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Abstract—VoIP is becoming a low-priced and efficient replacement
for PSTN in communication industries. With a widely growing adoption
rate, SIP is an application layer signaling protocol, standardized by the
IETF, for creating, modifying, and terminating VoIP sessions. Generally
speaking, SIP routes a call request to its destination by using SIP proxies.
With the increasing use of SIP, traditional configurations pose certain
drawbacks, such as ineffective routing, un-optimized management of
proxy resources (including CPU and memory), and overload conditions.
This paper presents OpenSIP to upgrade the SIP network framework
with emerging technologies, such as SDN and NFV. SDN provides for
management that decouples the data and control planes along with a
software-based centralized control that results in effective routing and
resource management. Moreover, NFV assists SDN by virtualizing various
network devices and functions. However, current SDN elements limit the
inspected fields to layer 2-4 headers, whereas SIP routing information
resides in the layer-7 header. A benefit of OpenSIP is that it enforces
policies on SIP networking that are agnostic to higher layers with the aid
of a Deep Packet Inspection (DPI) engine. Among the benefits of OpenSIP
is programmability, cost reduction, unified management, routing, as well
as efficient load balancing. The present study implements OpenSIP on a
real testbed which includes Open vSwitch and the Floodlight controller.
The results show that the proposed architecture has a low overhead and
satisfactory performance and, in addition, can take advantage of a flexible
scale-out design during application deployment.

Index Terms—SIP Network management, SIP Routing, SIP Resource
Allocation, SDN and NFV orchestration, OpenFlow.

I. INTRODUCTION

SESSION Initiation Protocol (SIP) is extensively deployed for sig-
nificantly growing session-oriented applications on the Internet,

such as Internet telephony or voice over IP [1]. As a signaling proto-
col for real-time communication, SIP performs user location, session
establishment, and session management. With the rapid growth of the
Internet and Cloud computing, all phones and other mobile devices
will soon have to support SIP as their signaling protocol for multi-
media sessions [2]. However, the traditional SIP network architecture
renders the management of these networks both complicated and
expensive. Hence, dealing with such challenges increases operational
expenses (Opex). Moreover, the additional complexities and high
modification characteristic of the SIP network create instability in
the ecosystem. The above-mentioned factors demonstrate the need
for a new approach to network management. The problem is that
a large SIP network mainly consists of hardware-centric proxies
from various vendors with large scale topologies requiring monitoring
and configuration. In addition, with the expansion of SIP networks,
fundamental mechanisms, such as call request routing [3], have lost
their significance, thus posing difficulties, such as the SIP proxy
overload. Therefore, there is a vital need for the softwarization of SIP.
To this end, Software-Defined Networking (SDN) [4] is quite handy.
With SDN and the aid of software-based controllers alongside pre-
designed APIs (e.g. OpenFlow protocol [5]), an entire network and
its elements may be controlled and programmed as a unified network.

Ahmadreza Montazerolghaem and Mohammad Hossein
Yaghmaee are with the Department of Computer Engineering,
Ferdowsi University of Mashhad, Mashhad, Iran (e-mail:
ahmadreza.montazerolghaem@alumni.um.ac.ir, hyaghmae@um.ac.ir).

Alberto Leon-Garcia is with the Department of Electrical and Com-
puter Engineering, University of Toronto, Toronto, Canada (e-mail:
alberto.leongarcia@utoronto.ca)

The architecture of SDN and the OpenFlow protocol allow the
separation of data and the control plane, which results in controlling
the network and making it even smarter. On the other hand, there
is the possibility of separating the network infrastructure from the
applications. The goal of the current study is to separate the main
functionalities of the SIP networks, which are the mastermind of
the network, from the data infrastructure with its currently excessive
complexity. The present work then forms these functionalities into
a software logically centralized controller referred to as OpenSIP.
This problem is approached in three consecutive steps. Considering
that the main body of SIP networks is the proxies, the first approach
attempts to achieve load balancing amongst SIP proxies using SDN
technology. The second approach takes a step forward and tries to
move the SIP proxy functionalities from the data to the control
plane. In doing so, the data plane is eradicated from the SIP proxy
equipment and the complications involved in management. Finally,
the third approach seeks to virtualize the SIP proxies in such a way
that SDN manages the virtual proxy infrastructure by employing
the Network Function Virtualization (NFV) concept [6]. From soft-
warization aspects, virtualization maximizes the efficacy of resources.
This fact, together with optimization, flexibility, migration of virtual
machines, and the possibility of reducing or adding resources, are
other benefits of virtualization. The flexibility of the virtual SIP
network is related to the input load and may increase accordingly. In
fact, resources are easily assigned to various parts of the SIP network.

To our knowledge, OpenSIP is the first work able to practically
improve the performance of SIP networks on a softwarization bed
by utilizing the concepts of SDN and NFV. There are certainly
challenges along the way. The most critical challenge is that current
SDN protocols, such as OpenFLow, concentrates on layers 2 to 4 [7],
while SIP is a protocol for layer 7. The SIP proxy needs a higher layer
to perform its operations, such as routing and registration. This is the
reason why Deep Packet Inspection (DPI) technology is employed.
DPI is a classification/detection technique capable of detecting SIP
messages and providing layer 7 information for decision making.

A. Contributions

The most important contributions of the current study are summa-
rized as follows:

1) The proposal of three novel approaches for improving SIP
network by employing the concepts of SDN and NFV
• First approach: Partial SDN-based architecture (OpenSIPPartial)
• Second approach: Full SDN-based architecture (OpenSIPFull)
• Third approach: Software-defined NFV-based architecture

(OpenSIPNFV+)
2) The extension of the OpenFlow protocol, SDN controller, and

switches in such a way so as to insure they are constantly aware
of higher layer information

3) The implementation and evaluation of the performance of the
proposed approaches on a real testbed and under various sce-
narios
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Fig. 1. Registration and call initiation in SIP

B. Organization

In Section II, a background is presented on SIP networks, their
setbacks, and on SDN networks. Section III introduces the three
approaches leading to OpenSIP. Section IV is dedicated to assessing
these approaches. Section V offers an overview of related works and
finally Section VI concludes the study and presents ideas for possible
future work.

II. BACKGROUND

A. SIP Networking

SIP is an application layer signaling protocol (layer 7 protocol)
that is used to initiate, modify, and terminate multimedia sessions. In
other words, SIP is a coordinator between SIP endpoints. The SIP
network consists of two entities, namely the User Agent (UA) and
server. UA is divided into the User Agent Client (UAC or caller) and
User Agent Server (UAS or callee) which generate the request and the
response messages, respectively. The request messages are produced
and transmitted by the UAC and contain information about the sender
and receiver. Responses confirm that a request was received and
processed and contain the processing status as well. Servers are
also divided into registrar and proxy servers. Registrar servers are
responsible for registering user information, whereas proxy servers
search for the intended user and route the messages [8]. The most
important message in this context is the call setup request or Invite.
This is pivotal as routing for this request and the remaining request
and response messages follow the same path as the one created for
this message if the proxies decide to include their identities in the
Record-Route header field. Therefore, the Invite message has the
highest processing overhead in the session initiation phase. In fact, a
SIP proxy receives an Invite from a user agent or another proxy
and acts on behalf of the user agent in forwarding or responding to
the request. Just as a router forwards IP packets at the IP layer, so a
SIP proxy forwards SIP messages at the application layer. A proxy
server typically has access to a database or a location service to aid
it in processing the request (determining the next hop). Databases
may contain SIP registrations, presence information, or any other
type of information related to the user location [8]. Fig. 1 shows the
registration and session initiation steps in a typical SIP configuration
with n domains. The session invitation usually traverses a set of
proxies until it finds one which knows the actual location of the
callee. Such a proxy will forward the session invitation directly to the
callee and the callee then accepts or declines the session invitation.

