
their workload distribution, and placement locations, etc. Here, the
performance of the network degraded during the execution of the
proposed algorithms. Singh et al. [93] presented a survey on research
works on CPP from 2012 to 2017 and critically analyzed the existing so-
lutions, and found their limitations and future scopes. Zhang et al. [94]
presented the CPP as an optimization problem, and minimized the
reaction time using approximation algorithms. The throughput is less
and the delay is high in this solution. Das et al. [95] formulated the CPP
in hybrid SDN/legacy network over a period of time and maximized
the switch-controller control channel resilience. Li et al. [96] proposed
a constant approximation algorithm based on the prime dual approach
to finding the minimum number of controllers in the network. They
also minimized the controllers’ cost and latency of the network.

5.2. Failure-tolerant controller placement problem (FCPP)

Controller failure results in the disconnection of the controller from
its assigned switches. Since the controller is an external entity and it
11

runs on hardware, both software and hardware failures are considered
as controller failure. Therefore, the reliability of the controller is an
important factor to be considered.

Killi et al. [97] proposed a capacitated next controller placement
solution considering the controller failure constraints and minimizes
the average latency of the network. However, they did not consider
the effect of cost during placement and reassignment. Perrot et al. [98]
solved CPP in a wide area network (WAN) using linear programming.
They considered QoS and load balancing constraints and gives the opti-
mal number of controllers and their locations. They also considered the
failure of both controllers and routers. Although this work considered
placement, failure, and maximum constraints, it is suitable for small-
sized networks. The controller can be placed in separate hardware or
inside the OpenFlow switches. Alshamrani et al. [99] presented fault-
tolerant controller placement in a distributed SDN environment. But,
the performance of the network is less. Fan et al. [100] considered link
failure and the worst-case delay between switch-controller factors to
solve CPP. They proposed a heuristic method based on particle swarm
optimization. However, inter-controller communication which has a
major role during link placement is not considered here.

5.3. Application-aware controller placement problem (ACPP)

There exist another direction of research where service [101], re-
source [102], cache [103] placement are done in heterogeneous net-
works. In paper [104], the authors considered delay-overhead mini-
mization in wireless edge networks during placement. Yang et al. [105,
106] solved the controller placement problem in SDN-enabled inte-
grated satellite-terrestrial networks. They proposed a network partition
algorithm, Simulated Annealing Partition-based K-means (SAPKM), to
find the placement locations.

Note that optimal and suitable placement of SDN controllers in a
network can help in balancing traffic load, used to save a significant
amount of energy consumed by the network, and provide efficient
security defense. On the other hand, solving the load balancing issue
introduces challenges and changes in the objective of optimal controller
placement. Therefore, there is a need for optimal controller placement
in SDN integrating load balancing, energy consumption reduction,
inter-controller communication considering the changes in dynamics
and multiple objectives of the network. In the next section, we discuss
other existing challenges in the SDN environment which may become

individual research problems.



Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
6. Open challenges in SDN

Our study shows that there is a number of effective solutions on
energy-efficient traffic management, adaptive load balancing, and secu-
rity hardening for SDN. However, there exist additional challenges and
open problems that require systematic study and related developments.
In this section, we discuss a few important open problems in SDN.

6.1. Scalability of the controller

Scalability is one of the major challenges in SDN as it is expected
to accommodate demand growth in traffic volume and heterogene-
ity in requirements without compromising the quality of service and
performance. The controller is the key component of SDN that drives
the functioning and performance of the network. In general, a single
controller should scale up to a traffic volume of 100 switches [107].
However, beyond this limit, the controllers face load balancing prob-
lem, and it leads to performance degradation of the network. Therefore,
there is a need for efficient software cores and libraries that en-
ables agile development of controller supporting demands and provides
a scalable execution architecture. In addition, cross-layer and inter-
controller communication protocols for traffic management introduce
network broadcast overhead and proliferation of flow table entries.
There is a need for sustainable solutions both in terms of software core
and API builds to mitigate this problem.

6.2. Reliability of the controller

Reliability plays a major role in software systems or software guided
control systems. If there is any failure in a system, it should auto-
matically generate alarms or exceptions [108]. The SDN controller
configuration and functioning must intelligently assess and validate
network management with changes in network dynamics so as to
increase the availability of the network. Researchers studied the re-
liability of ONOS, a production-grade SDN controller, and the fault
report shows fairly consistent behavior across the releases, in terms
of the number of bugs, fault detection, and resolution time. When
devices fail or stop working in legacy network, network traffic is routed
through alternative nearby paths/nodes to maintain flow control and
continuity. In SDN, failure of the centralized controller may lead to
collapsing of the whole network. Also, this may introduce security
breaches in the network and legitimate system components may be
compromised. Therefore, the vendors and developers may emphasize
on developing efficient, reliable and secure network control functions
and development of robust, consistent software stack in integration of
these functions.

6.3. Integration of SDN with legacy network

SDN architecture is flat with centralized control whereas the tradi-
tional network is hierarchical in nature. Therefore, integration of SDN
devices with legacy network devices is one of the major challenges.
One way, there is a need for hybridization between OpenFlow protocol
stack and TCP/IP protocol stack with less transformation. On the other
hand, network control functions including traffic management and
monitoring, flow and congestion control (load balancing), and security
solutions for both platforms require unification with suitable interfaces
and software components. The integration must be done in a seamless
manner so that the performance, robustness, and reliability of the
12

combined platform are not affected.
6.4. Performance enhancement

The performance of SDN mainly depends on switches and con-
trollers. There is a need for switches with high capacity processors
embedded with advanced hardware logic. On the other hand, the
energy consumption by switches is directly proportional to the in-build
hardware logic. So, networking industries need research on suitable
technologies for OpenFlow switches. On the other hand, controllers’
performance depends on the complexities of network functions, exe-
cution architectures, and APIs. A good number of network functions
including security solutions are in the scope of control functions that
satisfies heterogeneous requirements as well as increase network per-
formance. The performance of SDN depends on various network func-
tions such as, load balancing, energy efficiency, security, and controller
placement. Efficient and secure traffic management for heterogeneous
and real time applications demands integration of all these network
functions exploiting their inter dependencies. For example, if less num-
ber of controllers are placed in the network, it may reduce energy
consumption and satisfy the load of the network, but, it may be easier
for attacker to inject attack paths in the network. Similarly, more
controllers may serve large number of traffic but may introduce latency
and higher energy consumption. Therefore, it is important to define
the network performance metric accurately and devise multi-objective
problems with satisfaction of constraints on network parameters and
dynamic changes in requirements and propose solutions for the same.

6.5. Flow-management

The SDN switches take decisions on data packets based on the flow
rules which are set by the controller. An SDN switch maintains a flow
table which is an ordered set of flow rules. These rules are stored
for future use to optimize the traffic forwarding process. In general,
flow tables have limited space and therefore old rules are overwritten
by new rules. This may require more controller intervention for some
old packets in the later stage. On the other hand, more flow rule
entries may introduce overhead leading to performance degradation, an
increase in energy consumption, and cost. Therefore, there is a need for
efficient data structures and procedures to store more flow entries that
can be dynamically updated without compromising cost, performance,
and energy consumption.

7. Conclusion

In this survey, we have presented a systematic study of state-of-art
technologies and research on SDN architecture, operations, functionali-
ties, and its evolution from OpenFlow, and network function virtualiza-
tion for SDN. A detailed discussion on traffic management challenges
such as load balancing and energy-efficient routing is covered with
the proposed solution approaches. Our observations on proposed so-
lutions have been reported. In addition, we have discussed the security
challenges in the SDN environment, and the state-of-the-art works
towards mitigating these problems. Then, we presented our study on
an important constraint solving the problem in SDN called as con-
troller placement problem. The selection of network parameters and
constraints for this problem depends on applications and requirements.
For example, the parameter required for the smart grid is different from
IoT and cyber–physical systems. Also, we have discussed the survey of
the fault-tolerant controller placement problem. In order to bring more
insights and future scope on this emerging paradigm, we have discussed
the current challenges in SDN.

Our survey reveals that there is a need for focused research on
designing efficient controller architecture and SDN framework that can
overcome traffic management challenges, provide end-to-end security
along with the reduction in energy consumption. The failure-tolerant
controller placement problem must be explored in combination with



Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
inter-controller communication and synchronization issues. In sum-
mary, networking research community and developers should develop
technologies and solutions to address the above-mentioned problems
in SDN with major objectives of enhancing network performance with
high scalability and adaptability; and with effective integration with
legacy networks.

CRediT authorship contribution statement

Madhukrishna Priyadarsini: Conception, Design, Formal analysis,
Interpretation of data, Writing - original draft. Padmalochan Bera:
Writing - review & editing, Final approval of the version to be pub-
lished.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] P. Goransson, C. Black, Software Defined Networks- A Comprehensive
Approach, Morgan Kaufmann (imprint of Elsevier), Waltham, USA, 2014.