Fig. 2 presents a typical SIP trapezoid topology and standard SIP
call signaling which consists of the Invite-Bye message sequence.
A session is initiated when the caller sends an Invite request to the
callee. The request is then routed through several SIP proxies (multi-
hop). The 100 Trying response is sent back to the previous hop
for confirmation of the request. Once a callee receives the Invite
request, it returns a 180 Ringing response to the caller. The path

chosen for this action is the same as the path for sending the Invite
message. Later, when accepting the call, the callee sends back a 200
Ok message in response. The caller, in turn, acknowledges the receipt
of the 200 Ok by sending an Ack to the callee. After this three-way
handshake, a Real-time Transport Protocol (RTP), including voice
and video, is independently established between the caller and the
callee without having been routed through the SIP proxies. Hence,
the load on SIP proxies is the signaling messages. The session is then
terminated when one party sends a Bye request which is followed
by a 200 Ok response from the other party [9].

SIP messages are transported independently of the transport layer
network, even though they are typically transported in a UDP
datagram. Each message consists of First-Line, Message-header, and
Message-body (see Fig. 3) [8]. The first line identifies the type
of message (request or response). A SIP request may contain one
or more Via header fields which record the path of the request.
These are later employed to route SIP responses in exactly the
same way. The Invite message contains exactly one Via header
field which is created by the UA sending the request. Whether or
not the UA is running on host 195.37.77.100 and port 5040 can
be determined from the Via field. The From and To header fields
identify the caller and callee of the invitation. The From header
field contains a tag parameter which serves as a dialog identifier,
in which a dialog defines the peer-to-peer SIP relationship between
two UAs. Dialogs facilitate the sequencing and routing of messages
between SIP endpoints. The Call-ID header field is a dialog identifier
that identifies messages from the same call. Moreover, the order of
requests is preserved by CSeq. Given that it is likely that requests
are sent via an unreliable transport, which might re-order messages,
attaching a sequence number to the messages is necessary. This
allows the recipient to identify retransmissions and requests that are
out of order. The Contact header field determines the IP address and
port number, on which the sender awaits further caller requests. The
detail of other header fields is irrelevant to this discussion and so are
not addressed further here. Note that the message header is delimited
from the message body by an empty line. In addition the message
body of the Invite request contains a description of the media type
accepted by the caller and is encoded in the Session Description
Protocol (SDP) [8].

B. Problems Associated with SIP

As mentioned earlier, the most critical task of a SIP proxy is to
route session invitations closer to the callee. Due to an absence of a
SIP network global view, it is possible that any one of the SIP proxies
faces an overload when using this type of hop-by-hop routing. This
is because a proxy is significantly affected by its processing and
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Fig. 3. The structure of a SIP network message

memory resources, which explains why suboptimal routing causes
saturation and overload1. The overload then results in a delay while
establishing calls or may cause a loss of some calls. In order to
achieve maximum network capacity and avoid overload, extra care
should be given to effectively manage SIP networks. This is possible
only if centralized managing and optimal routing are deployed. To
this end, a SIP proxy can be developed based on softwarization
concept (in SDN) or as a VNF.

C. Software-Defined Networking

In spite of the widespread application of distributed protocol and
control that operate inside network devices (e.g. switches, routers,
etc.), the management of a combination of such elements (e.g. SIP
networks) is quite challenging given their vertical implementation.
Consequently, the control plane, which is responsible for traffic
control decisions (e.g. routing), and the data plane, which steers traffic
based on such decisions, are both implemented inside the network
devices. This reduces flexibility as well as innovation. Moreover,
operators must individually configure each one of the devices by
using low order commands. SDN is an emerging network concept
that intends to remove current limitations by eliminating vertical
structures, separating the logical network plane from the network
devices, and by spreading centralized network control. Using SDN,
the network functionalities can be developed on a software bed
regardless of the product brand. Moreover, it is possible to obtain a
global view of the network status and achieve high flexibility as well
as simple and unified management [11], [12]. Fig. 4 presents a view
of SDN architecture. The data plane in this architecture is comprised
of network devices, such as forwarding, switching, and others which
are deprived of any control or software centers for automatic decision
making. The smart element of the network is in the SDN software
controllers which retain the overall architecture of the network. The
application plane contains a set of applications, such as routing,
firewall, load balancing, and so on. The communication protocol
between the planes is a series of standard Open APIs, including
OpenFlow [4], [5]. Whenever such interfaces exist, the controller
is able to dynamically program the inhomogeneous devices of the
network. This protocol uses flow tables containing three fields: a
header or matching, which is a series of information from the headers
(up to layer 4), an action which is performed for the matched packets,
and counters that preserve the statistics of the matched packets [13].
By varying these fields, the OpenFlow upper layer model realizes
various devices (such as routers, firewalls, etc.) in the data plane.
For example, an OpenFlow switch has flow tables whose header fields

1 [10] proved that the problem of overload control in a SIP network with
limited resources is NP-hard.

feature layer 2 information. As soon as a packet enters this switch,
the packet header fields are matched with that of the flow table.
If matching is verified, the action is performed on the packet. The
actions consist of 1) sending the packets to a specific output port, 2)
encapsulating the packets and sending them to the controller, and 3)
dropping the packets, and so on. However, if matching is not verified,
the packet is encapsulated in a Packet-In message and sent to the
controller. When the controller receives the Packet-In message,
one or more applications running on the controller may process the
message and install rules in the flow table via a Flow-Mod message.
This allows the later packets of the flow to be processed by the switch.
Moreover, the controller can inject packets into the data plane of a
particular switch. This is possible with the Packet-Out message,
which carries a packet that is injected into the switch. Unfortunately,
the current switches and OpenFlow limit the inspected fields to layer
2-4 headers.

A powerful complement to SDN is NFV [11], [14]. The aim of
virtualization is to virtually implement network devices and functions,
which are then called Virtualized Network Functions (VNF) [15]. A
VNF is typically made up of one or several virtual machines that
operate a specific software on servers or even on a cloud infrastructure
in Cloud computing in order to present a specific function (rather
than a separate software considered for each function). Hence, NFV
separates network functions from hardware. This approach offers
the possibility of softwarizing the functions while virtual machines
control them [6].

III. OPENSIP

The goal of the current study is to approach software-defined SIP
networking in three separate coherent steps. Fig. 5(a) shows a domain
of a current SIP network forming a network of traditional switches,
a communication infrastructure between UAs, and SIP proxies. Note
that the data and control plane are not separate. As the number of
UAs increase, it becomes more likely that load balancing occurs
between the proxies of those domains. Therefore, as time goes on,
some proxies will face overload while others are relatively idle. This
situation results in a delay when establishing a call, the loss of a call
entirely, or the inefficient use of proxy resources.

The first approach presented by the present work intends to use
the current SDN, with minor alterations, for load balancing among
SIP proxies (Fig. 5(b)). In the second approach, the control plane
of SIP proxy is decoupled from the infrastructure layer and SIP
routing is centralized and softwarized (Fig 5(c)). So, the main idea
is to move the control plane of SIP proxy into a central controller
that is in charge of taking all routing decisions in the SIP network.
Finally, a SIP proxy on the data plane is virtually constructed in the
third approach. This is done in such a way that the management of
the communication infrastructure (switches) of virtual switches is on
SDN (Fig. 5(d)). The detail for each approach is given below.

South-Bound Open APIs (e.g., OpenFlow )

North-Bound Open APIs

Data Plane
· Physical Switches

· Virtual Switches

· Routers

· Network Devices

Control Plane
· SDN Controller

Applications Plane
· Routing

· Traffic Engineering

· QoS

Fig. 4. Overview of SDN
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A. Partial SDN-based Architecture (OpenSIPPartial)

A typical method for distributing the load among SIP proxies
is employing load balancers. Load balancers may limit network
performance and impact the complexity of SIP networks. In contrast
to this method, the present paper proposes a switch and OpenFlow
controller framework as a first approach. Here, it is assumed that
there is an SDN controller in each SIP domain whose responsibility
is to manage the OpenFlow switches of that domain. The management
operates in such a way that requests are effectively distributed among
the proxies of that domain. Load distribution is performed according
to the remaining capacity of the proxies and is, in fact, a smart routing
process. As seen in Fig. 6(a), the current study attempts to achieve
the necessary skill for the effective routing of call requests between
UAs and proxies in each domain. This is done by either 1) changing
traditional switches with those of the OpenFlow in the data plane or
2) inserting a control plane with centralized logic for the switches.

Fig. 7 shows the controller architecture used in this framework.
Given that SDN only concentrates on layer 2-4 information, the

DPI module is employed for detecting SIP messages and extracting
information. When receiving SIP messages, the switches of this flow
encapsulate the message in a Packet-In message and send it to
the controller for determining their destination. By inspecting the
messages, the DPI module classifies and divides them into three
queues, namely: Invite, Bye, and the Rest of SIP Messages. Moreover,
the session information, including Call-ID, To, From, Via, etc., are
extracted from the messages and stored in the Session Information
Database. As mentioned in Section II-A, routing is performed for the
Invite messages. The other messages and corresponding responses
follow the same route (or not, depending on the configuration of the
involved proxies). The Routing Application is in charge of finding
the proxy with the minimum load and selecting the optimal route
to reach the destination proxy. In two databases called the Topology
Database and Proxies Statistics Database, Network Manager modules,
together with the Proxy Manager, preserve network topology and
proxy information in their respective order. With the Link Layer
Discovery Protocol (LLDP)2 [16] and the counters field, the network
topology and proxy load are derived, respectively. The Routing
Application utilizes all three databases to route Invite messages.
To this end and for the first Invite message, the SIP proxy with the
minimum load is first chosen. Next, the path between the switches
for this message is determined (the UA source and the previously
chosen destination proxy) by the powerful Dijkstra’s algorithm (the
shortest path). The task of the Flow Manager is to manage sessions
according to the Session Information Database and the outcome of

2The Network Manager Module is in charge of sending LLDP packets
to all the connected switches through packet out messages. These messages
instruct the switches to send LLDP packets to all ports. Once a switch receives
the Packet-Out message, the LLDP packets are sent out among all the
ports. If the neighbor device is an OpenFlow switch, it will perform a flow
lookup. Since the switch does not have a flow entry for this LLDP message, it
will send this packet to the controller by means of a Packet-In message.
When the controller receives the Packet-In, it analyses the packet and
creates a connection in its discovery table for the two switches. All remaining
switches in the network will similarly send a packet into the controller, which
would create a complete network topology. LLDP messages are periodically
exchanged and events are brought to the controller when links go up/down,
or new links are added/removed [16]. Information on switches and links are
maintained in the Topology Database.
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the Routing Application. The information relating to each path and
each session’s server is stored in the Flow Information Database and
sent by the Rules Handler module to the switches in the Flow-Mod
messages. This allows the OpenFlow rules to be installed on the
switches. The non-Invite messages in a specific session follow
the route and the chosen server for the Invite messages of that
session. If the message is Bye, the session has to be terminated and
the information for that session should be eliminated by the Flow
Manager. SIP messages reach the destination proxy in five steps (Fig.
8): (1) They may arrive at a switch where no corresponding rule has
been installed in the table. Therefore, the switch cannot forward the
packet on its own; (2) The switch notifies the controller about the
message; (3) The controller identifies the proper path and server for
the message; (4) The controller installs the appropriate rules in all
switches along the path; (5) The messages of that session can be
forwarded to their destination.

Since the switches are still not able to detect SIP messages, all
these messages must be sent to the controller. This causes switch-
to-controller round-trip delays. To remedy this problem, the present
work effectively extends the structure of OpenFlow switches (Fig. 9).
For packet processing, this switch runs software DPI and identifies
the attributes of the flows, which are:

• Application ID: SIP, SMTP, Skype, etc.
• Extracted metadata: SIP caller/callee, Call-ID, From, To, Via,

etc.
• Computed metadata: Delay, jitter, response time, etc.

After entering one of the switch ports, the attributes of a SIP message
are identified by packet processing and are matched with the match
fields of the flow table. Given that the match field in the standard
OpenFlow features header information up to layer 4, the OpenFlow
rule structure in the flow table are modified according to Fig. 10. In
this case, the match field contains the header information up to the
application layer. The action field keeps the operations that can be
applied on SIP messages, while the stats field holds the computed
SIP metadata for smart awareness of the proxy status and network.
Finally, if no rule is detected for a SIP message, it is handed to
the API part for transmission to the controller. If a rule is derived,
the corresponding action is performed (e.g. forward SIP messages
to ports). With this mechanism, there is no need to transmit all SIP
messages to the controller. This mechanism gradually reduces the
number of messages exchanged between the switches and controller.
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B. Full SDN-based Architecture (OpenSIPFull)

In this approach, the SIP proxy functionalities are decoupled
from the infrastructure layer and move to a programmable software
controller (Fig. 6(b)). The proposed controller architecture for this
approach is shown in Fig. 11. The most vital function of SIP proxies
is routing, which forms the application plane. The SIP proxies and
SIP registrar structure have been effectively added to the control
plane. The data plane merely contains user equipment and extended
OpenFlow switches that reduce the management complexities and
expenses in this plane. The DPI module in this controller classifies
the received SIP messages into request and response categories. The
Registrar Manager module is responsible for registering user informa-
tion. The Network Manager is aware of the switch and link statuses.
Routing Invite requests is performed with the Routing Application.
Again, the path of the received Invite message between the
switches (source and destination are UAC and UAS, respectively) is
determined by using Dijkstra’s algorithm. The Flow Manager module
is responsible for the management of the sessions. By receiving the
Invite message path information from the Routing Application
and accessing the Session Information Database, the Flow Manager
module is capable of routing the remainder of the session (there is
mapping between Invite(s) and flow(s)). In the SIP network, UAS
produces some of the responses (e.g. 180 Ringing) and proxy
generates the other messages (e.g. 100 Trying) with respect to
the request message. The Make an Appropriate Response Manager
module is responsible for generating the response messages of the
second type (e.g. 100 Trying) in the Packet-Out message.