[2] D.B. Rawat, S.R. Reddy, Software defined networking architecture, security and
energy efficiency: a survey, IEEE Commun. Surv. Tutor. 19 (1) (2017) 325–346.

[3] Y. Jarraya, T. Madi, M. Debbabi, A survey and a layered taxonomy of
software-defined networking, IEEE Commun. Surv. Tutor. 16 (4) (2014)
1955–1980.

[4] Y. Zhao, L. Iannone, M. Riguidel, IEEE Conference on Network Function
Virtualization and Software Defined Network (NFV-SDN), On the performance
of SDN controllers: A reality check, 2015.

[5] M. Priyadarsini, P. Bera, R. Bampal, Performance analysis of software defined
network controller architecture–A simulation based survey, in: International
Conference on Wireless Communications, Signal Processing and Networking
(WiSPNET), 2017.

[6] M. Priyadarsini, P. Bera, A secure virtual controller for traffic management in
SDN, IEEE Lett. Comput. Soc. 2 (3) (2019) 24–27.

[7] M. Priyadarsini, S. Kumar, P. Bera, M.A. Rahman, An energy-efficient load
balancing scheme for SDN controllers, Computing 27 (5) (2019) 1–26.

[8] M. Priyadarsini, P. Bera, M.A. Rahman, A new approach for energy effi-
ciency in software defined network, in: The Fifth International Conference on
Software-defined Systems, 2018.

[9] W. Xia, Y. Wen, C.H. Foh, D. Niyato, H. Xie, A survey on software-defined
networking, IEEE Commun. Surv. Tutor. 17 (1) (2015) 27–51.

[10] Open Networking Foundation, OpenFlow Switch Specification, 1.4.0 ed., 2017.
[11] I.Z. Bholebawa, R.K. Jha, U.D. Dalal, Performance analysis of proposed network

architecture: Openflow vs traditional network, Int. J. Comput. Sci. Inf. Secur.
14 (3) (2016) 1–10.

[12] Telecommunication Department, Ministry of communication, India, A Study
Paper on Network Function Virtualization and its impact on Future Telecom
Networks, http://tec.gov.in/pdf/Studypaper/Network_Function_Virtualization%
20.pdf [Online], accessed 19-July-2018.

[13] T. Wood, K.K. Ramakrishnan, J. Hwang, G. Liu, W. Zhang, Toward a software-
based network: integrating software defined networking and network function
virtualization, IEEE Netw. 29 (3) (2015) 36–41.

[14] O. Blial, M.B. Mamoun, R. Benaini, An overview on SDN architectures with
multiple controllers, J. Comput. Netw. Commun. (2016) 9396525:1–9396525.

[15] D. Kreutz, F. Ramos, P. Verissimo, C. Rothenberg, S. Azodolmolky, S. Uhlig,
Software-defined networking: A comprehensive survey, Proc. IEEE 103 (1)
(2015) 14–76.

[16] M. Priyadarsini, P. Bera, Traffic Management in SDN- a Road Map to Research,
Scholars’ Press, 2019.

[17] About NOX, http://www.noxrepo.org/nox/about-nox/ [Online], accessed
10-March-2016.

[18] About POX, http://www.noxrepo.org/pox/about-pox/ [Online], accessed 10-
March-2016.

[19] D. Erickson, ACM SIGCOMM workshop on hot topics in software-defined
networking (hotsdn), in: The Beacon OpenFlow Controller, 2013.

[20] FloodLight, Open SDN Controller, http://www.projectfloodlight.org/blog/2016/
03/10/announcing-floodlight-v1-2/ [Online], accessed 12-January-2016.

[21] OpenDayLight Project, http://www.opendaylight.org/ [Online], accessed 16-
13

January-2016.
[22] SDN Series Part Two: Trema, a Framework for Developing OpenFlow
Controllers in Ruby and C, https://thenewstack.io/sdn-series-part-ii-trema-
a-framework-for-developing-openflow-controllers-in-ruby-and-c/ [Online], ac-
cessed 29-September-2019.

[23] H. Zhong, An Efficient SDN Load Balancing Scheme Based on Variance Analysis
for Massive Mobile Users, Hindawi Publishing Corporation Mobile Information
Systems, 2015, 241732.

[24] J. Wu, C. Yuen, B. Cheng, Y. Shang, J. Chen, Goodput-aware load distribution
for real-time traffic over multipath networks, IEEE Trans. Parallel Distrib. Syst.
26 (8) (2015) 2286–2299.

[25] W. Reese, NGINX: The high-performance web server and reverse proxy, Linux
J. 2008 (173) (2008).