Fig. 12 presents messages related to user information registration,
initiation and the tearing down of a session by this approach.
Contrary to Fig. 2, there is no SIP proxy equipment in this figure.
In the registration phase, the Register message is sent to the
controller via a switch and the Packet-In message for user infor-
mation registration. For the acknowledgment, the controller sends a
Packet-Out message to the switch that holds a 200 Ok message.
In the initiation phase, via the Packet-In message, the first switch
sends a copy of the received Invite message to the controller.
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The path of the Invite message in the network switches to its
destination (UAS) is also determined by the controller and is given to
corresponding switches using the Flow-Mod message. At this point,
the Invite message is sent to the destination via the switches. As
the rules for this session are already installed on the switches, the
remainder of the request and response messages are exchanged with
no controller supervision.

C. Software-defined NFV-based Architecture (OpenSIPNFV+)

Leveraging cloud technologies (e.g. hardware virtualization) as
key enabler is an emerging concept (called NFV), and is currently
receiving great attention. It is worth mentioning that both Cloud
computing and NFV are more than simple concepts, that is they
are being deployed on a commercial-scale today. The main goal
behind the NFV is to enable the consolidation and sharing of
various software-based, virtualized, networking resources, running
on commodity hardware infrastructures. NFV could also be used
to improve the performance of SIP networks. As mentioned earlier,
the efficiency of SIP proxies is highly affected by their processing
resources. This is where NFV comes to the rescue as it helps to
eradicate the limitations of hardware-centric SIP proxy and reduces
the possible occurrences of overload. This is the reason why Software-
Defined Network Function Virtualization OpenSIPNFV+ is proposed.
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Fig. 13. Load distribution between virtual SIP proxies

Software-defined NFV leverages network virtualization and logically
centralized intelligence so as to minimize costs, and to maximize
the utilization of network resources. In OpenSIPNFV+, VNFs in the
data plane are virtual SIP proxies. Also, all networking resources
(such as switches) are under the control of the SDN controller, while
all computing resources (such as virtual SIP proxies) are under the
control of NFVO (Fig. 13). As seen in Fig. 6(c), hypervisors run
on servers to support the Virtual Machines (VMs) that implement
SIP Proxies. This platform allows customizable and programmable
virtualized SIP proxies that run as software within virtual machines.
Therefore, SIP proxies are delivered to the network operator as pieces
of pure software. Note that on demand virtual resources from Cloud
computing can be leased and released, which is a promising paradigm
that promotes a computing-as-a-service model. The SDN controller
and the NFV orchestration system make up the logical control
plane. NFV orchestration manages virtual SIP proxies. By using
standard interfaces, the SDN controller controls NFV orchestration.
After the allocation of suitable SIP Proxies to virtual machines via
NFV orchestration, the SDN controller initiates efficient call request
steering through OpenFlow switches and with the Dijkstra algorithm.
To this end, the controller and switch architecture are the same as
those of the first approach, with the exception that the application
protocol is responsible for autoscaling VMs based on the input load.
Later the proper path for delivering Invite messages is determined.
Autoscaling is a technique for the dynamic adjustment of resources
with respect to demand [14]. For this approach, we utilize horizontal
scaling, which increases the scalability of the network and overall
reduces the possibility of overload.

According to Fig. 13, based on the demand, some VMs are hosted
by Physical Machines (PMs). Moreover, a SIP proxy is implemented
on each VM. The load is first sent to VM11. The scale out/in criteria
is that the consumed resources of all VMs exceed 90% or fall below
10% of the resources, respectively. For scale out, NFV orchestration
launches VM21 on PM2 and, for scale in, the load is allocated to
previous VMs with sufficient resources.

As a conclusion, Table I represents a comparison between the
various version of OpenSIP.

D. OpenSIP in IMS and Multi-domain Networks

Integrating the OpenSIP to the IP Multimedia Subsystem (IMS)
network can provide better resource control and advanced QoS.
Traditionally, service subscription or modification on the network
bandwidth needs certain time of handling to take effect. With the
incorporation of OpenSIP, it becomes real-time. In this regard, the
call is routed to the IMS core and triggered to the SIP application
servers (AS) responsible for the service of network resource control.
After proper authorization and authentication, the SIP AS can use
the OpenSIP controller’s north-bound API to modify the subscribed
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TABLE I
THE LOCATION OF ARCHITECTURAL MODULES IN DIFFERENT APPROACHES

Approaches Conventional OpenSIPPartial OpenSIPFull OpenSIPNFV+

routing data plane application plane application plane application plane
DPI - control plane control plane control plane

proxy data plane data plane control plane data plane
registrar data plane data plane control plane data plane

Domain 1 Domain 2 Domain 3

Data Plane

Control Plane

SIP Proxy Server

OpenFlow Switch

User Agent

Data Plane Traffic

Control Plane Interface

Control Data Plane Interface
(e.g., OpenFlow)

OpenSIP
Controller

(a) Vertical approach

Domain 1 Domain 2 Domain 3

SIP Proxy Server

OpenFlow Switch

User Agent

Data Plane

Control Plane

Data Plane Traffic

Control Plane Interface

Control Data Plane Interface
(e.g., OpenFlow)

OpenSIP
Controller

(b) Horizontal approach

Fig. 14. OpenSIP support of multi-domain networks

network resources according to the calling party’s requirement. In a
multi-domain SIP network, the logically centralized OpenSIP con-
troller consists of multiple distributed controllers working together,
which can benefit from the scalability of the distributed architecture.
Each controller only handles the local area switches in its domain.
OpenSIP controllers can be horizontal or vertical (Fig. 14(a) and
(b)). In the vertical approach, a master OpenSIP controller is on
top of the individual network controllers. Master OpenSIP controller
has a global view of the network across all connected domains.
It can orchestrate the configuration in each connected domain. In
the horizontal approach, the OpenSIP controllers establish peer-to-
peer communication. Each controller can request information or
connections from controllers of other domains in the network.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

This section first provides detail on the implementation of the
system. Then, the performance and the results of the three proposed
approaches are evaluated and presented in consecutive sections. Open
vSwitch v2.4.1 and Floodlight v1.2 are employed to implement the
OpenFlow switch and controller and to extend them in accordance
with what was described in the previous section (∼ 2400 lines of
Java code). Floodlight is a multi-threaded Java-based controller that
utilizes the Netty framework. Open vSwitch is a software implemen-
tation of a virtual multilayer network switch, which is designed to en-
able effective network automation through programmable extensions
while supporting the OpenFlow protocol. In addition, the application
plane is implemented as a module running on the controller. nDPI
engine is used to implement the DPI module. nDPI is an open
source deep packet inspection software toolkit. The open source
Kamailio v4.3.6 software implements the SIP proxies and the open
source SIPp software implements the UAs and injects SIP traffic.
OProfile software is utilized to measure CPU and memory usages.
When necessary, to send packets at a fixed rate, the background
traffic between proxies is generated by iperf. To sniff and capture
the network packets, Wireshark is used. Each experiment is run three
times and the average is taken as the result.