[26] V. Kaushal, A.G. Bala, Autonomic fault tolerance using HAProxy in cloud
environment, Int. J. Adv. Eng. Sci. Technol. 7 (2) (2011) 54–59.

[27] M.A. Islam, S. Ren, G. Quan, M.Z. Shakir, A.V. Vasilakos, Water-constrained
geographic load balancing in data centers, IEEE Trans. Cloud Comput. 5 (2)
(2017) 208–220.

[28] L. Yu, T. Jiang, Y. Zou, Price-sensitivity aware load balancing for geographically
distributed internet data centers in smart grid environment, IEEE Trans. Cloud
Comput. 6 (4) (2018) 1125–1135.

[29] S. Sthapit, J. Thompson, N.M. Robertson, J.R. Hopgood, Computational load
balancing on the edge in absence of cloud and fog, IEEE Trans. Mob. Comput.
18 (7) (2019) 1499–1512.

[30] Y. Hu, Balanceflow: Controller load balancing for openflow networks, in: IEEE
2nd International Conference on Cloud Computing and Intelligent Systems
(CCIS), 2012.

[31] Y. Zhou, A load balancing strategy for SDN controller based on distributed
decision, in: IEEE 13th International Conference on Trust, Security, and Privacy
in Computing and Communications, 2014.

[32] J. Yu, Y. Wang, K. Pei, S. Zhang, J. Li, A load balancing mechanism for multiple
SDN controllers based on load informing strategy, in: The 18th Asia Pacific
Network Operations, and Management Symposium (APNOMS), 2016.

[33] X. Wang, Y. Yao, X. Wang, K. Lu, Q. Cao, Carpo: Correlation-aware power
optimization in data center networks, in: INFOCOM, 2012 Proceedings IEEE,
2012.

[34] J. Cui, Q. Lu, H. Zhong, M. Tian, L. Liu, A load-balancing mechanism for
distributed SDN control plane using response time, IEEE Trans. Netw. Serv.
Manag. 15 (4) (2018) 1197–1206.

[35] Y. Zhou, Y. Wang, J. Yu, J. Ba, S. Zhang, Load balancing for multiple controllers
in SDN based on switches group, in: The 19th Asia Pacific Network Operations
and Management Symposium (APNOMS), 2017.

[36] J. Li, An effective path load balancing mechanism based on SDN, in: Pro-
ceedings of IEEE 13th International Conference on Trust Security Privacy
Computation Communication, 2014, pp. 527–533.

[37] R. Trestian, Ofload: An openflow- based dynamic load balancing strategy for
datacenter networks, IEEE Trans. Netw. Serv. Manag. 14 (4) (2017) 792–803.

[38] H. Zhong, LBBSRT: An efficient SDN load balancing scheme based on server
response time, Future Gener. Comput. Syst. 68 (2017) 183–190.

[39] S.H. Yeganeh, Y. Ganjali, Kandoo: A framework for efficient and scalable
offloading of control applications, in: Hot Topics Software Defined Network
(HotSDN), 2012, pp. 19–24.

[40] ONOS project [Online], Available: https://onosproject.org/.
[41] Y. Fu, A hybrid hierarchical control plane for flow-based large scale

software-defined networks, IEEE Trans. Netw. Serv. Manag. 12 (2) (2015)
117–131.

[42] M. Priyadarsini, J. Mukherjee, P. Bera, S. Kumar, A. Jakaria, M.A. Rahman,
An adaptive load balancing scheme for software-defined network controllers,
Comput. Netw. (2019) 164, http://dx.doi.org/10.1016/j.comnet.2019.106918.

[43] X. Zeng, D. Wang, X. Han, W. Yao, Z. Wang, R. Chen, An effective load balance
using link bandwidth for SDN-based data centers, in: International Conference
on Artificial Intelligence and Security, 2019.

[44] L. Guilen, S. Izumi, T. Abe, T. Suganuma, H. Muraoka, SDN-based hybrid
server and link load balancing in multipath distributed storage systems, in:
IEEE Symposium on Network Operations and Management, 2018.

[45] H. Wang, H. Xu, L. Huang, J. Wang, X. Yang, Load-balancing routing in software
defined networks with multiple controllers, Comput. Netw. 141 (2018).

[46] Software defined networking (SDN) as a tool for energy efficiency approaches
in information and communication technology (ICT) networks, in: Study Paper
By Telecommunication Engineering Department, Government of India, 2015.

[47] Y. Wei, X. Zhang, L. Xie, S. Leng, Energy-aware traffic engineering in hybrid
SDN/IP backbone networks, J. Commun. Netw. 5 (2) (2016).

[48] R. Bolla, R. Bruschi, F. Davoli, C. Lombardo, Fine-grained energy-efficient
consolidation in SDN networks and devices, IEEE Trans. Netw. Serv. Manag.
12 (2) (2015).

http://refhub.elsevier.com/S1389-1286(21)00148-1/sb1
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb1
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb1
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb2
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb2
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb2
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb3
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb3
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb3
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb3
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb3
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb6
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb6
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb6
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb7
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb7
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb7
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb9
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb9
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb9
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb10
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb11
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb11
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb11
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb11
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb11
http://tec.gov.in/pdf/Studypaper/Network_Function_Virtualization%20.pdf
http://tec.gov.in/pdf/Studypaper/Network_Function_Virtualization%20.pdf
http://tec.gov.in/pdf/Studypaper/Network_Function_Virtualization%20.pdf
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb13
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb13
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb13
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb13
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb13
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb14
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb14
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb14
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb15
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb15
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb15
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb15
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb15
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb16
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb16
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb16
http://www.noxrepo.org/nox/about-nox/
http://www.noxrepo.org/pox/about-pox/
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb19
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb19
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb19
http://www.projectfloodlight.org/blog/2016/03/10/announcing-floodlight-v1-2/
http://www.projectfloodlight.org/blog/2016/03/10/announcing-floodlight-v1-2/
http://www.projectfloodlight.org/blog/2016/03/10/announcing-floodlight-v1-2/
http://www.opendaylight.org/
https://thenewstack.io/sdn-series-part-ii-trema-a-framework-for-developing-openflow-controllers-in-ruby-and-c/
https://thenewstack.io/sdn-series-part-ii-trema-a-framework-for-developing-openflow-controllers-in-ruby-and-c/
https://thenewstack.io/sdn-series-part-ii-trema-a-framework-for-developing-openflow-controllers-in-ruby-and-c/
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb23
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb23
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb23
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb23
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb23
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb24
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb24
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb24
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb24
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb24
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb25
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb25
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb25
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb26
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb26
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb26
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb27
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb27
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb27
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb27
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb27
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb28
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb28
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb28
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb28
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb28
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb29
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb29
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb29
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb29
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb29
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb34
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb34
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb34
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb34
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb34
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb37
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb37
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb37
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb38
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb38
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb38
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb39
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb39
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb39
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb39
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb39
https://onosproject.org/
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb41
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb41
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb41
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb41
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb41
http://dx.doi.org/10.1016/j.comnet.2019.106918
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb45
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb45
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb45
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb46
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb46
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb46
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb46
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb46
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb47
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb47
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb47
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb48
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb48
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb48
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb48
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb48


Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
[49] T. Nam, N. Thanah, N. Thu, H. Hieu, S. Covaci, Energy-Aware Routing
Based on Power Profile of Devices in Data Center Networks using SDN,
978-1-4799-7961-5/15/, IEEE, 2015.

[50] A.F. Cruz, J.P. Muñoz Gea, P. Lopez, J. Sanahuja, Optimization of power
consumption in SDN networks, in: The Ninth International Conference on
Emerging Networks and Systems Intelligence, 2017.

[51] A. Celdran, M. Perez, F. Clemente, G. Perez, Policy-Based Management
for Green Mobile Networks Through Software-Defined Networking, Springer
Science Business Media New York, 2016.

[52] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee,
ElasticTree: Saving Energy in Data Center Networks, NSDI, 2010.

[53] F. Giroire, J. Moulierac, T.K. Phan, Optimizing rule placement in software-
defined networks for energy-aware routing, in: Global Communications
Conference (GLOBECOM), 2014.

[54] J.C. Mogul, Tourrilhes, P. Yalagandula, P. Sharma, A.R. Curtis, S. Banerjee,
Devoflow: Cost effective flow management for high performance enterprise
networks, in: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics
in Networks, 2010.

[55] M. Gharbaoui, B. Martini, D. Adami, G. Antichi, S. Giordano, P. Castoldi, On
virtualization-aware traffic engineering in OpenFlow Data Centers networks, in:
Network Operations and Management Symposium (NOMS), 2014.

[56] S.H. Wang, P.P.W. Huang, C.H.P. Wen, L.C. Wang, EQVMP: Energy-efficient
and QoS-aware virtual machine placement for software defined data center
networks, in: International Conference on Information Networking (ICION),
2014.