A. Experimental Results for OpenSIPPartial

1) Constant Load: To evaluate the performance of the
OpenSIPPartial approach, the topology shown in Fig. 15 is employed.

OpenFlow SDN Controller

SIP Proxies

Traffic Generator

S2
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P1

OpenFlow 
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2GB RAM

CentOS 6.3

192.168.10.11

Floodlight v1.2

Intel Dual Core

1.8GHz

2GB RAM

CentOS 6.3

SIPp v3.4

Intel Dual Core

1.8GHz

2GB RAM

CentOS 6.3

Fig. 15. The testbed for implementation of OpenSIPPartial

This topology includes two SIP proxies, six OpenFlow switches, and
one controller. For implementation of the switches, Open vSwitch is
installed on six virtual machines. Each network link has a bandwidth
of 10 Mbps. The first experiment entails two scenarios with different
background traffic. In Scenario 1, the background traffic of each
proxy is equally 500 packets. On the other hand, in Scenario 2 the
background traffic of proxy 1 (P1) is 1000 and that of Proxy 2 (P2)
is 500 packets. Then, the constant offered load is injected through
the traffic generator to the system for 100 seconds at the rate of 1500
cps (call per second).

The performance of OpenSIPPartial with that of the Round-robin
and Random proxy selection strategies is compared. To be more
precise, Routing Application is composed of two parts: SIP proxy
selection and Path selection. In this experiment, three algorithms are
used in order to implement the SIP proxy selection: 1. The proposed
method of the present paper based on the counters field and designed
modules such as Proxy Manager and Network Manager, 2. Round-
robin, and 3. Random. So according to these algorithms, the SIP
proxy (with the minimum load in proposed method case) is first
chosen. Then, all three algorithms exploit the Dijkstra’s algorithm
as Path selection algorithm (the shortest path). Fig. 16 presents the
performance of the SIP proxies. The evaluation criteria include proxy
throughput (the number of serviced calls by proxies per unit of
time), the proxies’ average response time (the time between sending
the Invite from the UA and receiving the 200 Ok from the
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(e) SIP proxy’s CPU consumption − Scenario 1

(f) SIP proxy’s CPU consumption − Scenario 2
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(g) . SIP proxies’ memory consumption− Scenario 1

(h) . SIP proxies’ memory consumption− Scenario 2

Fig. 16. Comparison of SIP proxies’ performance in the two scenarios

SIP proxy), and the consumption of resources by the proxies. The
objective is to achieve the maximum throughput and the minimum
latency with respect to resources. Compared to the Round-robin and
Random approaches, the OpenSIPPartial approach reaches better results
in both scenarios. In addition, the OpenSIP results are similar in both
scenarios, yet the results of the Round-robin and Random approaches
decline in Scenario 2. The different background traffic of the proxies
in Scenario 2 aggravate the careless load distribution of these two
methods over time. As shown in Fig. 16.(a) and (b), it is clear
that the OpenSIPPartial approach obtains a throughput closest to the
offered load in both scenarios. The OpenSIPPartial approach is able to
sufficiently approximate the proxy loads using the stats field. Despite
the increased resource consumption of the Round-robin and Random
approaches compared with the OpenSIPPartial approach (Fig. 16(e)
to (h)), their average response time is higher (Fig. 16(c) and (d)).
Note that resource consumption by both proxies in the OpenSIPPartial

approach is nearly equal, indicating that OpenSIP has a careful and
fair load distribution.

The following focuses on OpenSIPPartial results. Each proxy’s
throughput in the OpenSIPPartial approach is shown in Fig. 17. In

Scenario 1, both proxies have an approximately equal throughput
(∼ 748 cps). In Scenario 2, the throughput of P2 is (∼ 997 cps),
almost double that of P1 (∼ 501 cps). The reason for this difference
is that the background traffic of P1 is half of P2’s in this scenario.
Therefore, more load should be sent to P2. As shown in Fig. 16(a)
and (b), the total throughput of the two proxies is very close to the
offered load. Note that the offered load is distributed fairly between
the two proxies and in accordance with their available capacity in the
OpenSIPPartial approach.

Fig. 18 provides the link utilization at the 50th second in the
OpenSIPPartial approach. This is indicative of the routing of requests
to P1 and P2. For this purpose, the OpenSIP uses the shortest possible
routes of <S1, S2, S5> and <S1, S4, S6>, to send requests to P1
and P2, respectively. In Scenario 2, the links along the routes leading
to P2 are double used the links along the routes leading to P1. As
mentioned before, in Scenario 2, the background traffic of P2 is half
of that of P1. This causes equal resource consumption in both the P1
and P2 proxies (Fig. 16(e) to (h)).

Fig. 19 shows the performance of the OpenSIPPartial controller.
The controller throughput indicates the amount of serviced flow per
unit of time. The average response time represents the time between
the Packet-In is sent from the switch and the Flow-Mod is
received from the controller. As shown in Fig. 19(a) and (b), the
performance of the OpenSIPPartial controller is independent of the
scenario; that is, its average throughput and average response time
are approximately 1450 fps and 7 ms, respectively . This indicates
that the OpenSIPPartial controller can achieve a high throughput with
a very low latency and without its modules overloading the resources
(Fig. 19(c) and (d)). The controllers’ resource consumption is lower
than the proxies’ (compare Fig. 16 and Fig. 19), because the latter
are also responsible for initiating and terminating all calls while the
controllers are only responsible for managing a limited number of
switches. This can also be inferred from Fig. 20. This figure confirms
that the proxies’ number of processed packets per unit of time is
almost seven times that of the controller’s. As shown in Fig. 2, seven
messages are involved during the SIP call flow (and in the worst
case traverse all SIP proxies), while switch installation rules by the
controller begin with the Packet-In message and end with the
Flow-Mode message. Therefore, the possibility of overloading the
controller is much lower than the proxies’ chances, and so a controller
will never become a bottleneck. Moreover, with the equitable and fair
distribution of loads by OpenSIP, proxies will also never have to deal
with an overload.