[57] M.F. Tuysuz, Z.K. Ankarali, D. Gozupek, A survey on energy efficiency in
software defined networks, Comput. Netw. 113 (2016) 188–204.

[58] I. Gabriel, P. Victor-Valeriu, Achieving DDoS resiliency in a software-defined
network by intelligent risk assessment based on neural networks and danger the-
ory, in: Proceedings of the Fifteenth International Symposium on Computational
Intelligence and Informatics, 2014, pp. 319–332.

[59] S. Shin, G. Gu, Attacking software-defined networks: A first feasibility study,
in: Proceedings of HotSDN, 2013, pp. 165–166.

[60] K. Krishna, V. Vardharajan, U. Tupakula, Mitigating attacks in software defined
network(sdn), in: Fourth International Conference on Software Defined Systems
(SDS), 2017.

[61] F. Ruffy, W. Hommel, F.V. Eye, A STRIDE-based security architecture for
software-defined networking, in: The Fifteenth International Conference on
Networks, 2016.

[62] R. Skowyra, L. Xu, G. Gu, V. Dedhia, T. Hobson, H. Okhravi, J. Landry, Effective
topology tampering attacks and defenses in software-defined networks, in: The
48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, 2018.

[63] D. Kreutz, F.M.V. Ramos, P. Verissimo, Towards secure and dependable
software-defined networks, in: Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software-Defined Networking, 2013, pp. 55–60.

[64] M. Hasan, M.A. Rahman, Protection by detection: A signaling game approach
to mitigate co-resident attacks in cloud, in: IEEE 10th International Conference
on Cloud Computing, 2017.

[65] S. Shin, V. Yegneswaran, P. Porras, G. Gu, Avantguard: Scalable and Vigilant
switch flow management in software-defined networks, in: Proceedings of ACM
CCS, 2013, pp. 413–424.

[66] L. Wei, C. Fung, FlowRanger: A request prioritizing algorithm for controller
dos attacks in software defined networks, in: Next Generation Networking
Symposium, 2015, pp. 5254-5259.

[67] M. Dhawan, R. Poddar, K. Mahajan, V. Mann, Sphinx: Detecting security attacks
in software-defined networks, in: Proceedings of Network and Distributed
Systems Security (NDSS), 2015.

[68] M. Wang, J. Liu, J. Chen, X. Liu, J. Mao, PERM-GUARD: Authenticating
the validity of flow rules in software defined networking, in: International
Conference on Cyber Security and Cloud Computing, 2015, pp. 127-133.

[69] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, G. Gu, A security en-
forcement kernel for OpenFlow networks, in: Proceedings of the First Workshop
on Hot Topics in Software Defined Networks, 2012, pp. 121–126.

[70] B. Chandrasekaran, T. Benson, Tolerating SDN application failures with
LegoSDN, in: Proceedings of the 13th ACM Workshop on Hot Topics in
Networks, 2014, p. 22.

[71] S. Hayward, G. O’Callaghan, S. Sezer, SDN security: A survey, SDN for future
networks and services (SDN4FNS), 2013.

[72] F. Jiang, C. Song, Z. Xu, Combat-sniff: A comprehensive countermeasure to
resist data plane eavesdropping in software defined networks, Am. J. Netw.
Commun. 5 (2) (2016) 27–34.

[73] N. Dao, J. Park, M. Park, S. Cho, A feasible method to combat against
DDoS attack in SDN Network, in: International Conference on Information
Networking, 2015, pp. 309-311.
14
[74] O. MM, K. Okamura, Securing distributed control of software defined networks,
Int. J. Comput. Sci. Netw. Secur. 13 (9) (2013).

[75] Z. Lu, F. Chen, G. Cheng, J. Ai, A secure control plane for SDN based on
bayesian stackelberg games, in: The 3rd IEEE International Conference on
Computer and Communications, 2017.

[76] Z. Lu, F. Chen, G. Cheng, S. Li, The best defense strategy against session
hijacking using security game in SDN, in: The 19th International Conference
on High Performance Computing and Communications, 2017.

[77] A. Chowdhary, S. Pisharody, A. Alshamrani, D. Huang, Dynamic game based
security framework in SDN-enabled cloud networking environments, in: The
Fourth International Conference on Software-defined Network and Network
Function Virtualization (SDN-NFV), 2017.

[78] M. Priyadarsini, P. Bera, M.A. Rahman, A signalling game-based security
enforcement mechanism for SDN controllers, in: 10th International Conference
on Computing, Communication and Networking Technologies (ICCCNT), 2019.