Another situation which may cause a bottleneck for the
OpenSIPPartial controller is the sudden failure of network components
and a sudden reduction of its capacity. This failure may impose the
failed proxy’s load on the other proxies. To test such a situation, in
Scenario 1, P1 fails at the 20th second and resets up at the 40th second.
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Fig. 17. Fairness analysis in OpenSIPPartial
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Fig. 18. Link utilization observed at t = 50s in OpenSIPPartial

Likewise, Scenario 2, P1 fails at the 60th second and resets up at the
80th second. Fig. 21 shows the OpenSIPPartial performance in these
conditions. In Scenario 1, from the 20th second to the 40th second, the
OpenSIPPartial controller can send the whole load to P2 (Fig. 21(a)).
This indicates that, despite the sudden failure of P1, the OpenSIP
speed can still maintain the throughput of the entire system close to
the offered load. P2’s resource consumption also increases during this
period (Fig. 21(b) and (c)). In addition, the resource consumption of
the OpenSIPPartial controller grows during this period. Under normal
circumstances, P1 and P2’s resource consumptions are almost equal,
while that of the OpenSIPPartial controller is lower (Fig. 21, (b) and
(c)). In Scenario 2, the same process is repeated from the 60th second
to the 80th second, but the difference is that the P1 and P2 loads are
unequal. However, the OpenSIPPartial can send the whole load to P2
at the 60th second and then distribute it again between P1 and P2 at
the 80th second.

2) Variable load: In the previous subsection, the constant load of
1500 cps is injected into the system. However, in this subsection, the
performance of the OpenSIPpartial is evaluated under a variable load.
In the previous subsection, the P1 and P2 proxies did not deal with
an overload since their capacity was more than 1500 cps and so a
lack of resources was not encountered. On the contrary, in this test
we seek to evaluate the performance of OpenSIPPartial under overload
condition. Fig. 22 presents the performance evaluation results. The
offered load is initiated from 1500 cps and increases to 6000 cps
in four stages (until the 400th second). Then with a sudden drop at
the 400th second, its offered load returns to 1500 cps. Next with
a sudden spurt at the 500th second, the load reaches 6000 cps and
finally drops back to 3000 cps during the last 100 seconds. Up to
the 200th second, the throughput of the proxies and controller are
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Fig. 19. Comparison of the OpenSIPPartial controller’s performance in the two
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Fig. 20. Packets processed per second in OpenSIPPartial

very close to the offered load. At the 200th second, the proxies are
overloaded and this will continue up to the 400th second. During these
200 seconds, the average throughput of the proxies is approximately
3000 cps and the remainder of the offered load is rejected by the
proxies (rejection rate). The proxies’ overload occurs due to a lack
of resources, especially CPU (Fig. 22(c) and (d)). For example,
Fig. 22(c) shows the proxies’ CPU saturation at the 250th, 350th

and 550th second, respectively. Usually, with the saturation of CPU,
throughput approaches zero. However the OpenSIPPartial overcomes
the sharp drop in throughput during the overload status, which allows
it to use the proxies maximum capacity (∼ 3000 cps). Unlike the
proxies, the OpenSIPPartial controller is not overloaded even at the
peak offered load and its throughput is always synchronized with the
offered load. For example, the average throughput of OpenSIPPartial

between 300 to 400 seconds is approximately 5978 fps. Proportional
to the throughput, proxy response time also varies (Fig. 22(b)). Upon
overload, response time increases several times as well. After the
offered load returns to an amount lower than the proxies’ capacity
(that is, back to a situation without the overload), an overload control
algorithm may not be able to return the throughput to a normal
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Fig. 21. OpenSIPPartial performance at the time of P1 failure
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Fig. 22. OpenSIPPartial performance over time in various offered loads

status. However, at the end of the overload (at the 400th second), the
OpenSIPPartial can bring the system throughput close to the offered
load by a proper distribution of the load. Unlike the gradual increase
of the offered load in the first 400 seconds, a flash crowd occurs at the
500th second. At the same time, the OpenSIPPartial can again manage
to maximize the proxies’ throughput despite the total occupation of
their CPU (Fig. 22(c)). A flash crowd occurs when a large number
of user agents simultaneously make call requests. For example, on
holidays, numerous calls are made within short intervals, which
imposes a heavy load on the network. The proxies’ high throughput
during sudden fluctuations of the offered load points to the stability
of the system. Finally, in the last 100 seconds, the rejection rate
reaches the minimum while the throughput attains the maximum,
and the response time reaches approximately 10 ms. The point to
note here is that, during the period between 200 to 400 or 500 to
600 seconds when the input load exceeds the network resources, a
throughput close to the offered load can be achieved by increasing
proxy resources and overcoming their hardware limitations. This
condition is the motivation behind the third proposed approach,
which is entirely based on NFV, and whose performance results are
presented in the following subsection.

3) Comparison with Other Approaches: In this subsection, the
performance of the OpenSIPPartial is compared with two other well-
known approaches given in [17] and [18]. For this purpose, as shown
in Fig. 23, two testbeds are prepared, whose details are provided in
Table II.

In [17], using a load balancer, a TLWL algorithm routes a new

call request to the SIP proxy with the least load. The counters in
the TLWL algorithm specify the weighted total of the transactions
assigned to each proxy. A new call is assigned to the SIP proxy
with the lowest counter. In [18], to distribute the load with a load
balancer, the HWAR and FWAR algorithms are proposed, which use
the window and proxy response time to estimate the proxies’ load. In
the FWAR algorithm, windows sizes are fixed, whereas in HWAR a
history of the response times is kept in the windows with the help of a
mathematical model. Fig. 24 shows achievable peak throughput of the
proxies using each method. As is evident, OpenSIPPartial can achieve
the highest throughput (5856 cps), while the HWAR is only able to
handle up to 4940 cps. Fig. 25 also lists the average response time
for proxies in the four methods. It is clear that the average response
time of OpenSIPPartial has a linear growth, while it is exponential for
the other methods.

Table III presents the proxies’ CPU consumption along with
their means (µ) and standard deviations (σ). It is evident that by
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TABLE II
TESTBED CHARACTERISTICS FOR THE THIRD EXPERIMENT

SIP Proxies SDN Controller OpenFlow Switches Load Balancer Traffic Generator (UAs)

Software Kamailio v4.3.6 Floodlight v1.2 Open vSwitch v2.4.1 Asterisk v13.10.0 SIPp v3.4
Quantity 8 1 16 1 1

CPU Intel Dual Core 1.8GHz Intel Xeon E5645 2.4GHz∗ Intel Dual Core 1.8GHz Intel Xeon E5645 2.4GHz Intel Dual Core 1.8GHz
RAM 2 GB 4 GB 1 GB 4 GB 2 GB

Operating System CentOS v7.2 Linux kernel v3.10 Linux kernel v3.10 CentOS v7.2 Red Hat v6
* 6 cores - 12 threads

increasing the offered load, the proxies’ CPU usage also grows. This
table offers an insightful view of the manner of load distribution
among the eight proxies using the four methods. Compared with
the other methods, the standard deviation of CPU consumption in
the OpenSIPPartial method is lower. This indicates a uniform load
distribution among proxies. Moreover, average CPU consumption is
lower for OpenSIPPartial except for offered load of 1500 cps, which
represents an efficient use of resources. When the offered load is equal
to 1500 cps, both the FWAR and TLWL methods have a lower µ,
but a higher σ. For example, CPU consumption of proxy 3 in TLWL
is approximately 38%, while it is 4.4% for proxy 8 (a significant
difference!). The memory results are similar though they, they will
not be presented here.

It is also worth mentioning that OpenSIPPartial scales well (at least
up to 12 proxies) as presented by Fig. 26.

Fig. 27 shows the proxies’ peak throughput versus an increase
in the number of the OpenFlow switches. The base of the Open-
SIP is Floodlight, which is a multi-threaded controller. For multi-
threaded controllers, adding more switches leads to better utilization
of available CPU cores. Thus, throughput increases until the number
of connected switches is larger than the number of threads. Since the
OpenSIP processor has 6 cores and 12 threads (Table II), increasing
the number of switches to 12 boosts the proxy throughput.

In Fig. 28, the performance of the load balancer and controller
entities are compared with each other. To do so, the offered load of
1000 cps to 10000 cps is injected into the entities in both testbeds
(Fig. 23). The OpenSIPPartial controller achieves a throughput of 6650
fps, while the best load balancer belonging to the HWAR algorithm
can not achieve a better throughput than 5040 cps. This is because
to estimate the proxies’ loads using the HWAR, FWAR, and TLWL,
information must be stored and processed in the load balancer. It
is also necessary to note that, according to Table II, the hardware
specifications of both entities are similar.

In addition, we have extended the comparison testbed to a two stage
with ECMP testbed, and repeated the experiment. Table IV illustrates
the results. Despite performance improvements of TLWL in the new
testbed, the results still show still shows low yields compared to the
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sixteen OpenFlow Switches in OpenSIPPartial)

OpenSIPPartial, which is the result of different architectures. The high
performance of OpenSIP compared to TLWL comes from the efficient
and integrated framework based on SDN concept, which decouples
the network control from data forwarding by direct programming.
With its inherent decoupling of control from data plane, SDN presents
a greater control of network through programming.

B. Experimental Results for OpenSIPFull

To evaluate the performance of the OpenSIPFull approach, the
topology shown in Fig. 12 is used. This includes the SDN controller
(namely, the OpenSIPFull controller), OpenFlow switches, and user
agents according to the specifications given in Table II. Fig. 29 shows
a wireshark capture of messages exchanged for user registration, ses-
sion initiation, media exchange and session termination. As is clear,
a VoIP session can be established with no physical SIP proxy and
with a minimum number of messages exchanged. The point to note
is that mapping occurs between the SIP and the OpenFlow messages.
As seen in this figure, after receiving the Register message from
the user agent (192.168.1.100), the OpenFlow switch (192.168.1.101)
sends this to the OpenSIPFull controller (192.168.1.102) in the form of
a Packet-In message. The controller registers the user information
and sends its acknowledgment as a Packet-Out message to the
switch. This message contains 200 Ok message for the user agent.
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TABLE III
PROXIES’ CPU CONSUMPTION, MEAN (µ) AND STANDARD DEVIATION (σ)

Offered Load (calls/sec) ∼ 1500 cps 3000 cps 6000 cps

CPU Usage(%) ∼ \ Methods OpenSIPPartial HWAR FWAR-20 TLWL-1.75 OpenSIPPartial HWAR FWAR-20 TLWL-1.75 OpenSIPPartial HWAR FWAR-20 TLWL-1.75

SIP Proxy 1 28.28711 34.41847 11.41962 17.6959 46.92671 50.77466 60.41263 63.67234 87.1522 99.4433 98.35628 99.3291
SIP Proxy 2 29.11409 26.58059 24.59085 11.13422 53.36199 46.76779 59.75894 62.36888 84.70425 98.4757 100 70.52097
SIP Proxy 3 26.49163 29.97922 35.79715 37.93151 45.36459 60.22029 47.02127 28.92115 89.76284 91.90538 69.40477 100
SIP Proxy 4 21.10002 25.95929 24.88893 37.12324 48.37223 55.24889 49.48492 73.77138 86.17214 83.34733 99.4757 98.92849
SIP Proxy 5 23.32516 26.64898 3.990736 29.97475 45.2882 38.25194 55.63625 56.92173 95.58709 94.58904 100 99.1262
SIP Proxy 6 24.25989 29.18996 24.12473 15.40299 39.17503 56.90217 53.87371 63.66082 94.35496 95.34923 83.92338 81.99253
SIP Proxy 7 23.84553 19.34619 33.5041 19.89493 51.81007 51.5295 54.52989 46.85648 87.74447 86.6149 86.38814 99.023
SIP Proxy 8 23.51356 26.30175 32.47848 4.4203 49.62805 37.72943 54.14984 53.15557 90.788 90.77296 92.1798 100

µ 24.99212 27.30306 23.84932 21.69723 47.49086 49.67808 54.35843 56.16604 89.53324 97.56223 93.80874 99.8833
σ 2.550988 4.006575 10.37422 11.39614 4.142978 7.752312 4.262402 12.74522 3.623025 9.082369 12.13353 14.62698

TABLE IV
COMPARISON BETWEEN THE NEW RESULTS OF TLWL IN TWO STAGE TESTBED AND OPENSIPPARTIAL

Time (sec) 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600

Offered load (calls/sec) ∼ 1000 2000 3000 4000 5000 6000

SDN-based testbed — OpenSIPPartial throughput (calls/sec) ∼ 988 1968 2878 3879 4921 5436
SDN-based testbed — OpenSIPPartial average response time (ms) ∼ 9.64 16.44 27.98 51.46 81.76 99.65

Two stage testbed — TLWL throughput (calls/sec) ∼ 759 1108 1989 2897 3789 4497
Two stage testbed — TLWL average response time (ms) ∼ 9.98 19.64 48.55 76.55 176.64 265.28

The call request is also sent via an Invite message and its route is
specified by a Flow-Mod message for the OpenFlow switches. Then,
the SIP messages are exchanged between the user agents without the
need of sending them to the controller.

Fig. 30 reports the OpenSIPFull controller scalability. This con-
troller is able to achieve a maximum throughput of 4897 fps by
increasing the offered load to 5000 cps. The comparison of Fig.
28 and Fig. 30 indicates that the OpenSIPPartial achieves a higher
throughput than the OpenSIPFull because the OpenSIPFull also has the
responsibility of the SIP proxy. Table V shows that up to the offered
load of 5000 cps, the OpenSIPFull controller response time is less
than 100 ms, but after that it grows quickly.

Fig. 31 provides the CPU profiling results for the OpenSIPFull

controller obtained via Oprfile for various offered loads. As observed,
the Floodlight Kernel Module occupies more than half of the CPU of
the controller, but the modules designed in this paper use much less
CPU. This further proves the scalability of the OpenSIPFull. Among
these modules, the DPI Module has a higher CPU consumption due
to the inspection of the received messages up to layer 7. However,
the DPI engine can improve so as to reduce resource consumption.
Fig. 31 also illustrates that, at the offered load of 5000 cps, the CPU
of the controller is fully engaged, thus the decreased throughput and
increased response time are now justifiable.
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Fig. 29. Wireshark capture of advanced SIP call flow

C. Experimental Results for OpenSIPNFV+

To evaluate the performance of the OpenSIPNFV+ approach, the
topology presented in Fig. 13 is employed according to the specifi-
cations given in Table VI. Table VII shows that, with the passage of
time and the increase of the offered load, the OpenSIPNFV+ approach
is able to maintain a high throughput by setting the number of VMs
by NFV orchestration. The OpenSIPNFV+ prevents losses, even in
traffics as heavy as 6000 cps from 500 to 600 seconds, and achieves
a throughput of 5867 cps with six virtual SIP proxies.