[79] S. Hong, L. Xu, H. Wang, G. Gu, Poisoning network visibility in software-defined
networks: New attacks and countermeasures, in: Proceedings of Network and
Distributed Systems Security (NDSS), 2015.

[80] G. Wang, Y. Zhao, J. Huang, W. Wang, The controller placement problem in
software defined networking: A survey, IEEE Netw. 31 (5) (2017).

[81] K. Sood, Y. Xiang, The controller placement problem or the controller selection
problem? J. Commun. Inf. Netw. 2 (3) (2017).

[82] B. Heller, R. Sherwood, N. McKeown, The controller placement, in: HotSDN,
2012.

[83] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, P. Tran-Gia,
Pareto-optimal resilient controller placement in SDN-based core networks, in:
Proceedings of the 25th International Teletraffic Congress (ITC), 2013.

[84] D. Hock, S. Gebert, M. Hartmann, T. Zinner, P. Tran-Gia, POCO-framework for
Pareto-optimal resilient controller placement in SDN-based core networks, in:
IEEE Network Operations and Management Symposium (NOMS), 2014.

[85] D. Hock, S. Gebert, M. Hartmann, T. Zinner, P. Tran-Gia, POCO-PLC: Enabling
dynamic pareto-optimal resilient controller placement in SDN networks, in: IEEE
Conference on Computer Communications Workshops (INFOCOM Workshop),
2014.

[86] A. Sallahi, M. St-Hilaire, Optimal model for the controller placement problem
in software defined networks, IEEE Commun. Lett. 19 (1) (2015).

[87] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, Heuristic approaches to the
controller placement problem in large scale SDN networks, IEEE Trans. Netw.
Serv. Manag. 12 (1) (2015).

[88] T.Y. Cheng, M. Wang, X. Jia, QoS-guaranteed controller placement in SDN, in:
IEEE Global Communications Conference (GLOBECOM), 2015.

[89] M.T.I. ul Huque, G. Jourjon, V. Gramoli, Large-scale dynamic controller
placement, IEEE Trans. Netw. Serv. Manag. 14 (1) (2017).

[90] W. Kim, J. Ling, J. Hong, Y. Shu, HeS-CoP: Heuristic switch-controller place-
ment scheme for distributed SDN controllers in data center networks, Int. J.
Netw. Manag. 28 (3) (2018).

[91] W. Chen, C. Chen, X. Jiang, L. Liu, Multi-controller placement towards SDN
based on louvain heuristic algorithm, IEEE Access 6 (2018).

[92] H.K. Rath, V. Revoori, S.F. Nadaf, V. Simha, Optimal controller placement in
Software Defined Networks (SDN) using a non-zero-sum game, in: Proceeding of
IEEE International Symposium on a World of Wireless, Mobile and Multimedia
Networks, 2014.

[93] A.K. Singh, S. Srivastava, A survey and classification of controller placement
problem in SDN, Int. J. Netw. Manag. 28 (3) (2018).

[94] T. Zhang, A. Bianco, P. Giaccone, The role of inter-controller traffic in SDN
controllers placement, in: IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), 2016.

[95] T. Das, M. Gurusamy, Resilient controller placement in hybrid sdn/legacy
networks, in: IEEE Global Communications Conference (GLOBECOM), 2018.

[96] T. Li, Z. Gu, X. Lin, S. Li, Q. Tan, Approximation algorithms for controller
placement problems in software defined networks, in: IEEE Third International
Conference on Data Science in Cyberspace (DSC), 2018.

[97] B.P.R. Killi, S.V. Rao, Capacitated next controller placement in software defined
networks, IEEE Trans. Netw. Serv. Manag. 14 (3) (2017).

[98] N. Perrot, Optimal placement of controllers in a resilient SDN architecture, in:
International Conference on the Design of Reliable Communication Networks
(DRCN), 2016.

[99] A. Alshamrani, S. Guha, S. Pisharody, A. Chowdhary, D. Huang, Fault tolerant
controller placement in distributed SDN environments, in: IEEE International
Conference on Communications (ICC), 2018.

[100] Z. Fan, J. Yao, X. Yang, Z. Wang, X. Wan, A multi-controller placement strategy
based on delay and reliability optimization in SDN, in: The 28th Wireless and
Optical Communications Conference (WOCC), 2019.