As a conclusion, Table VIII represents a comparison in terms
of throughput and delay between the aforementioned methods. As
expected, OpenSIPs can achieve a high throughput with a very low
delay. OpenSIPs are indebted to the SDN, OpenFlow, and global view
of entire SIP network for high efficiency.

V. RELATED WORK

SIP overload control algorithms are divided into local and dis-
tributed. In the local, the overloaded proxy has control over its
resource usage [19]. The criteria for identifying overload in these
algorithms are queue length and CPU usage. According to these
criteria, a set of thresholds is defined that when exceeded, makes the
proxy enter overload condition. The proxy then starts to reject call
requests. For example in [20], occupancy-based algorithms (OCC)
are proposed which employ CPU utilization as a trigger for rejecting
calls. Another well-known example of the local overload control
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TABLE V
OPENSIPFULL CONTROLLER RESPONSE TIME

Offered load (calls/sec) ∼ 1000 cps 2000 cps 3000 cps 4000 cps 5000∗ cps 6000 cps 7000 cps

Average response time (ms) 9.37 17.36 29.47 52.46 86.45 693.45 947.53

TABLE VI
THE CHARACTERISTICS OF THE OPENSIPNFV+ IMPLEMENTATION TESTBED

Physical Machines (PMs) SDN, NFV Controller OpenFlow Switches Virtual Machines (VMs) Traffic Generator (UAs)

Software - Floodlight v1.2 Open vSwitch v2.4.1 SIP Proxies (Kamailio v4.3.6) SIPp v3.4
Quantity 4 1 16 On demand 1

CPU Intel Core i7-5960X 3GHz∗ Intel Xeon E5645 2.4GHz Intel Dual Core 1.8GHz 1 vCPU ∼ 1 Core Intel Dual Core 1.8GHz
RAM 32 GB 4 GB 1 GB 2 GB 2 GB

Operating System CentOS v7.2 Linux kernel v3.10 Linux kernel v3.10 CentOS v7.2 on Oracle’s VirtualBox Red Hat v6
* 8 Cores

TABLE VII
OPENSIPNFV+ THROUGHPUT AND THE NUMBER OF VMS REQUIRED

Time (sec) 0 - 100 100 - 200 200 - 300 300 - 400 400 - 500 500 - 600 600 - 700 700 - 800 800 - 900

Offered load (calls/sec) ∼ 1000 2000 3000 4000 5000 6000 4000 2000 1000
Throughput (calls/sec) ∼ 989 1976 2898 3879 4875 5867 3978 1956 945

The number of VMs 1 2 3 4 5 6 4 2 1

TABLE VIII
COMPARISON BETWEEN THE DIFFERENT APPROACHES WITH OFFERED LOAD (CPS) ∼ 3000

Approaches TLWL-1.75 OpenSIPPartial OpenSIPFull OpenSIPNFV+

Throughput (calls/sec) ∼ 1785 2798 2841 2898
Average end-to-end call setup time (ms) ∼ 38.74 29.98 29.47 28.31
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Fig. 31. OpenSIPFull controller CPU profile

algorithm proposed by Ohta [21] focuses on queue length. The
drawback of local algorithms is the cost of call rejection. The proxy
must use its resources for rejecting excess calls when dealing with
heavy overloads.

In distributed algorithms, on the other hand, proxies collaborate
together to control the overload, so that upstream proxies control
the load of the downstream proxies (see [9], [22], [23]). Distributed
algorithms are categorized into implicit and explicit methods. The
absence of responses or the loss of packets is used to detect overload
in implicit methods. Explicit algorithms are classified into rate-based,
loss-based, signal-based, window-based, and on/off control methods.
Among the rate-based methods, the downstream proxy controls the
delivery rate of upstream proxies [22]–[24]. In loss-based method, the
downstream proxy measures its current load and accordingly requests
the upstream proxies to reduce their load. In window-based methods,
unless there is an empty space in the upstream proxy window, the load
is not transmitted to the downstream proxy. Window size adaptation

can be achieved using feedback from the downstream proxy [9]. In
signal-based algorithms, the upstream proxy reduces its transmission
rate when receiving the 503 Service Unavailable message
[25]. By transmission of the Retry-After feedback [26], a proxy can
either hold off or on to its received load within the on/off control
method.

Based on the mentioned points, the disadvantages of the present
approach to SIP overload control are complexity and overhead which
results in instability.

Note that, NFV based approaches also provide a simple alternative
to application-layer overload control.

Another approach for dealing with the overload issue is load
balancing. This is the distribution of traffic among SIP proxies
according to their available capacity by the use of a load balancer
[17], [18]. Also, the DNS-based load balancing methods can provide
an alternative to in-line load balancing, by associating multiple
servers to the same SIP URI [27].

VI. CONCLUSION AND FUTURE WORK

SIP proxy overload is one of the main problems of SIP networks,
which results in a sharp drop in performance due to both improper
request routing in the application layer and resource saturation. In
the current paper, this problem is overcome by three frameworks
for upgrading SIP networks, which are based on SDN and NFV
technologies (OpenSIP). One of the key challenges in SDN is the lack
of application awareness in controllers or switches, which prevents
them from making smart decisions. We used the DPI engine to
achieve awareness of SIP message details. For this purpose, the
OpenFlow protocol was also extended. In the OpenSIPPartial, the
call requests are distributed among SIP proxies by extending the
OpenFlow controller and switch so that a minimum number of
messages are exchanged between the switches and controller. In
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this method, the convenient proxy and the shortest network path are
selected together. In the OpenSIPFull, the control plane of the SIP
proxy is decoupled from the infrastructure layer and the SIP routing
operation is implemented in software in the form of a logically
centralized controller. In the OpenSIPNFV+, using the concept of NFV,
the SIP proxy is virtualised to prevent hardware limitations. All
three approaches were implemented by Floodlight and Open vSwitch
tools and thorough performance evaluations were conducted through
various scenarios. The simulation results confirmed that all OpenSIP
implementations achieve a high throughput, low response time, and
resource efficiency. The other achievements are the scalability of the
proposed controllers and the proper routing of call requests.

One future work is to design a mathematical model for SIP
routing in the controller, which can include constraints, such as link
latency or network SLA. The VMs migrate technology can also
be employed to manage virtual SIP proxies. Using the proposed
approaches to provide security mechanisms for the SIP network can
also be considered as a worthwhile future work. We also plan to
extend OpenSIP to support encrypted traffics like SIP over TLS, as
encryption is a major implementation requirement.
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