[101] M. Steiner, B. Gaglianello, V. Gurbani, V. Hilt, W.D. Roome, M. Scharf, T.
Voith, Network-aware service placement in a distributed cloud environment,
SIGCOMM, 2012.

http://refhub.elsevier.com/S1389-1286(21)00148-1/sb49
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb49
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb49
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb49
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb49
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb51
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb51
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb51
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb51
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb51
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb52
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb52
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb52
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb57
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb57
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb57
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb71
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb71
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb71
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb72
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb72
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb72
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb72
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb72
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb74
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb74
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb74
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb80
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb80
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb80
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb81
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb81
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb81
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb82
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb82
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb82
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb86
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb86
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb86
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb87
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb87
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb87
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb87
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb87
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb89
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb89
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb89
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb90
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb90
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb90
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb90
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb90
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb91
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb91
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb91
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb93
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb93
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb93
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb97
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb97
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb97
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb101
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb101
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb101
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb101
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb101


Computer Networks 192 (2021) 108047M. Priyadarsini and P. Bera
[102] Y. Rochman, H. Levy, E. Brosh, Resource placement and assignment in
distributed network topologies, in: Proceedings IEEE INFOCOM, 2013.

[103] S. He, H. Tian, X. Lyu, G. Nie, S. Fan, Distributed cache placement and user
association in multicast-aided heterogeneous networks, IEEE Access 5 (2017).

[104] Q. Qin, K. Poularakis, G. Iosifidis, S. Kompella, L. Tassiulas, SDN controller
placement with delay-overhead balancing in wireless edge networks, IEEE
Trans. Netw. Serv. Manag. 15 (4) (2018).

[105] K. Yang, B. Zhang, D. Guo, Partition-based joint placement of gateway and
controller in SDN-enabled integrated satellite-terrestrial networks, Sensors 19
(12) (2019).

[106] K. Yang, B. Zhang, D. Guo, Controller and gateway partition placement
in SDN-enabled integrated satellite-terrestrial network, in: IEEE International
Conference on Communications Workshops (ICC Workshops), 2019.

[107] M. Alsaeedi, M.M. Mohamad, A. Al-Roubaiey, Toward adaptive and scalable
openflow-SDN flow control: A survey, IEEE Acess 7 (2019) 107346–107379.

[108] X. Guan, B. Choi, S. Song, Reliability and scalability issues in software defined
network frameworks, in: Second GENI Research and Educational Experiment
Workshop, 2013.
15
Madhukrishna Priyadarsini is a research scholar in the
School of Electrical Sciences, IIT Bhubaneswar, India. Her
current work includes computer network management,
software-defined network, security issues in SDN. Despite
these areas, she is also interested in Image processing,
Game theoretical approaches. She is a student member of
IEEE as well as the secretary in IEEE student branch IIT
Bhubaneswar. She has organized workshops in real-time
implications of SDN.

Padmalochan Bera is working as an assistant professor
in the department of Computer Science and Engineering
in Indian Institute of Technology, Bhubaneswar, India.
His research interest includes network security, cryptog-
raphy, access control, software-defined networking (SDN),
cloud computing, formal verification, and optimization. He
was a postdoctoral fellow in CyberDNA Research Cen-
ter, University of North Carolina Charlotte, USA from
2011–2012.

http://refhub.elsevier.com/S1389-1286(21)00148-1/sb103
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb103
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb103
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb104
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb104
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb104
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb104
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb104
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb105
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb105
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb105
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb105
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb105
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb107
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb107
http://refhub.elsevier.com/S1389-1286(21)00148-1/sb107

	Software defined networking architecture, traffic management, security, and placement: A survey
	Introduction
	Evolution of SDN
	Introduction to OpenFlow and Network Function Virtualization (NFV)
	OPenFlow architecture
	Network Function Virtualization (NFV)

	The SDN architecture
	Layered architecture
	Communication protocols
	SDN forwarding devices and functionalities
	SDN operation
	Existing SDN Controllers:


	Traffic management in SDN
	Load balancing and its implementation in SDN
	Load balancing in Traditional Networks
	Load balancing in SDN

	Energy-efficiency in SDN
	Traffic-aware energy-efficient SDN
	Application-aware energy-efficient SDN


	Security and SDN
	Security challenges
	Control plane attacks
	Data plane attacks
	Southbound attacks
	Northbound attacks
	STRIDE attack model

	Proposed prevention methodologies
	Prevention to DoS attacks in SDN
	Controlling malicious applications
	Policy-based security mechanisms
	Game-based security models


	Placement of controllers in SDN
	Controller placement problem (CPP)
	Failure-tolerant controller placement problem (FCPP)
	Application-aware controller placement problem (ACPP)

	Open challenges in SDN
	Scalability of the controller
	Reliability of the controller
	Integration of SDN with legacy network
	Performance enhancement
	Flow-management

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


